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HE wave properties of a helically con-

I ducting cylinder in free space have

been studied in detail.! In delay lines

using spiraled conductors as well as in some

traveling-wave-tube applications, the wave prop-

erties of the helical structure are modified by the
presence of additional coaxial conductors.

The factors of interest in traveling-wave-tube
work are the velocity of propagation and the
impedance function I2/8*P (see section 6 for
glossary of symbols) relating the longitudinal
field to the total power flowing. This latter field
determines the degree of interaction of the wave
and the moving electron stream.

The problem considered is illustrated in
Figure 1, which shows the infinitely thin helically
conductive cylinder of radius @ and coaxial inner
and outer uniformly conductive cylinders of
radiuses ¢ and b, respectively. Four conditions
are possible depending on the presence, absence,
or combination of conducting cylinders. These
conditions are considered separately in the
subsequent sections.

1. Helix in Free Space

The wave properties of a helical conductor in
free space have been adequately covered in the
literature. The results are recorded here for
information and comparison with other condi-
tions. For this condition, where ¢ = 0 and

b = =, the radial propagation constant ¥ is
given by
Io(ya)Ko(va)
g L0\YE)HolYR) 2
(va) T (va) Ks (va) (ka cot ). (1)

The factor F(va) in the impedance parameter,
(E2/B*P)¥ = (B/k)5(v/B)*F(va), is given by

2. Helical Conductor Inside a Coaxial
Conductive Cylinder

This condition is the one most likely to be met
in practice. For this condition, ¢ = 0 and & has a

L L

[ L

Figure 1—Helically conductive cylinder with inner
and outer coaxial conductive cylinders,

finite value. The radial propagation constant v
is given? by

_ To(va)Ko(vb)

(& cot ,,)= _ L) Ke(va)| L~ Kova)Te(ad) |.
v Li(va)Ki(va) | { _ L@ Ka(3h)
Ky (ya)I,(vb)
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The solution is shown plotted in Figure 2 with
b/a as a parameter. As can be seen, the effect is
to reduce the low-frequency dispersion.

The factor F(ya, 4b) in the impedance param-
eter is given by (4).

va_Io(va) ] [(L(m) _ggg) (Ko('m) _Klwa)) 44 ]”

Fva) = [54_0&(7@ To(va)
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! J. R. Pierce, “Traveling Wave Tubes,” D. Van Nostrand Company, New York, New York; 1950.
2L. N. Loshakov and E. B. O'Derogge, “On the Theory of the Coaxial Spiral Line,” Radiotecknika (Moscow),

volume 3, pages 11-20; March/April, 1948.
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where Iy, I, and I, are Bessel functions of an
imaginary argument of the first kind of order
zero, one, and two, respectively: and K,, K, and
K, are Bessel functions of an imaginary argu-
ment of the second kind of order zero, one, and
two, respectively.

The broken-line underscoring denotes the
argument vya for the functions and the solid-line
underscoring denotes the argument ~vb.

The quantities H, J, R, M (x), N(x), and P(x)
are defined by the following equations.

H = [Io(va)Ko(vb) — Io(vd)Ko(va) P
J = [Li(yva)Ki(vd) — Li(vb) Ky (ye) P

Figure 2—Below and at left, {k/y) cot ¢, a quantity
proportional to velocity, plotted as a function of vya, a
quantity proportional to frequency, for a helically con-
ductive cylinder within a coaxial conductive cylinder.
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Iy(ya)Ko(yb)

R = Io(ya)Ko(ya) B Ko(ya)lo(vh)
L(va)Ki(va)| | _ Li(va)Ki(vb)
Ki(vya)I1(vb)

M(x) = I%(x) — Io(x)I2(x)
N(x) = K2(x) — Ko(x)K2(x)
P(x) = Ii(x)K1(x) + I2(x)Ka(x).

Figure 3 shows F(ya, vb) as a function of ya
for various radiuses of the surrounding cylinder.
The effect of the surrounding cylinder has been
to reduce the impedance parameter as b/a is
decreased. The physical interpretation of this is
that as b/a is reduced, more of the radio-
frequency energy flows between the helix and the
cylinder, thus reducing E.? on the axis.

The derivations of (3) and (4) are given in the
appendix. :

3. Helical Conductor Surrounding a Coaxial
Conductive Cylinder

For this condition, radius ¢ is finite and less
than @, while b is infinite. The radial propagation
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Figure 3—Above and below, impedance function F(ya, v¥b) plotted against ye for a helically conductive
cylinder within a coaxial conductive cylinder.
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Figure 4—(%/v) cot ¥, a quantity proportional to velocity, plotted as a function of ye, a quantity proportional to
frequency, for a helically conductive cylinder with an inner coaxial conductive cylinder.

constant is given® by

" The solution is shown plotted in Figure 5 with

¢:a:b as a parameter.

[1 _ In{"rc)an'vrﬂ"
(Ecot '&)’ _ Ii(va)Ko(ya) Ko(vo)Iy(va) |
Y I (‘ya)K;(qra)[ 1 — T (vO) K, (va) 5. Acknowledgmenits
Ka(ve)I1(va) The form of the expression given in (4) is due
(5) to Mr. V. R, Saari. The computations for the

The solution is shown plotted in Figure 4 with CUrVes were carried out by Mrs. E. J. White.

b/a as a parameter.

6. Glossary of Symboeols
= mean radius of helically conductive cylinder
= inner radius of outer conductive cylinder
outer radius of inner conductive cylinder
velocity of light
clectric field along the axis indicated by the

4, Helical Conductor Between Coaxial Con-
ductive Cylinders

For this condition, radius ¢ is finite and less
than a, while b is finite and greater than a. The

hﬂnc\l:!"?é
1]

radial propagation constant is given by subscript
(f cot ,;,)* _ Lo(ya)Ko(va) Lo(v0)K1(vb) 11(ve)Ko(ve)
¥ Ii(va)Ki(ya) I (vb) Ko (vb) Lo(vc)Ki(ve)
(1 _ Iy(ya) Ko(+b) )(1 _ Ly(ve)Ko(va) )(1 _ Il('Yb)Kl('fc))
% Ko(ya)Io(vb) K(vc)lo(va) I, (ve) K, (vb) )
(1 B II(TG)KI(Tb))(l _ Im(ﬂfc)Kl(m))(l _ Iu('rb)Ka('YC)) '
Ki(va)I.(vb) Ki(ve)I1(ya) Lo(ve)Ko(vb)

30, Dochler and W. Kleen, “Effect of the Transverse Electric Vector on the Delay Line of a Traveling-Wave
Tube,” Annales de Radiolectricité, volume 4, pages 117-130; 1949.
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I = modified Bessel function of the first kind
and of the order indicated by the subscript

= w/c

= modified Bessel function of the second kind

and of the order indicated by the subscript

= total power flowing

axial phase velocity

w/?

v = (B* — k** = radial propagation constant

¥ = pitch angle between helix and a circum-

ference
w = 2xf = radian frequency.

w w Pi'ar
|

7. Appendix—Wave Propagation on a Helical
Conductor Surrounded by a Coaxial
Conductive Cylinder!

The problem of propagation on a helical
conductor has been treated in detail.! In many
applications of helical delay lines as well as
traveling-wave tubes, the helix is surrounded by
a conductive cylinder. We are interested in the
effect of a uniformly conductive cylinder on the
phase velocity of the wave and on the impedance

4 Similar results for propagation constants using a differ-
ent approach were obtained by W. Sichak in, “'Coaxial
Line with Helical Inner Conductor,” soon to be published
in Proceedings of the IRE.

parameter defined as
(Es/BP)5. (1)

The field components representing solutions
of the wave equation in cylindrical coordinates
for a plane wave having circular symmetry and
propagating in the z direction with velocity

v =w/p (2

for the model of Figure 1, with the center
conductor removed, with lossless conductors,
and with space having a dielectric constant equal
to that of vacuum are

Inside radius e, r £ @,
H,y = Byly(vyr) (3)
E. = B;l n(T"’) (4)

Hoys = BT L) (5)
Hy = 31'%311(’1’?‘) (6)
Eg =— Bu%‘ Ii(v) 7

Ev = Bs{rf Li(yr). ®)
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Figure 5-—(k/v) cot ¥, a quantity proportional to velocity, plotted as a function of ya, a quantity proportional
to frequency, for a helically conductive cylinder between two coaxial conductive cylinders,
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Qutside radiusa, r < a < b

H,, = Bz[IU(T?)KI(’Yf’) + Ku('}‘?')jl(')‘b)] (9)
E. = By[Io(yr)Ko(vb) — Ko(yr)Io(vb)] (10)
Hay = — B{Jwe
X [L(TﬂKn(Tb) + Ki(yn)Lo(v0)1 (11)
Hys =~ Byt
X [T1(y)K1(vb) — Ki(yr)[1(v0)] (12)
By = Boj -
X [Ty (yr)Ka(yd) — Ki(yr)Li(vD)]  (13)
Fpe =— Bg%
X [T1(yr)Ko(vd) + Ki(yr)Io(vb)], (14)
where
v = (8 — kN)* }
B = w/v (15)
E=w/c

and all field components [ (3) through (14)] are
multiplied by exp [j(wt — 8:)].

The boundary conditions to be satisfied at the
cylinder of radius a are as follows.

First,
Essinyg + Egicosy =0 (16)
Eusinyg 4 Egacosd =0, an
Second,
E.s = Eu (18)
E¢1 = E¢g. {19)
Third,
H.siny -+ Hys cos ¢
= Hpsiny + Hyicosy. (20)

These boundary conditions applied to (3)
through (14) yield an expression for the de-~
termination of the propagation constant 7.

_ Li(ya)Ko(yb)

( k -)2 _ Li(va)Ko(va) Ko(ya)Io(yd) |.
yeoty)  Li(ya)Ki(va)|, _ LG@)K.(vh)
K1 (va)I1(vb)

- (21)
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The field components in terms of a common
amplitude factor B are as follows.

Inside the helix, r < a

E, = Bly(vyr) | (22)
B, = jBE () (23)
Iy
By == B UL (4
H, == j g8 S hm)  (29)
BBIy(ya) 1
H, = R eI (va) cot ¥ Ii(vyr) (26)
Hy = j g2 I 27)
Outside the helix,a < » £ b
E, = B Is(vya)
Iy(va)Kqo(vb) — Ko(ya)lo(vh)
B, = jB £ 1u(va)
[L(w)ffuwm = <tula CGIN P
Io(va)Ko(vb) — Ko(ya)Io(vb)
E, = — Bly(ya) —— ow
[ Il{j'f)Kl(‘yb) Kl(Tr)Il(Tb) ] (30}
IL(')’G)KJ.(TE’) — Ki{ya)l(vyb)
Ii(va)K iivb) — Ki(va)I(vb)
H, = I" (o) e cot q’z
I:II(T?')K (Tb) KI.(W)II(T'E’) ] (32)
I1(va)Ki(vb) — Ki(ya)l.(vb)
Hy == j 22 L(na)
[ I1(’Y”)K0('}'b) + Ky (yr)Io(vb) ] (33)
Io(ya)Ko(yb) — Ko(va)lo(vd) |’
where
= (u/€)* = 1207, ohms (34)

and all field components [ (22) through (33) ] are
multiplied by exp [j(wt — 8:)].
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The impedance parameter may now be evaluated by use of these field components. The power
associated with the propagation is given by

P =%RstXH*d'r (35)
taken over a plane normal to the axis of propagation. This is
P = =R, [ J; (B, — EJyrdr + f (B - EﬁH,*)rdr]. (36)
This vields
P 520 g [+ 2200 ][ ] [+ 2500

x| 520w -5 M) + 1260 + ZEEO [ B nen) - 2 M)
+ 2| HI (W Ko) ~ 314 Es) || 5 2ow) - P} o0

Defining the impedance function as
(ES/BPYS = (B/k)4(v/B)*$F(va,vb) (38)

Foan = { G |1+ o1 [ Moo | + 1o [ (52 +52) (5 mom) - 26

+ (%-ﬁﬁ)(-}:N(?b) - N(‘m)) + 2 (I}II{” - I}‘E‘)(gP(Tb) - P('ya))]}}‘%, (39)
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