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A COMPARISON OF THE FORMULAS FOR THE CALCU-
LATION OF THE INDUCTANCE OF COILS AND SPIRALS
WOUND WITH WIRE OF LARGE CROSS SECTION

By Fredenick W. Grover

ABSTRACT

Two methods have been used for the calculation of the inductance of coils of
wire having a relatively large cross section. Of these, the summation method
gives the inductanee of the eocil as the sum of the self-inductances of the turns
and the mutual inductances of all the pairs of turns. The Rosa method ecal-
culates the inductance of the equivalent current sheet as a first approximation
to the inductance of the coil, and obtains the correction which must be applied
by caleulating (a) the differences between the self-inductance of the turns of wire
and of the current sheet and (b) the differences of the mutual inductances of
pairs of turns of wire and of the corresponding turns of the current sheet.

It is here shown that, contrary to previous opinions, the two methods give
identical results, when terms of the same dégree are retained in the series
expressions,

The accurate formula of Snow for the inductance of a helix is wriiten so as to
include the Rosa correction terms, and it is proved that the error of the Rosa
method may be neglecied in all except the most precise work.

It is recommended that, lacking precision formulas, the Rosa method be used
as giving a general solution of the problem in such cases where the current sheet
formula is known., Certuin important cases are reviewed briefly,
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I. INTRODUCTION

In a recent paper Doctor Snow (1) ' has derived a formula for the
calculation of the inductance of a helical coil wound with wire of any
desired cross section, and has illustrated its use both for round wires
and for wires of rectangular cross section. Snow’s formula is very
accurate, since no terms greater than those of the fourth power in
the ratio of pitch of the winding to the radius of the winding form
have been neglected. It also takes into account the helical shape of
the winding, and thus allows for the effect of the axial component
of the current in contributing to the magnetic field. This is true of
no other existing formula, so that Snow’s formula is able to serve as
a standard in investigating the accuracy of other formulas for the
inductance of a solenoid.

To a first approximation, the inductance of a single-layer ¢oil or
solenoid may be calculated by one of the numerous formulas for the
inductance of a cylindrical current sheet (2). These give the value
for the current sheet with great accuracy, and for coils wound closely
with fine wire the difference in the inductance of coil and current
sheet is not important. For wire of larger cross section, and for coils
where the dismeter of the wire is small compared with the pitch of
the winding, the error due to the assumption that the coil and the
eylindrical current sheet are equivalent is too large to be neglected
in the light of the modern requirements of accuracy.

To obtain more accurate formulas, two general methods have been
used, which may also be applied in other cases, such as, for example,
polygonal single-layer coils and circular and polyvgonal spirals. For
convenicnce these may be designated as (@) the summation method,
and (b) the differential or Rosa method. In the former the indue-
tance is found by summing the self-inductances of all the turns and
the mutual inductances of all the pairs of turns of which the coil is
composed. By this method, in 1905, Strasser (3) obtained a formyla
for the inductance of a circular single-layer coil of round wire. In
more recent years Esau (4), by the use of the same method has ob-
tained expressions for the inductance of circular flat spirals, of single-
layer coils wound on square forms, and of flat spirals with square
turns, and Koga (5) has extended the method to triangular, hexagonal,
and octagonal coils and spirals of round wire.

The second method was developed in 1906 by Rosa (6), who em-
ployed it to caleulate the inductance of a single-layer circular coil
wound with round wire, and pubhshed tables to aid in the calculations,
In Rosa’s method the difference is caleulated between the inductance
of the coil and that of a eylindrical current sheet havum the same

! The ﬁgums given in paventheses hero and 1hrougl:.out the text relate to the reference numbers in the
biblivgraphy given in Seetion X1 of this paper.
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mean radius, the same number of turns, and an axial length equal to
the product of the number of turns and the pitch of the winding.
The difference of inductance in the two cases is expressed as the sum
of two terms, one of which takes into account the difference in the
self-inductance of a turn of wire and that of a turn of the current
sheet, while the other depends on the difference in the mutual in-
ductance of corresponding pairs of turns of the coil and of the current
sheet. These correction terms are added to the inductance of the
current sheet to find the inductance of the coil. The inductance of
the current sheet may be calculated by that one of the known for-
mulas which is most suitable for the case in question.

The Rosa method is evidently capable of extension to other cases,
provided that the expressions for the correction terms can he obtained.
Its use for single-layer coils of round wire wound on square or rec-
tangular forms has been treated by Niwa (7) in a very complets
paper devoted principally to the derivation of current sheet formulas
for these and many other related cases and to aids in their calculation.

Esau (8) has found differences hetween the values of the induc-
tances of coils wound on square forms, found by Niwa’s method and
by the summation method, and has claimed a greater accuracy for
the summation method. In commenting on Esau’s criticism, Niwa
(7) has pointed out numerical errors in Esau's calculations, but has
failed to draw notice to the fact that Esau has incorrectly taken the
dimensions of the current sheet to which the corrections given by the
Rosa method are to be applied.

1t is the purpose of the present paper (a) to show that the Rosa,
method and the summation method lead to exactly the same formula
if terms of the same order be retained in each, (b) to discuss the
approximations made in deriving the formulas in the two methods,
(c) to compare the Rosa method with Snow's formula for the indue-
tance of a helical coil, for both round wire and rectangular wire, and
to derive the expression for the error of the Rosa method in these
two cases, and (d) to recommend the generalized Rosa method as
giving the most simple and accurate method available in certain other
cases, such as polygonal coils and spirals.

II. EQUIVALENCE OF THE SUMMATION METHOD AND THE
ROSA METHOD FOR CIRCULAR SOLENOIDS OF ROUND
WIRE

The summation method assumes the solenoid to be composed of n
coaxial circular rings of equal radii, spaced uniformly at a distance
apart which is the pitch of the winding ¢. Thus, the axial length
of the coil is ng. The current is assumed to get from one ring to
the next by means of connections of negligible inductance; that is,
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the helicity of the actual winding is neglected, the current being
assumed to flow in planes perpendicular to the axis of the coil.
The inductance of the coil is then

L=nL,+2T M, (1)
1

where L, is the inductance of a turn, and M, is the mutual inductance
of two turns separated by a distance pg. Strasser used for L; a
formula which is only approximate. Using the accurate formula for
the inductance of a circular ring (9) of mean radius ¢ having a cross
section of radius p, /—Should be +

0?

nL,= 4-,-r:m:[(118 )l m_m"*é}] ()

The mutual inductance 3, is obtained by the Maxwell series for-
mula (10) for the mutual inductance of coaxial circular filaments
near together.

3??92 I . ) Sa _ (0 ra )]
M, 41—(1]: 1+16 o log"pg g

and summing this over all the pairs of turns of the coil, we have to
find
An— DM+ (n—2) Mo+ - 4+ (n—p) Myt -+ Ml (4)

The resulting formula for the inductance of the coil is, neglecting

. pz
terms in a’

L= 4-:rrz|: (Iug., ——1. m) Fn(n—1 l(ln —-*2)——111

}_gf (31 ors "____1)?1“’{?1 —1) Blf]

which is slightly more accurate than that given by Strasser, on account
of the greater accuracy in the formula used for L;. In this

Ay =2[log, (n—1)! +log, (n—=2)1+- - - +log 2!]
By =3[(n—1}%log, 1 + (n~2)2log, 2+ - -+ (n—p)p*log. p (6)
-4 (n—1)* log, (n—1)]

Tables of the values of A, and B, were given by Strasser (3), including
1 =30. These were apparently caleulated directly from the defining
formulas (6), a tedious process.

To calculate the inductance by the Rosa method the inductance
L, of a cylindrical current sheet of n turns of radius a and having a
length b =ng is calculated. To this is to be added the difference
between the inductance of the coil and the current sheet. To obtain
this difference the inductance I, of a turn of the round wire is cal-
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culated by formula (2), divided by n. The inductance I, of a turn of
the current sheet is ohtained by placing b=g in the Rayleigh and
Niven expression (11) for the inductance of a short eylindrical current
sheet. (See Formula (15) below.) Subtracting I, from I, and mul-
tiplying by n, the difference in inductance of coil and current sheet
due to the fact that the individual turns of wire have a different

1 3

SN SR USRI SRS SR

inductance than the turns of the current sheet is obtained. The
result is, neglecting terms in p*/a?,

8
n(l,—1)= 4«&[?3,(105,;—-;4 d'?a*(l 0g, 2y 4)] —4mned (7)

The principal term of this is the constant A of Rosa, only with
opposite sign. It will be convenient to speak of this type of correc-
tion as the ““A correction.”

Designating by 3{, the mutual inductance of any pair of turns of
the wire separated by a distance of pg, and by m, the mutual induc-
tance of the corresponding turns of the current sheet, then the total

correction to the inductance of the current sheet due to all the pairs
of wire is

2[(n—1)(AU,—m) + (n—=2)(Mo—my)+ -+ + (n—p)(M,—m,)+ .-
+ (Mo —m, )= —4rnaB (8)
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For convenience this will be referred to as the *“B correction.”” The
inductance of the coil 1s then

L=L,—4ma(A+B) (9)

The velues of 3, are to be calculated by the Maxwell expression
for circular filaments, formula (3). To obtain m, we have to find
the mutual inductance of the two equal short cylindrical sheets, 1
and 3, Figure 1, whose lengths are g and whose central planes are
separated by a distance pg. Supposing the space between them to
be filled by a current sheet (2) of the same radius and wound with
the same pitch, its axial length being (p—1)g, the required mutual
inductance will be given by

‘)?np "‘Llls‘l’L-‘i ]3 (10]

The self-inductances in this formula may be obtained from the cur-
rent sheet formula (15) below, and the resulting expression is

"{@: 2 log, (p+1)sf+(—p-~--~-)~ g. (p—1)g—p* log. py} (11)

| —

3
5202 L@ 1) loge @+ 1)+ (p—1)*log. (p— 1) —2p* log. p}:l

The second line of this formula differs only by a constant term
froin the expression for the geometric mean distance R, of the two
straight lines of length, g, which form the cross sections of the two
turns of the current sheet (13). Writing — Y for the last line of equa-
tion (11), and subtracting equation (11) from equation (3) there is
found the general relation

Sr:

My~ i, = 4m[lo,,¢p” PG tog, p—=T5 log, 2 >

g 16 & ‘Pu*

_Ive_ g
64 1"’8&“4 Y

which is to be summed over the coil according to equation (8).

"l

Writing for log j;" its value (12)
R, :
]t‘:ge-:()- U RS log, (p + 1)—}( 9 log. (p—=1)—p*log. p - 3 (13)

and summing over the coil there is found »* log, n— % n {n—1), while
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the summation of log p gives the constant A, of Strasser, defined in
equation (6). Thus we may identify the constant B of Rosa with
the expression
3 A =
nlog,n—-é (nr-l)—-;n-:z - B (14)
in which B has been put for the Rosa constant, which is the principal
term of B in equation (8).

The summation of the second term in equation (12) leads to

]
—% g 2 B, where B, is Strasser’s constant, formula (6), while the sum-

. . n'g?
mation of ¥ ymlds@-‘éi log. n only.

In order to compare Rosa’s method with the summation method,
the current sheet inductance L; will here be expressed by the Ray-
leigh and Niven’s formula (11) for a short cylindrical current sheet
of radius a, length b,

2

although no such limitation is inherent in the method. Thus writing
ng for b In equation (15) the terms in equation (9) may be collected
and we have

8a 1 ig? 8a , 1
L,= 4:1-:1[?12(10{;3 EE: - §>+ g%z(ioge _-n—g + I)]

_ _ g 5\ ng/ 8a 1
4mnad —-4m[n(lng, p 1 —ﬁﬁé(log‘ g TE):I (16)
_ 3 1g° n(n—1)g*
~4frnn.B~4m[n"‘ log, n —gn(n— l'j—Al—'gazzBl - =155 g

-

22 __ ] 42
Sa_ 7 wl-1g, gy n]

OB g 7384 @& 39

Adding and simplifying

2
L=4na| n* log, &Lmz +n ]Oggﬂ.%l ~A1—ig B,
g p 4 S

(IE
Cnfnt—1)g2 8a n*(n?—1
+ 5 low 7 -, a7

. ' I3 .
and if we add and subtract (n loga%--!-:Zn), t-be expression goes over

into Strasser's formula (5) exactly.

This result was to have been expected, since the methods should
agree if correct inductance formulas are used, and if, in both methods,
terms of the same order are retained.
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¥ |
In the correction constants A and B, as given by Rosa, terms in f?,

were neglected as of small effect, compared with the main or geo-

metric mean distance terms. This was justified by Rosa by numerical
2

examples, but it may be shown more generally that the terms in g‘i

in equation (17) are very small. To accomplish this, the Strasser
constant B, may be expanded in the asymptotic series

—_— 4 - ! Ll L]
Bl—-—(n n-:-m)lnwn 4qn +1.jr 1+ )-!—16 1(] 5+ (18)

and substituting this in t.lm last two {*qlmtions of (16) it is found that

1 ﬂq
96 a?
terms. For the case n=30, ¢=0.1, a=15, these terms amount to
only 8 parts in 10,000 of the total correction, and the latter is only
18 parts in 10,000 of the whole inductance of the coil, so that the
neglected terms here are of the order of only a part in a million of
the whole inductance. A further discussion of this point will be made
in Section V1.

III. SUMMATION FORMULAS FOR THE INDUCTANCE OF
POLYGONAL SOLENOIDS AND SPIRALS AND THEIR
GENERALIZATION

the eombined terms in —-2 are—g o2 (l 0g, qu 3) -smaller

Formulas for the inductance of polygonal solenoids and spirals
have been obtained by Esau (4) and by Koga (5). Esau treated the
case of square coils, making use of the known formulas for the indue-
tance of a square of round wire and for the mutual inductance of
equal parallel coaxial square filaments.

Koga extended the method to triangular, hexagonal, and octagonal
coils and spirals, and derived for this purpose the basic formulas which
had to be summed over the coil. Thus he gives formulas for the
mutual inductance of concentric coplanar polygons with their sides
parallel. His formulas for the inductance of polygons of round wire
and for the mutual inductance of equal parallel coaxial polygons
check those of the author of the present paper which were published
a little earlier (13).

Both Esau and Koga in their use of the summation method first
expanded the basic formulas in terms of the ratio of the pitch to the
length of a side of the polygon. Tables are given for different num-
bers of turns up to 30, and for different sizes of wire and pitch of
winding. Since powers no higher than the square of the ratio of
pitch to side of polygon are retained, the formulas converge well only
for relatively short coils or for spirals of small axial width.
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An inspection of these summation formulas has made clear that
they may all be written in the same form, only with different numerical
coefficients depending upon the number of sides of the polygon.
After checking all the coefficients and correcting errors in two in-
stances,’ the writer finds the following results, the constants being
collected in Tables 1 and 2.

Inductance of a polygon of round wire.
L=2Na [lng, :—:+ g] (19)
in which
N =the number of sides of the polygon,

a= the length of a side of the polygon,
p=the radius of cross scction of the wire.

Mutual inductance of equal parallel coaxrial pol ygons.
M=2Na [log, -r+ 3 d‘] (20)

where d = the distance between their planes.

Inductance of polygonal solenoids.
Letting n be the number of turns, g the pitch of winding

L= 2“«&11[(10;:, +q) (n— 1)(10 __7.)

-1 g n®-1) g 14_1]
3 fetT 6 n

A, is Strasser’s constant, formula (6).

(21)
-+

TaBLE 1.—Values of numerical constants in formulas (19), (20), (21), and (22)

i
g : r F I H4

: !
— —- F _
Trisngles..... —1. 1555 1. 4055 2.2092 ; —~1441
Squares. ... —, H240! ! . 1401 1 H -0, (429
Hexagons. ... + 0U8476 1 . 15152 L3954 | -+. 1160
Octagons.....[ -+.46198 | —. 21108 21461 . 1052

S, I ———

Mutual inductance of parallel concentric coplanar polygons.
Putting here ¢ for the mean length of a side of the polygon

M=2Na [log, %—- r+s’ Ej-—H’ gz:l (22)

the constants being given in Table 2, excepting r which is the same
as in the preceding formulas

* Kogs gives St for the octagon 8s (v T —1)X8.5500=0.3452 and T for the triangle as o
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Inductance of a polygonal flat spiral.

If a represents the mean length of a side of the polygonal turns
of the spiral, g the (axial) pitch of the winding, » the number of turns

b (.3 2)rt0-0 (s )
w—-1.9

n? - n(n’—1) Tg® A
Py s et at T n

(23)

Between the coefficient 7 and # there exists the relation 7= g’—%-

The constants of the last two formulas are collected in Table 2.

TaBLE 2.—~—Values of numerical constants in formulas (22) and (23)

s T v . r
Triangles........| 1.2386 | 3344 82 . + 3
Squares......... L 53284 M g . 1
Hexagons.......; .20328 | o 2047 0. 1280 ! 1
Octagons... ._._. . 10898 ' . 1662 . 0804 f (v 2-1)

IV. CURRENT SHEET FORMULAS FOR POLYGONAL SOLE-
NOIDS AND SPIRALS AND THE ROSA CORRECTION TERMS

The formula for the inductance for a solenoidal current sheet on a
square form was derived by Niwa (14), and independently, at about
the same time, by the writer (13), who also derived series formulas
for short triangular, hexagonal, and octagonal current sheets.

To obtain the formula for the inductance of a polygonal solenoid
by the Rosa method, it is necessary to start with the formula for the
corresponding current sheet. Putting, as before, a for the mean side
of the polygon, and supposing that the n turns have an axial length
of ng, the generalized formula (13) for the inductance of the current
sheet is

2
L,==2A’&n’[logc%+(g‘—r)+§%§+é%g- (24)
which holds for cases where the ratio of the axial length to the side
of the polygon is small. The numerical coefficients have the values
given in Table 1.

The Rosa corrections for the cross section of an actual winding of
round wire may be obtained by the method already outlined for a
circular solenoid in Section II. The A correction is obtained from
equation (24), putting g in place of ng. This gives the inductance of
& turn of the current sheet. Formula (19) gives the inductance of a
turn of the round wire. The B correction is obtained by sumiming
over the coil an equation corresponding to equation (8), the values
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of the mutual inductances for two turns of the current sheet being
obtained from differences of self-inductances, as in equation (10),
using equation (24), while the values for pairs of turns of the round
wire are given by equation (20) for polygonal filaments.

The results may be sumamarized as follows:

_ 2 a ,an tﬂ'g‘]
L,=2N n[log., +(2 t3. 76 &

ovent=ov[osl (3 )20 2] @
—2NanB= ENan[ﬂlow n——- —:’i‘,__( _1)91]

and adding these, the inductance of the polygonal solenoid is

an[(log,~+g)+(n-1)(}0&__ )ﬁ__+'n -l_ag_'
n(n’—1)tg

6 a?

+

which is, exactly, the formula (21) obtained by the summation method
for this case.

Niwa (7) calculated the correction for cross section as equal to
twice the total length of wire in the coil, times the sum of the two
constants tabulated by Rosa for circular solenoids, and applied it to
his current sheet formulas for square and re(-tangular solenoids. This

procedure is justified, if we neglect terms mg and 4 since it will be

found that, using the values of Table 1, the quantity —(*2-—:")+g

is always equal to ~i—: whatever the number of sides of the polygon.

Thus, comparing with equation (16) the principal terms of the cor-
rection are —2Nan(A+ B), the constants A and B being the same
as for a circular solenoid.

To treat the polygonal spiral by the same method requires a current
sheet formula for a polygonal disk or ring, and no formula for this
case has been published. It may readily be derived by the method
of geometric mean distance and arithmetical mean distances by sub-

stituting in formula (22) for coplanar polygons, log ﬂg+% for log d,

:—g-*ng for d (15), and %n’g’ for d*. This result was checked by inte-

grating equation (22) twice over the current sheet. This vields a
formula which differs from that obtained by the simpler method only

2
in the coeflicient of ﬁ’&%’i the simpler method giving ¢’ instead of T.
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The value by integration, which is the more accurate result, may be
written in the general form

e a (3 s’ng , T'n’g
L,=2Nn%a []c:-g, @+(§—r)+g+3 TL“+E TCI.T)] (26)

in which a is the side of the mean polygonal filament. The coeffi-
cients have already been given in Tables 1 and 2.

The derivation of the Rosa corrections for cross section follows the
course already illustrated in Section 11, although the process of sum-
mation is more involved, on account of the varying sizes of the turns
of the spiral.

The resulting correction terms are

7 A 3 s’ T
—2Nand = 2Naﬂ.|:log,§-;- -(3-r)-52-% ﬂj] @7)
—2NanB = 2Na.n|:n log, n-—%(nﬂj)—%l-ﬂ g{rz.— 1);:9';;]

and adding these to the current sheet value in equation (26), the
final formula for the polygonal spiral is exactly the same as formula
(23), which was derived by the summation method. Here also as in
the previous case the principal terms of the correction have the same
value, and may be calculated from the same table of constants as
for circular solenoids.

It has been proved that the Rosa method and the summation
method agree, il terms of the same degree are retained in both, not
only in the case of circular solenoids but also with polygonal solenoids
and spirals. It may be shown by the same metheds that this result
is likewise true for circular flat spirals. As already intimated, these
results were to have been expected, and that they are found to be
true gives a check on the various inductance formulas employed. It
also shows that Esau’s criticism is without ground.

V. RECALCULATION OF THE TABLE OF THE B CORRECTION
OF ROSA

The quantity B tabulated by Rosa for wire of round cross section
was defined by the relation (6)

P R R, - E,
B—-ﬂ[(n 1) log, g’“‘” 2)log¢29-l-- -+ (n p)log,P’-!r--

g
1o Ban
log, (n~— I}y]

. .. R . . .
in which Ejrepresents the ratio of the geometric mean distance of

(28)

two straight lines (cross sections of a pair of the turns of the current
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sheet) whose centers are separated by a distance pg, to the distance
between them. This quantity may be calculated by formula (130)
of Bureau of Standards Scientific Paper No. 169, and for more distant
turns by the very convergent series formula (131) of the same paper.
Thus the direct calculation of B by formula (28) offers no difficulty,
except that the calculation for large values of » becomes very tedious.
Furthermore, in the calculation of a table for different values of =,
the fact that the calculation for a given value of n rests upon the
calculation for smaller values of n, although seemingly an advantage,
works to the end that any error made with a smaller value of n is
carried through into the calculation for the larger values of n. Thus,
it is difficult to obtain values of B for the larger values of n which
shall be free from error.
' From equations (8) and (12) (the first term), it has already been
noted that the correction B may be written in the form shown in
equation (14). This equation, which does not seem to have been
previously noticed, gives a means for checking the values found by
the formula (28). For this purpose the table of values of 4,, given
by Strasser and, corrected for small errors, in Table 5, Bureau of
Standards Scientific Paper No. 169, should be useful. Beyond n=30,
the range of this table, the quantity A,, as may be seen from equation
(6), labors under the same disadvantage for purposes of caleulation
as does equation (28).

This difficulty may be very completely avoided by using for A4, a
development in an asymptotic series, as was done by Roll (16) and
by Koga (5). Since, however, the expressions used by these two
authors differ slightly, it was necessary to investigate the cause for
the discrepancy. The two expressions are as follows:

_0.3312 7 (Rolf)

A, 3 1 b oL
'ﬁ-zﬂ(log,n“g)'f'lug, 27— g 108 R~ {55+ S50

A, 3 1 0.33084 1 1 -
;=n(log, n-- ;j)ﬂog, 2“'_(;510?:‘ = ==~ 1503 500 (Koga)

Koga explains that his expression was derived by applying the Euler
(17) summation formula to the Stirling asymptotic formula for log m!,
making use, of course, of the defining equation for 4,, formula (6).
The Stirling formula is (17)

11 1
12m  360m®  1260m?®

log, m!=(m+-};)log, m— m+%log¢ 27+ (29)

This may be summed directly by formula (6) for integral values of m

from 1 to (n—1), inclusive, the series which enter being made to

depend upon known series, or it may be summed by applying the
53811°—29——12
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Euler summation formula to each terimn. The result is an asymptotic

series in which the term in 5 s given by an asymptotic series, while
. . . 1 . .
the coefficients of the terms in higher powers of - begin to increase

after that of ?2— The numerical coefficient of % was found to be about

—0.33086, but, by making use of the exact formula for A,, it is found
that, for all values of n greater than 3, the value —0.330842 is indi-
cuated as correct.  Adopting this value the resulting expansion is

A 3 1 0.330842 1 , 1
"ﬁ" =1 (Iugc it— §)+Iog, Dr— 5._1"1, 10g¢ n— '*"—""7;-*-—*—' ii{—}?‘?—; T:")-f]-'i-_n.ﬁ (30)
which differ from Koga’s expression only in the last term. This dif-
ference is of no consequence for all except the smallest values of n.
(Evidence will be given later of the correctness of the last term of
equation (30).)

Substituting equation (30) in equation (14) there results

. 1 0.330842 1 1
= QATOTT e o i e e e [N A —
B=0.337877 60 log, n . 120 505 (31)

The first term { log 211'—73}-) shows what is the limiting value of B,

as n increases indefinitely, a value which has hitherto been lacking.
Formula (31) has been checked for values of » up to 30, by calculating
Ay directly from equation (69, and also by muking use of Strasser’s
values. For all values of n greater than 3, it is found that equation
(31) gives a G-figure accuracy or better. The error is evidently
smaller, the greater the value of n; that is, the formula is most accu-
rate in just those cases where the exact formula is most difficult to
caleulate.

By these means Table 8, Bureau of Standards Scientific Paper No.
169, has been recalculated. The values of B were found to be correct
up to n=15, but beyond that point the values of Table 8§ are too
large by amounts which vary from a few units up to 12 units in the
fourth place. The revised table is given as Table 3 in the Appendix.

VL. LIMITATIONS OF THE SUMMATION METHOD AND THE
ROSA METHOD

In the preceding sections it has been proved that the summation
methed and the Rosa method lead to exactly the same expressions
for the inductance of solenoids and spirals, when terms of the same
order are retained in both. The proof has included second degree
terms only, but there is no reason to doubt that the agreement would
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be found for higher degree terms in the series expansions. The agree-
ment is, in fact, only a check on the basic inductance formulas which
have been employed in the two methods. This agreement of the
two methods does not signily, however, that the Rosa method and
summation method are of equal accuracy in all cases.

Since in order to be able to carry out the summations with any
degree of simplicity, it is necessary in the summation method to use
series expansions for the basic formulas which are to be summed, it
follows that the summation method gives series formulas which con-
verge well only for short coils or narrow spirals. Thus the tables of
Strasser; Esau, and Koga cover a range up to only 30 turns of wire.

This limitation is not inherent in the Rosa method. It is true that
in the comparison of the Rosa method with the summation method
the current sheet formulas used were series expansions, subject to
the same limitations as the summation formulas, but these were used
merely for the purpose of proving the identity of the final results by
both methods. Current sheet formulas are, however, available for
circular solenoidal current sheets, and for circular disks which fit all
cases and give an accuracy greater than is necessary in practice, and
to the suitable current sheet formula in anyv given case the Rosa
correction may be applied. It remains only to show that the Rosa
correction may be calculated with an accuracy sufficient to cause no
appreciable error in the final result.

Since the correction to the current sheet value of the induectance
to take into account the cross section of the actual winding is usually
no greater than about 1 per cent of the whole inductance, the correc-
tion does not need to be calculated with great accuracy in order to
give a suitable accuracy in the total inductance. As originally de-
veloped by Rosa, only the principal or geometric mean distance terms
were included, and it will be shown that these terms, which we may
conveniently designate as the ‘““simple Rosa corrections,” are, in
general, sufficient.

Consider, for example, two turns of a circular solenoid of round
wire and the corresponding two turns of the current sheet, which has
the same radius and pitch of winding. The mutual inductance of
the two turns of wire may be calculated by formula (3) in which the

22
terms in 29, which become zero for circles of veryv rreat radius a
a2 - é) ¥

may be regarded as corrections for the curvature of the turns. Like-
wise for the turns of the current sheet, curvature terms enter, as 1s
shown by equation (11). In both cases the curvature terms are not
negligible, but in the difference of the two mutual inductances, which
is the quantity which enters into the Rosa correction, the curvature
terms must nearly cancel, unless the dimensions of the cross sections
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are large in comparison with the radius of the turns. It has already
been shown that these differences of curvature terms are, for a short
coil, of very small effect on the Rosa correction terms. (See p. 170.)

For a long coil the total effect of the curvature terms is not so
easy to evaluate, since they are expressed by a series which converges
only for relatively short coils. It is evident also that, for the more
distant turns of wire, the curvature terms are relatively more im-
portant compared with the principal terms. However, the mutual
inductances of the distant turns, and still more so their differences,
are very small, so that the curvature effect for such turns should
contribute, absolutely, very little to the total correction.

The {ollowing detailed examination of a practical problem will make
some of these points clearer, in that it will give a more quantitativo
measure of the importance of the terms neglected. The coil con-
sidered has 400 turns, wound on a form of 15 c¢m radius with a
winding pitch of 0.1 ¢m, so that the coil has an axial length of 40 em.
The contribution to the Rosa B correction of all the turns which are

separated by a distance of pg is—~4m[2(n— p) log. ﬁ;’] The con-

tributions to the correction for pairs of turns of all distances up to
p=10 are as follows:

P Correction YL Correction D Correction

1 ~47ra(90.741) 4 —4wa(4.178) 7 —4ra(1.342)
) (17.496) 5 (2.655) 8 (1.024)
3 (7.522) 6 (1.834) 9 (0.806)

giving a-total of —47a(127.598). The total sum of the principal
terms may be obtained from Table 3 for n=400. It is —4mxa[400X
0.33455) = — 4ra(133.820); that is, the contributions of all the pairs
of turns separated by more than nine times the pitch is only about
5 per cent of the whole B correction. It may be shown that turns
for which p 1s greater than 20 contribute only 2.2 per cent, those at
distances greater than 50 g only 0.6 of 1 per cent, while those for
which the separation is greater than 250 g account for only 1 part
in 6,500 of the whole.

For separations as great as 3 g the contribution of all the pairs of
turns with a separation pg may be calculated from Rosa's (19) for-
imula (49), Bureau of Standards Scientific Paper No. 169, which reads:

8@ 11 47}_)«;
P9 b 256 o

loe 82 _97Y . 1, J;”} 11 ]
(log’pq ﬁ()) T {1+16a, +168pﬂ+

AM,~= —4za- "{n—p}[lq 211 + A q(l 0ge—
(32)

In this formula the series in powers of I%gis the expansion of the
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geometric mean distance ratio; the other terms give, therefore, the
curvature terms. For cases where formula (32) converges, the sum-
mation of these terms can be performed, and their effect evaluated,
as was done for & winding of 30 turns on the same form, page 170.
For the long coil here considered, formula (32) is not sufficiently con-
vergent in the case of turns which are separated by distances much
greater than the radius of the coil. In such cases the Rosa-Wein-
stein (19) formula (50) of Bureau of Standards Scientific Paper No.
169 may be used in place of formula (32) to obtain the contributions
of chosen pairs of wires. Thus, for the extreme turns, for which
=399, the true value of A, is —4ra[2.3 X 1077], while the principal
terms of formula (32) give a value which is numerically more than
twice as great. The 150 different pairs of turns separated by a dis-
tance of 25 ¢m contribute AM,= —47a[0.000331], while the g, m, d
terms are about 20 per cent greater. Unfortunately, since the Rosa-
Weinstein formula involves elliptical integrals, it is impracticable to
obtain its summation over the coil. It is, however, evident that, for
the more distant turns of the coil, the curvature effect is of opposite
sicn to what it is for the nearer turns, so that, proportionately, the
curvature cffect should be smaller rather than greater than for a
short coil on the same form, and it has already been shown that in
the latter case its effect on the whole inductance is very small.

The summation method of Strasser assumes that the current flows
in circular turns whose planes are perpendicular to the axis of the
solenoid. Thus the effect of the axial component of the current,
which is present when the current flows in the actual helical winding,
is neglected. The effect of the axial component has also been neg-
lected in obtaining the correction for cross section by the Rosa method,
but if a current sheet formula for a true continuous helix without
insulation be available, the neglect of helicity in getting the correction
for cross section is of second order in its effect on the total inductance.
In a recent paper Snow (1) has given a very accurate formula for the
inductance of a helix of wire, which enables the correction to be
calculated which must be applied to the formula for a cylindrical
current sheet to obtain the true inductance of the helix. He gives
also the formula for the inductance of a true continuous helical cur-
rent sheet. Thus, 1t 1s now possible to evaluate the error from neg-
lecting the helicity of the winding, and also to calculate what is the
error of the simple Rosa method when applied to the calculation of
the inductance of a helical winding of wire of round or rectangular
eross section.
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VIL. CALCULATION OF THE INDUCTANCE OF A HELIX OF
ROUND WIRE BY ROSA’S METHOD COMPARED WITH
THE CALCULATION BY SNOW’S FORMULA

The formula for the inductance of a helix of round wire is given
as equation (114), page 466, in Snow’s article.’* In the nomenclature
of the present paper this reads

2xa | A,(k)

L=L,+4arm[—(0.89473“10&%3)-{-6%1 g -l-~--§-n

AE)E)]

In this L, is the inductance of & cylindrical current sheet (helicity neg-

. T 2a
lected) whose length is ng and whose mean radius is a, k= Nrriss
is the modulus of the elliptic integral of second kind E, and A4.(k)
is a complicated function of %, to be obtained from the curve of page
475. It i1s the principal term in the correction for the effect of the
axial component of the current.

".}

4’ 2

its value in terms of B from equation (31), we find, making use of
equation (7), that Snow's formula may be written for uniforin current

distribution
-1, +4rm[ (4 +B)— ,”‘5' 0.02458 | Aa(k).
a ‘R- T

4n("_ 1)( ) 12(]71" + a04n-" o4

Here the Snow formula for the difference between the inductance
of a helix of round wire and cylindrical current sheet is expressed in
terms of the simple Rosa correction constants A and B (curvature
terms omitted). Thus the error of the Rosa correction may he cal-
culated for any desired case.

For the example solved by Snow on page 476, n=400, g=0.1,
a+=15, a=0.05. The value of A (see principal term of formula (7))
is —0.13629, and from Table 3, for n =400, B=0.33455. Thus the
simple Rosa correction is 4xna[0.13629—0.33455)= — 14949 myh
(millimicrohenrys), whereas Snow’s equation (114) and formula (34)
both give —14883. .Since the value of L is 26,568,401, this difference
of 66 mgph amounts to a.bout 2.5 parts in 1,000, 000 of tho \-.h-:)le

If we notice that (0.89473=log = S_E and substitute for log 2=

3 The first term of the second line of this equation should read 301:. '!',- instead of — E{ log, ;' The
correct reading is employed Ia the example of p. 476

1 The ditference of 4 parts in 1,000,000 found by ‘-:nmr in the solution of the same problem is explained
bF the use of the value 0.3351 for B, as given in Table §, B. S. Scl. Paper No. 169. This table has been
found to be in error at this and other peints as explained in Section V,
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inductance, the Rosa method giving too small a value.* This dif-
ference is mainly due to the neglect of the axial component of the
current. The formula for a continuous helical current sheet is given
in Snow'’s formula (129). In the nomenclature of the present paper
it reads

L= Lo+ amna[ 450 005713 L 12BN 3my]  os)

K and E being the complete elliptical integrals of first and second
kind to the modulus, %, defined for the preceding equation. The
quantity in the brackets of the last term of equation (35) is tabulated
in Table I, Bureau of Standards Scientific Paper No. 169, or may

000f

also be obtained as l&—;— using the values of f given in Table 1,

Scientific Paper No. 498.
Subtracting equation (35) from equation (34) there results

L-L,= 4:rna[ (4-1+_8),,___. M?:;:} 00:13

20 K-F 1 1
_4n )( )_5;. ( IK} 120% 7 3 (}4?:5]

which gives the correction for cross section which has to be applied
to the formula for a continuous helical current sheet of tape with
negligible insulation to obtain the inductance of a helix of round wire
of the same radius, pitch, and number of turns. The error of the
simple Rosa correction is given by the terms in equation (36) exclu-
sive of —4mrnu(A+ B). For the previous example these extra terms
are, in order, 4wra[—0.000409+ 0.000033+0.000213 —0.000024] =
—14.1 muh; that is, the error of the simple Rosa correction when
applied to the true helical current sheet (the logical current sheet
formula), is only about one-half of 1 part in 1,000,000 of the total
inductance of the coil. If this error be attributed mainly to the
neglect of the curvature terms in the Rosa correction (and the alge-
braic sign is what would be expected), its value shows that the curva-
ture terms are proportionately smaller for the long coil than for the
shorter wound on the same form. For example, for a coil of only
30 turns wound with the same pitch on the same form, the correction
to the Rosa correction in equation (36) is —0.55 mgh in a total of
540,845; that is, about 1 part in 1,000,000. In this case, where the
convergence of the formula for the summation of the curvature terms
is satisfactory, their calculated value by equations (16) and (18) is
—0.79 muh.

Before testing the use of the Rosa method for a helix of rectangular
wire, it is convenient to generalize the method for a solenoid wound
with wire of any cross section.

(36)
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VIII. GENERALIZATION OF THE ROSA METHOD FOR A
SOLENOID WOUND WITH WIRE OF ANY CROSS SECTION

If we put

R,=the geometric mean distance of the cross section of the wire
from itself,

R,=the geometric mean distance of a turn of the current sheet
(straight line),

rwp = the geometric mean distance of the cross sections of a pair
of wires separated by a distance pg,

7»=the geometric mean distance of the sections of the corre-
sponding turns of the current sheet,

L,=inductance of the equivalent current sheet,

then the general expressions for the Rosa corrections are

~4rnad = —4mna (log, R,—log, R))

_ - 2 . . Ta, — T
4mnalB 4m[~;}{(n l)lug‘;";'r (n E)lngg;;+. . (37)

w

+ (n—p) log, ;—'f + . - +log, 'tﬁ—“:”}]
wp

Tw(n—1)

and
L=L,—4mna(A+ B)

If the cross section of the wire is not circular, it is convenient to
write the second of these equations in the form

trnaB=dxna| 25 log, 72— 2% log, T2 | ¢
mnalB=47na 'EE (n—p) Gg‘iﬂﬁ*ﬁﬁ(n_m g (38)

The first series of terms gives the B correction for circular wire and
is tabulated in Table 3. The second series depends upon the dif-
ferences of the geometric mean distances of the actual cross sections
of the wire and those of circular turns wound with the same pitch
and number of turns. In general, formulas for the geometric mean
distance are not known, except in the important case of a rectangular
cross section. The comparison of the Rosa correction with Snow’s
formula for wire of rectangular cross section is therefore of special
interest. The author has in preparation tables for aiding in numerical
computations for this case.
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IX. COMPARISON OF THE ROSA METHOD WITH SNOW’S
FORMULA FOR THE INDUCTANCE OF A HELIX OF WIRE
OF RECTANGULAR CROSS SECTION

Snow’s formula (126) for the inductance of a helix of wire of rec-
tangular cross section of axial dimension 8 and radial thickness a is
as follows for uniform current density over the cross section:

L=L,+2m(dg(?c) +%[1 + E‘%ﬁ?f:llog,gg‘—‘

—2{—10g5*‘g- 4.41212 +%‘ (tan® 6 log, sin 8+ cot® 4 log, cos 6)

3((~—ﬁ)ta.n 8-+ 6 cot 8)
A5 o(30) ()
o(3) (%)
ﬂ (g M (costH g+ (—1)msin?™Hg (39)

8 < — c0s(2m + 4)8) .
sin*8cos @ mm1 2m(Cm+1)(2m+2)(2m+3)(2m+4) (Sam—1)

g({'—l> '?)34-:}:-[1.13123+2(-}%~;_--§)—Hf '-Si;—z?-
f(“‘ﬁ (Ge) f('“'g)

3(5) ()
9/ \4.
m C(}hzmHl? 1. (_ l)mslnzmﬂa
() ( —cos(2m+4)8)

s _—— =Rl (Sener—1)
" sin? 0 cos? O 22m{"’m4 1(@Zm+2)(2m+3)(2m+4) V-t

In this equation 9-tan™ g, S,,,==Ei:;,and the f's are functions
k=1

of the rat-insg and g; defined in Snow's formulas (123), (124), and

(125). For the rest the equation has heen written in terms of quan-
tities already defined.

Making use of the definition of the geometric mean distance of a
rectangle in terms of §, Snow’s equation (118), and the known ex-

pression for the geometric mean distance of a straight line B, =log g—g,

and the defining equation for A4 in equation (37), the second and
third lines of equation (39) may be written

4rna [ A+ <§ ~log, 2s-r) 6" (40)
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Comparing the defining equations for the f functions with: the for-
mulsa for the geometric mean distance of two equal parallel rectangles
(12) it is seen that the fourth line of equation (39) is

4:rna,[-2n log, = T;' —~ = } (41)
while the next to last line of equation (39) is
ra[ 2 10g, | (42)

g0 that together they give the first term of the last series of terms
in equation (38).

The geometric mean distance of two equal parallel rectangles may
be expanded in a series which holds for separations, pg, which are
greater than the dimensions of the rectang?e‘ The series is

log. 22 13(5:;) (;) 153(p0) ~360 pg)
+5G) [ +{pg) 3(@ Qg)+ ] )
w(pq)[ 3G +3() + TG
'*"g(z%)2+‘ ' ‘]“sé‘u(fa)s*

Expanding the summation in the fifth line of Snow’s equation and

comparing the result with equation (43), it is seen that the Snow
n-—1

C e ea : T
series is identical with the terms 23 n log, -*F
2

7 in equation (38),
except that the series S., are taken to infinity, whereas in the sum-
mation of the geometric mean distances it ends with (n—1). The
difference, that is, the sum between (n—1) and infinity may, how-
ever, readily be expressed in a series involving powers of % The

series in the last line of equation (39) is identical with the terms
n~1

;? p log, g’;‘: except that the second degree terms in « and 8 are

lacking and that here again the summations S,,_; are carried to
infinity instead of (n—1), and it will be nececssary to expand the

’ - . 1
difference in a series in powers of "
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-1
The remaining terms in E p log, T22 in the B (rectangle) correc-

g
tion of equation (38) may be ldentlﬁed with the last term in the first
line of equation (39) (that in (a*—p%)), by writing it to involve

¥ ® . - . n—1 1
log ng and substituting for log n its value in terms of the series E T

which arises when the series of equation (43) is used for locr Pﬂ

The remaining term in log ?-? in the first line of equation (39) may

be expressed in terms of the Rosa B correction for circles, as was
done in Section V1I.

The results of collecting all the transformed ternws is that Snow’s
equation (39) may be written in the form

1 '{hﬂ 0.02453 ...1__ 1
A, 2QU,
+oat 3 (2 1)(” )(g) (44)
I(ﬁ—a)l _ ; (K- Ff}___ 1 1}
= ) 18 “_1__5*«=+_L5*
3nd 2n2J\60 ¢¢ 24 ¢ ' 60 ¢

L L (18 Lpe 1 fat ) ]
10n°\168 ¢* 36 g¢* " 36 ¢° 1{18 g*
where 4 and B are defined in equations (37) and (38).

B

For square wire, the second and sixth degree terms in % and a drop

out, and the fourth degree terms become ‘3'(5%}7:5 (1 5 )‘3 - For the

special case a=o0 and B=g, equation (44) goes over into Snow’s
formula for a continuous helical current sheet, as it should. It is of

interest to note that in that case the terms in powers of -;11 all cancel,
thus giving a check on the coefficients in the series expansions, and

especially furnishing evidence that the term in ?%5 in formula (31) is
correct.

Making use of the formula (44) the difference may be evaiuated
between the accurate formula of Snow for square wire and the solu-
tion by Rosa’s method in the case of the example treated by Snow
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on page 477 of his article. In this the coil is supposed to be wound
with square wire, instead of round, the side of the section being
taken as a=8=0.05 em. The radius, number of turns, and pitch of
the winding are taken the same as in the preceding problem for
round wire. The distribution of the current over the cross section
being assumed to be uniform, the value of u, in equation (44) is zero.

. . 3
For the calculation of the A correction, we have log R, =log ¢ —5rand

R.=0.44705a¢. Thus from equation (37), — A=log }%ﬂ —0.001773.
w

The B correction for the circle is 0.33455 as before. For the value of

log T—;’E the exact formula gives 0.0005109, which multiplied by % (n—1)

amounts to 0.001019. Tor the more distant wires, the formula (43)
may be used, and only a few terms have to be included. These bring
up the total of the value of B for the rectangles to 0.001104. Thus
the Rosa terms in equation (44) amount to

—=0.001773—0.334554—0.001104 = — 0.337431

which, multiplied by 4wna, gives for the Rosa correction — 25442 myh.
The correction terms in equation (44) are found to be
A,
S TTE

0.001125

- ﬁ—lﬁ-’ log. "= ~0.000409

o4x
002453 o 000061

T
- 2
1 (r 1)(2) = 0.0002ss
3n\k ] e

sum=  0.000939

which, multiplied by 4xna, show that the error of the Rosa correc-
tion is 70.8 mph. This amounts to about 2.7 parts in 1,000,000 of
thie whole inductance. Thus, the true correction for cross section to
be applied to the inductance of the cylindrical current sheet, in order
to find the inductance of the helical coil of square wire, is —25442+71
= — 25371 mph. This value, found by equation (44), should agree
with the value found directly from Snow’s equation (126). The value
caleulated by Snow is —25345. The source of the discrepancy lies

in an error in the value of the term multiplied by % in the last equa-

tion of the calculation on page 477. The true value is 1.56288 instead
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of 1.56268, as given by Snow. Making this change, Snow’s equation
gives —25372.

The error of the Rosa method quoted in Snow’s paper for this
problem is 6 parts in 1,000,000. This is affected by both the error
in the value of B used for the circle (already discussed in Section V)
and by the numerical error in Snow’s calculation just noted.

If the Rosa corrections were applied to the formula of Snow for a
continuous helical current sheet we use the result from equation (35),
that the inductance L, of the helical current sheet is related to L.,
that of the cylindrical current sheet, by the relation L,=L,+79. 5
nuh, and the calculated inductance of the coil is

L=L,+79.5—-25442=L,— 25362 muh.

which is in error by only 0.4 of 1 part in 1,000,000. This is in line
with the calculation on page 181, which showed that the error of the
Rosa correction as ordinarily applied to the cylindrical sheet formula
is principally due to neglect of the helicity. The residual error of
the Rosa method is practically the same for both round and square
cross section, as would be expected.

X. CONCLUSION

In the preceding sections it has been shown that the simple Rosa
method of correction for the effect of cross section gives results for
circular solenoids of round or rectengular wire which are amply accu-
rate for all practical cases. Indeed, for the examples given, the Rosa
method gives results of high precision, when applied to the logical
current sheet formula—that in which the axial component of mag-
netic field is taken into account. The numerical proof of this degree
of accuracy in the Rosa method is made possible by the existence of
the accurate formulas of Snow.

Unfortunately, formulas corresponding to those of Snow for other
cases, circular flat spirals, polygonal solenoids, and polygonal spirals,
are not available, and it would seem to be a work of great difficulty
to derive them. Lacking them, the Rosa method applied to the
available current sheet formulas offers the simplest and most accurate
general method of calculation. It has been shown that for short
windings the summation method and the Rosa method are in agree-
ment, but the Rosa method applies to any case where the current
sheet formula is available. It remains to note the use of the method
in the cases already cited.

It is easy to show that for a circular flat spiral the curvature terms

2
in the Rosa correction are of second degree in % and may, therefore,

be neglected as of less importance than the effect of the radial com-
ponent of the current. The current sheet formula for a disk-shaped
or annular current sheet of negligible axial thickness is known, as
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well as series expansions holding for the case where the axial width
of the current sheet is small compared with the mean radius (18).
In all of these the radial component of the current is neglected. Thus
the inductance of a flat circular spiral wound with wire of round or
rectangular cross section may best be found by applying the simple
Rosa correction, calculated by the methods and formulas already
fully treated, to the inductance of a current sheet having the same
mean radius as the spiral coil and a radial width equal to the product
of the pitch by the number of turns.

The case of a short polygonal solenoid has already been fully
treated and the inductance formula given as equation (25). In this
it 13 to be noted that the principal terms in the correction equations
here are the Rosa constants; that is, for round wire the simple Rosa
constants are the same for polygonal solenoids as for circular. In
both cases they are multiplied by twice the length of wire in the
winding. No formula is available for long polygonal solenoids, ex-
cept in the case of the square solenoids (14). It would be possible,
though a great deal of work, to derive the formulas for the other
cases, but it is sufficient in practical cases to make use of the formula
for the cquivalent circular cylindrical current sheet as was described
(13) in Bureau of Standards Scientilic Paper No. 468, and to apply
to this the simple Rosa correction.

The caleulation of the inductance of a polygonal spiral is covered
by formulas (26) and (27). These apply most accurately to spirals
where the radial width is small compared with the side of the polyvgon,
but this will cover many practical cases. No general formula is known
for a disk of polygonal shape. A good approximation to it can be
obtained by calculating the inductance of a circular disk current
sheet whose mean element incloses the same area as the mean element
of the polyzonal disk. It is to be noticed that in equation (27) the
principal Rosa constants are the same as those which hold for circular
and polygonal solenoids of round wire.
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XII. APPENDIX
TaprLe 3-—Values of the Rosa constant B, caleulated by formula (31)

n B n B n B
1 {0 31 | 0.30874 100 | 0.32689
2 . L11371 32 . 30049 110 . 32775
3 | .16626 33 .31019 120 . 32847
4 19728 34 . 31086 130 . 32909
5 . 21800 35 . 31149 140 . 32963
6 23203 | 36 . 31210 150 . 33010
7 .24426 | 37 . 31267 160 . 33062
8 . 25318 38 . 31322 170 . 33080
9 . 26042 39 .31374 180 . 33123
10 . 26641 40 .31424 190 . 33153
1§ . 27146 4% .3147¢ || 200 . 33181
ie 27579 42 L31517 f 220 . 33229
13 . 27954 43 . 31561 240 . 33269
14 . 25282 44 . 31602 . 33304
15 . 28573 45 . 31643 . 33334
16 . 28832 46 .31681 . 33360
17 . 20064 47 .31718 . 33414
18 . 20273 48 . 31754 . 33455
19 . 20464 49 . 31780 . 33488
20 . 20637 50 . 31822 . 33514

. 29796 55 .31972 |
2994‘. 60 .32009 |
. 32208 1

" 30202 70 . 32304
. 30318 75 . 32387

. 30427 80 . 32461
. 30528 85 . 32527
. ¢ . 82587
. 30712 95 132640
. 30795 100 . 32689
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Values not found in the table may be calculated by the formula

0330842 1 _ 1
120n° ~ 504n®

_ 1
B=0.337877 ~5n log. n—
WasHINGTON, January 25, 1929,
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