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Introduction
Mark Twain3 famously graded misleading information into the three categories: "Lies, damned lies, 
and statistics".  The quip is arresting for its apparent rejection of scientific principles; but it is also, 
we must admit, fair comment on the background to many a dubious conclusion. So what is it about 
statistics, those numbers that purport to supply facts, which gives them the ability to supply 
nonsense and political spin with equal facility?  The answer lies in the two hidden attributes of any 
bare statistic, bias and uncertainty, of which politicians rarely speak, but to which scientists must 
always pay attention if they are to avoid fooling themselves.
     Here we concern ourselves with the business of extracting scientific information from physical 
measurements; with the emphasis on getting the best out of the measuring equipment, and then 
working out how good the resulting information is.  This is somewhat harder than the comfortable 
business of recording instrument readings and then believing them; but there is a prize that should 
please both amateur and professional experimenters alike: the almost magical ability to obtain 
accurate information using commonplace (and relatively inexpensive) laboratory equipment. 

1 Ottery St Mary, Devon, England.
2 Revision history: First pdf version: v1.00, 20th Nov. 2009.  Minor corrections and layout changes: v1.01, 12th Mar. 

2010. v1.02, 5th Sep. 2012. v1.03, 4th Apr. 2013. v1.04, 4th Aug. 2014.
3 http://en.wikipedia.org/wiki/Lies,_damned_lies,_and_statistics
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1. Errors and Uncertainties
The outcome of a scientific measurement is called a random variable.  We cannot know in advance 
what value a random variable will take on, we can only know that it will probably fall within a 
certain range. 
     The error in a random variable is defined as the difference between an observed or deduced 
value and the true value.  We do not usually know what the 'true' value is.  Experimentally we can 
never obtain it, we can only converge upon it in a statistical sense, i.e., by making repeated 
measurements and averaging the results.

We can divide sources of error into 3 groups:

● Illegitimate errors: i.e., mistakes in measurement or calculation.
● Systematic errors (bias): i.e., poor experimental design or method, failure to calibrate 

equipment.
● Random errors: i.e., noise and fundamental uncertainty.

Here we use the term "noise" in the statistical or scientific sense, to mean scatter or unpredictability 
in the observed or instantaneous value of a random variable.  The audible hissing noise in the output
of a radio receiver is due to the inherent unpredictability of the output power, and so the vernacular 
and the statistical meanings are perfectly analogous. 
     An experimental result is accurate if all illegitimate and systematic errors have been eliminated. 
An experimental result is precise if noise and random error have been minimised.

● Accuracy = nearness to the truth.
● Precision = narrowness of scatter in repeated measurements.

A measurement can be precise but not accurate if the scatter of results is small but the there is a 
systematic error in the method.  A measurement can be accurate but not precise if it is free from 
systematic errors but the data are noisy (Note that the Latin word "data" is plural.  The singular of 
"data" is "datum").

Precision:
The value of a random variable is meaningless without some measure of its precision or 
uncertainty.  One possible way to determine the uncertainty in an experimental result is to repeat the
measurement a large number of times.  This will only work if the resolution of the measuring 
device is considerably greater than the uncertainty of the
measurement; e.g., it doesn't matter how many times you
connect a digital multimeter to a resistor, it will always
give the same number (provided that the temperature
doesn't change).  The resolution of a digital measuring
instrument is usually the same as its precision (i.e.,
provided that the least significant digit remains stable).  In
many situations however, the noise in the measurement is
clearly apparent to the experimenter, in which case it is
possible to determine a distribution of results.
     The complete set of all possible measurements of a random variable is called the parent 
population.  The parent population may be finite or infinite.  An example of a finite parent 
population is the permeability of type K transformer cores in last week's production batch.  An 
example of an infinite parent population is the noise voltage of an RF amplifier.  In most cases we 
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do not have access to the parent population, or it is impractical or too expensive to measure the 
whole population. We must therefore take sample measurements and work with a smaller sample 
population.

Sample mean:
For measurements with randomly distributed errors, the best estimate for the true value of the 
variable is the average of the sample population. This is usually defined as the mean value:

x =
1

n

n

Σ
i=1

xi Sample mean

The equation above implies the convention that we have made a set of measurements and have 
numbered then from 1 to n.  The subscript  i  is used to refer to the measurements generically, i.e., 
xi  is an individual measurement with a unique identifier  i  that has a value between 1 and n.  The 
symbol Σ (capital Sigma) indicates that a summation is to be performed on objects of the type 
indicated to its right; with the range over which the summation is to be carried out written below 
and above.  The mean of the sample population  (pronounced "x bar") is thus the sum of all the 
individual measurements divided by the total number of measurements.
     Note that in some bodies of work, the subscript  i  may already have been used to indicate (say) 
parameters associated with a current sampling network.  In that case, as a precaution against 
ambiguity, another letter can be used as the sample number when carrying out data analysis.  
Strictly it should not be necessary to take such precautions, because the  i  below the summations 
symbol relates only to the subscripts on the variables in the summation itself and has no global 
significance, but we can just as well write:

x =
1

n

n

Σ
k=1

xk Sample mean

without changing the meaning of the statement in any way.

Parent mean:
The mean of the parent population is defined as the sample mean in the limit that the number of 
samples goes to infinity (i.e., encompasses everything).

μ = Lim
n→∞

┌
│
│
└

1

n

n

Σ
i=1

xi

┐
│
│
┘

The parent mean is usually given the symbol μ ("mu"), which is italicised here in an attempt to 
distinguish it from magnetic permeability.
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Deviation:
All data are meaningless in the absence of some implied or actual measure of uncertainty. We may 
guess that real-estate agents are likely to get the dimensions of rooms right to within an inch or so; 
but for scientific and engineering purposes, we require some kind of rigorously defined interval that
can be carried through into other calculations.  The most widely used definition is that involving the
mean of the squares of the deviations of the individual measurements.  This gives rise to a quantity 
known as the variance of the data, which is given the symbol σ² ("sigma squared"):

σ² = Lim
n→∞

┌
│
│
└

1

n

n

Σ
i=1

(xi - μ)²

┐
│
│
┘

Variance

Notice that the variance is defined in terms of the parent mean μ, because we can only know it 
absolutely when we have included the deviation of every member of the population.  Note also the 
reason for averaging the squares of the deviations, the point being that the deviations themselves 
can be positive or negative, but the square is always positive.  The average of the deviations 
themselves (unsquared) is by definition zero.
     The problem with the rigorous definition of variance, is that we do not usually know the parent 
mean.  All we have is an estimate of it in the form of the sample mean . We must therefore make do 
with with an estimated variance based on the assumption that x ≈ μ.  The most naive attempt to find 
an estimate of variance would be:

σ² =
1

n

n

Σ
i=1

(xi - x)² (only true for large n)

The problem with this definition is that if the number of samples is only 1 it tells us that  σ² = 0 , 
i.e., it implies that there is no uncertainty if only one measurement is made.  The reality is that we 
can have no confidence whatsoever in a single uncorroborated measurement, and so this definition 
is false.  The flaw, expressed in mathematical language, is that the equation has an incorrect 
boundary condition, i.e., it does the wrong thing when pushed to one of the limits of its range of 
applicability.  There only way in which we can repair it is by changing it to:

σ² =
1

n-1

n

Σ
i=1

(xi - x)²
Estimated variance

(true for any n).

Dividing by n-1 instead of n has no effect if n is large, but when n →1 , σ² → 0/0 , i.e., the corrected
expression tells us that uncertainty is undefined if we only make one measurement.  The quantity 
n-1  is the number of degrees of freedom in the data, i.e., it is the number of independent data or 
measurements at our disposal.  The reason why we must divide the square error sum by n-1 instead 
of n is that we have lost one degree of freedom by using the data themselves as the source of the 
estimate of the population mean.

The quantity σ, which is defined as:

σ = +√σ²

is known as the standard deviation of the data, and is the RMS average deviation.  If it is derived 
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from a variance using x instead of μ it should strictly be referred to as the estimated standard 
deviation or ESD.  In the event that the errors in the data are distributed according to a normal or 
Gaussian distribution (actually first described by de Moivre in 1733 4 ), the region ± σ is the 68% 
confidence interval, i.e., for normally distributed data there is a 68% probability that the population
mean will lie somewhere between  x - σ  and  x + σ .  The word "normal" in a mathematical sense 
means 'tending towards a norm (or mean)', but it is also 'normal' in a vernacular sense for data to be 
normally distributed.
     It is good practice to state all measurements (or at least those with normally distributed errors) in
the form  x ± σ .  There are two commonly used notations for doing so, one is to put σ after a  ±  
symbol, and the other is to express  σ  as a change in the right-most digit of a number and place it in
brackets after the number.  Hence:

1.231(2)   is the same as   1.231 ±0.002

1.4097(19)   is the same as   1.4097 ±0.0019

Note that a standard deviation usually has the same units as the quantity to which it relates, hence it 
is appropriate to write:

I = 632 ±3 mA     [ not  I =632 mA ±3 ]

One situation in which the uncertainty is not in the same units as the measurement however, is when
it is expressed as a percentage. In this case it is correct to write:

I = 632 mA ±0.5%     [but definitely not  I = 632 ±0.5% mA]

To convert an uncertainty in % back into its native units, divide it by 100 and multiply it by the 
measurement to which it relates:

632 mA ±0.5% = 632 ±(0.005×632) mA = 632 ±3 mA

Manufacturing tolerances:
Resistors, capacitors, and other manufactured components usually have "brick wall" tolerances 
associated with their nominal values; i.e., the manufacturer 'guarantees' that the true value will lie 
within the stated range (provided that other conditions such as operating temperature are also within
the stated range).  Hence, the manufacturer's tolerance is (with some reservations) notionally a 
100% confidence interval, and the associated errors are not normally distributed.  The actual 
distribution of errors then depends on the manufacturing process. 
     If the manufacturing process is imprecise, components are tested and binned according to the 
preferred-value range in which the actual measured value lies.  In that case, the errors have a flat 
distribution and the most probable error is 50% of the tolerance.  For a normally distributed 
population on the other hand, the most probable error is σ .  Hence, when analysing data that are 
subject to both measurement errors and component tolerance errors, a reasonable approximation to 
the standard deviation of a component value is given by taking half of the manufacturer's tolerance. 
     Sometimes a manufacturing process has considerably greater precision than the stated 
component tolerances seem to imply. This is a danger area for those attempting to deduce the most 

4 Introduction to Probability and Statistics for Engineers and Scientists. Sheldon M Ross. Wiley 1987. Normal 
Random Variables. Ch. 3, Sec. 5, p96.
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probable error.  The problem here is that for some components, particularly rolled capacitors5 and 
wirewound resistors, the manufacturer can save materials by always producing components with 
values that are close to the lower tolerance limit.  Hence, if working with stated tolerances, it is 
always necessary to ask the question "can the manufacturer maximise profit by engineering a 
difference between the most probable value and the nominal value?"  If the answer is "yes", then the
nominal value cannot be trusted and independent measurement is the only sensible course of action.

2. Significant figures and rounding
There is usually no point in recording a number with significant digits beyond the point where the 
standard deviation renders those digits meaningless.  We might, for example, perform a calculation 
that gives the result:

x = 5.13782041 ± 0.00362148 

Taking the most austere attitude towards rounding, this number should be reported as:

x = 5.138 ± 0.004

although, for those who dislike throwing anything away:

x = 5.1378 ± 0.0036

is a little less draconian.

The usual rounding rule taught in schools is that, if the digit after the last significant digit to be 
reported is between 5 and 9, round up; but if it is between 0 and 4, round down.  This rule however 
only works unambiguously if we know several more digits than are to be reported.  If, for example, 
we wish to round the number 21.351723 to one decimal place, it is obvious that the result should be 
21.4 ; and if we wish to round the number 21.347816 likewise, the result should be 21.3.  A 
difficulty will only occur if we have to round a number like 21.350000, because then we have no 
way of deciding whether to go up or down.  In that case we should decide randomly (tossing a coin 
will do the trick), or we can use a quasi-random rule like 'round up if the digit to be rounded is odd' 
(or vice versa).  Fortunately, the cases for which such decisions have to be made are very rare, and 
so the old school rule 'always round up' will not introduce significant bias into the data. 
     A more serious problem arises when someone or something has already truncated the number we
wish to round.  Take for example the case where we wish to round the number 21.35 to one decimal
place.  How do we know whether the last 5 arose from a string like 51723 or from a string like 
47816 ?  If we always round up, we will on average add a bias of +0.25 to the least significant digit,
which will introduce a systematic error admittedly smaller than, but nevertheless of the order of, the
standard deviation.  The solution, if forced into this position, is once again to round up or down on a
random or pseudo-random basis.  The solution if using a spreadsheet or writing a computer 
program, is to prevent the problem from occurring by formatting the output so that numbers are 
always given to a few more places than are significant. 
     There is another situation in which it is not a good idea to round a number too drastically.  This 

5 The author once spent a period making laboratory standards for the testing of landline telephone equipment.  It was 
found that the very expensive custom-made polyester capacitors used were always at the lower edge of the tolerance
limit.  Actually, that was very convenient; because capacitors always had to be padded-up to the correct value, and it
meant that it was never necessary to reject a capacitor for being too big.
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is when the number is to be used as a seed for the regeneration of a data set or for the prediction of 
new data.  A typical situation is when the data in a table have been fitted to a mathematical function.
The parameters determined from the fitting process may have uncertainties that suggest that they 
should be rounded; but if the numbers are rounded and put back into the function, they will no 
longer give the best estimates of the original data or good predictions for new data.  There is no 
harm in reporting: 

x = 5.13782041 ± 0.0036

and it is sometimes useful to retain a long string of computed digits in this way.  The only problem 
is that it is sometimes necessary to argue with editors and reviewers who think that they know 
better.
   The last word on rounding is: only round at the end of a computation. Never round intermediate 
results.

3. Reading digital meters
When using digital measuring instruments, the best we can usually manage is to assume that the 
designer of the instrument has incorporated statistically reasonable rounding rules into the 
firmware.  This raises the question: 'what do you write down when the last digit of the reading 
flickers between two numbers?'  Take for example, the situation where a reading flickers between 
100.1 and 100.2 when measuring a resistance.  If the reading is steady at 100.1, then it is reasonable
to assume that a number between 100.05000... and 100.14999... is implied.  If the reading is steady 
at 100.2, then a number between 100.15000... and 100.24999... is implied.  Hence if the instrument 
cannot decide, then logically the number is exactly 100.15 .  There is no convention for recording 
the extra phantom digit obtained in this way, and indeed most workers round up or down arbitrarily.
It is fallacious to argue that arbitrary rounding does not matter however, because many digital 
instruments are designed in such a way that the uncertainty is only in the last digit.  This ensures 
that arbitrary rounding will introduce bias of the order of the standard deviation.  Thus the extra 
digit should be included in any calculations that use the measurement; and the author's 
recommendation (in the event that other users of the data will wonder where it came from) is to put 
it in italics or a reduced font size when reporting; i.e, for the above example, the measurement can be 
reported as 100.15 or 100.15.

4. Instrumental defects
Measuring instruments suffer from some or all of the following defects:

● Random error
● Scale error
● Offset error
● Linearity errors
● Range-switching error
● Monotonicity errors

In electrical measuring instruments, scale error is due to the incorrect adjustment of a shunt or 
series resistor, or some other gain or sensitivity control.  A scale error implies that all readings of the
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instrument are multiplied by some (perhaps unknown) scaling factor.
     Offset error occurs when an instrument does not read zero for zero input.  Its effect is to 
introduce a systematic error that is proportionately greater for low readings than it is for high 
readings.  For digital instruments, offset nulling is part of the calibration procedure.  For moving-
coil meters, the offset may change according to the physical orientation of the instrument, and it is 
important to check the zero adjustment before making readings.
     Linearity errors arise from a variety of causes and are often difficult to quantify.  Sometimes 
the cause of non-linearity is fairly well understood (e.g., diode detectors), and a correction function 
can be applied to the readings.  Often however, non linearity is due to instrumental idiosyncrasies, 
or failure to care for the instrument correctly.  For moving coil instruments, linearity can be affected
by steel swarf or stray parts adhering to the magnet and upsetting the uniformity of the magnetic 
field.  Variable reference capacitors are often calibrated by means of knifing-vanes, and kinks in the 
relationship between dial markings and actual capacitance can occur at the boundaries between 
vanes.
     Range-switching error is due to the change in scale error that can occur on switching an 
instrument from one sensitivity setting to another.  It manifests itself as a jump or discontinuity in 
the graph of a set of measurements, but can be controlled by careful calibration or application of a 
range-dependent correction factor to the readings.  Note incidentally, that even if an instrument is 
adjusted so that graphs plotted using different ranges are perfectly contiguous; changing range can 
still introduce a change in the proportionate (%) standard deviation of a measurement, and statistical
bias (unfair weighting) can result if this is not accounted for.
     Monotonicity error can occur in digital instruments when a change takes place in one of the 
more significant (left-most) digits of the binary representation.  It manifests itself as the reading or 
the output going down when it should go up, or vice versa.  Monotonicity error limits the effective 
resolution of A-D and D-A converters, e.g., a converter might have an physical resolution of 16 bits,
but it might only be monotonic at the 14 bit level (the last two digits must be rounded off to 
guarantee a monotonic output).

5. Calibration of instruments
In the user manual provided with a measuring instrument, there will be a section specifying the 
accuracy of the instrument on its various ranges.  Such specifications usually refer to scale errors 
and are normally expressed in %. At time of calibration, there are two possible interpretations of the
specification for a particular instrument range:

● 'If it is within the specified limits it is good enough'.
● 'If it is adjusted exactly to the standard, then there is a good chance that, if it is treated 

carefully, it will still be within its specified limits at the end of the recommended 
recalibration interval'. 

There are no prizes for guessing which interpretation is correct.  Instruments calibrated according to
the first philosophy always introduce systematic errors.  The fact that there will be some uncertainty
in the value of the standard, and some error in the reading of the standard, means that an instrument 
that appears to be working within its tolerance may not be.  Exact agreement with the standard 
maximises the probability that the instrument will perform according to its specification.
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6. Propagation of Uncertainties
A common situation when making use of scientific measurements is the need to compute the value 
of some other quantity from those measurements.  To do that, we must use a mathematical formula, 
and the first question we need to ask is: 'how is the uncertainty in a measured quantity transmitted 
through a formula into the final result?'  Let us begin by considering a generalised formula with a 
single variable parameter:

y = f(x)

where the parameter x has an uncertainty δx (here we will start by using δ instead of σ because σ is 
always positive by definition, whereas an uncertainty transmitted through a formula can change 
sign).  We want to know the uncertainty of y; to which, by obvious convention, we will assign the 
symbol δy.  The solution to this problem is given by straightforward logic: The uncertainty of y is 
the rate of change of y with respect to x multiplied by the uncertainty in x, i.e.:

δy = δx dy/dx

All we have to do is find the derivative dy/dx and multiply it by δx.  So far, so good, but what we 
have at this stage usually relates to very trivial situations.  An example might be that of measuring a 
current in Amps, and wanting to know it and its standard deviation in milliAmps.  This is so easy it 
barely warrants a thought, but if we state the problem formally we can examine the underlying 
process: 

Let y be the current in mA and x the current in A. Then:

y = 1000 x

dy/dx = 1000

δy = 1000 δx

In this case the derivative is positive, so we can substitute standard deviations directly in place of 
the deltas:

σy = 1000 σx

Things get a little more complicated when, for example, powers of x or logarithms are involved, 
because then the uncertainty that x transmits into y depends on the value of x, but the general 
principle is the same.  Take for example:

y = 1/x

In this case:

dy/dx = -1/x²

hence:

δy = -δx/x²
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which means, for this particular relationship, that large values of x transmit less uncertainty into y 
than small values of x.  We can also see from this example why the deltas are not the same as 
standard deviations; because we have the situation in this case that if δx is positive, then δy is 
negative.  We can force the general technique to work with standard deviations however, either by 
using the magnitude of the derivative (i.e., by just ignoring the sign), or algebraically by using the 
RMS value of the transmitted uncertainty, i.e.:

σy = +√[(σx dy/dx)²]

The point being to make the answer positive by squaring it and the taking the square root.

Now let us consider the general situation, which is frequently encountered when the problem at 
hand is sufficiently difficult to warrant some programming or the production of a spreadsheet.  This 
is when several measured quantities of different origin must be combined in the calculation of a 
desired quantity.  We can express this situation generically by writing:

y = f(p, q, r, s . . . )

where p, q, r, s, etc. are variables with uncertainties δp, δq, δr, δs, etc..  If we consider each variable 
in turn, we can find its contribution to the uncertainty in y by taking the partial derivative of the 
function with respect to the variable (i.e., we differentiate the function with all of the other variables
held constant6 ).  If we assign the symbol δyp to the contribution that the uncertainty in p makes to 
the uncertainty in y, then:

δyp = δp ∂y/∂p

and so on.  Thus we can determine all of the partial error contributions from all of the parameters, 
but we are left with the problem of how to add them together. Our first guess might be that we 
should simply add them directly, i.e.:

δy = ( δp ∂y/∂p ) + ( δq ∂y/∂q ) + ( δr ∂y/∂r ) + . . . . . 

The failing here is that derivatives can be positive or negative; hence for some formulae and data 
there may be total cancellation of all errors, and this is physically unreasonable.  We might therefore
try to remove this flaw by using magnitudes:

δy = | δp ∂y/∂p | + | δq ∂y/∂q | + | δr ∂y/∂r | + . . . . . 

This looks better, but if we translate the statement into ordinary language, we will find that it is still 
not correct.  The statement tells us to compute the uncertainty in y on the assumption that each of 
the parameters is most likely to be displaced from its parent mean by an amount equal to its 
uncertainty (which is reasonable), but then assumes that the displacements will always conspire in 
such a way that their contributions increase the total.  This amounts to a worst-case combination of 
errors, and the probability that it will occur in practice is very small.  The reality is that the 

6 Partial differentiation is indicated by replacing  d  with the symbol  ∂  (which is a cursive version of the Cyrillic 
letter "dey",  also known as the 'partial differential operator') .  If a function to be differentiated contains only a 
dependent and an independent variable (y  and  x  say), and all of the other symbols are numerical constants, then 
the derivative is written as  dy/dx .  If however, the function also contains variables besides x, then the derivative is 
written as  ∂y/∂x  to indicate that the other variables have not been allowed to change during the differentiation.  
Hence partial differentiation is just a matter of lumping the unchanging variables with the constants and otherwise 
proceeding as for ordinary differentiation. 
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difference between a variable and its parent mean is just as likely to be negative as it is to be 
positive.  Hence there is just as much chance that the uncertainties of a pair of variables will 
partially cancel as there is that they will augment.  We must deal with this issue by combining the 
parameter uncertainties in the way that is most probable; and indeed, if the uncertainties are 
standard deviations, we must combine them to produce a result that is also a standard deviation.  
This requires us to consider the extent to which the parameter uncertainties are correlated (i.e., 
literally, co-related). 
     If an experiment is properly designed, then by definition, all possible steps have been taken to 
eliminate systematic errors.  This does not necessarily mean that all systematic errors have been 
eliminated, but it does mean that such errors have been eliminated as far as is known.  In that case, 
it is sensible to assume that all of the remaining errors are random.  If an error in a parameter is 
random, then its magnitude or direction cannot be influenced by the error in any other parameter.  If
the deviations in two or more variables are able to change independently, each without affecting any
other, then they are uncorrelated; and, by virtue of their independence they must exist in different 
dimensions.  Hence the uncertainties in any pair of parameters can be considered to be like vectors 
that move at right angles to each other.  Objects having this property of mutual independence are 
said to be orthogonal.  If we transmit the uncertainties through a formula and turn them into partial 
error contributions, the partial errors are still orthogonal, but are now all measured in the same units
and can be treated like the components of an actual vector.  The the proper way to combine them 
therefore is to take the vector sum, i.e., to calculate the magnitude of the resultant by using 
Pythagoras' theorem.  Hence the correct way to find the sum of a set of uncorrelated error 
contributions is:

δy = +√[( δp ∂y/∂p )² + ( δq ∂y/∂q )² + ( δr ∂y/∂r )² + . . . . . ]

Notice that this sum is an RMS value. Therefore it can be used with standard deviations instead of 
arbitrarily defined uncertainties, and a standard deviation will be obtained as the result:

σy = +√[( σp ∂y/∂p )² + ( σq ∂y/∂q )² + ( σr ∂y/∂r )² + . . . . . ]

A detailed worked example of the use of an error function of this type is given in an accompanying 
article7.

7. Combination of uncorrelated measurements
There is one application of the error analysis procedure just outlined that should be memorised by 
anyone engaged in the business of making measurements.  It is the answer to the question: 'how 
much improvement in precision can be obtained by repeating a measurement several times and 
taking the average?'  This question of course only relates to measuring devices that are capable of 
resolving the noise in the quantity being measured, or that in some sense add noise to a level that is 
greater than the instrumental resolution. 

Let us first consider the case where two measurements are made of a quantity x, and the average is 
taken:

x = (x1 /2) + (x2 /2)

If both measurements have the same standard deviation σ, and the errors are uncorrelated, then:

7 "Measuring source resistance".  AC Theory, D W Knight 2009, sections 38 - 39. Available from g3ynh.info.
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σx = √[( σ ∂x/∂x1 )² + ( σ ∂x/∂x2 )²]

where  ∂x/∂x1 = ½  and  ∂x/ ∂x2 = ½ , hence:

σx = √[( σ/2 )² + ( σ/2 )²]

which simplifies to:

σx = σ/√2

Averaging two uncorrelated measurements improves the precision by a factor of 1/√2. 

Now consider the general case when x is the average of n measurements:

x = (x1 /n) + (x2 /n) + (x3 /n) + . . . . + (xn /n)

The derivatives are all the same, i.e.:

∂x/∂xi =1/n

Hence:

σx = √[n (σ/n)² ]

which simplifies to:

σx = σ/√n

Averaging n uncorrelated measurements improves the precision by a factor of 1/√n.

Note that these techniques will only work with measurements that have genuine randomness in the 
least significant digits of the result.  There is no use in writing down the unchanging reading of a 
digital multimeter several times (the uncertainty in that case must be taken from the manual or 
deduced by means of some calibration process), but it is valid and sensible to make the same 
measurement with two or more different digital multimeters and take the average.

8. Weighted average
Another important problem related to the propagation of uncertainties is: 'how do you combine two 
measurements having different standard deviations to obtain a meaningful average?'  If one 
measurement has a significantly smaller uncertainty than the other, then it is not fair to the better 
measurement to take the straight average and bias will be introduced by doing so.  On the other 
hand, it is a waste of data to throw away the inferior measurement. The solution is to take a 
weighted average, the idea being that if measurement A is n times better than measurement B, we 
should add n of A to 1 of B and divide by n+1.  This leaves us with the problem of defining what is 
meant by 'better'; but it transpires that, for reasons of dimensional consistency that will become 
apparent later, the variance of an observation from a normally distributed population is the proper 
measure of its goodness.  The weight of an observation is consequently a number that gets bigger as
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the variance gets smaller, i.e.:

wi = 1/σi²

The weight of an observation is a type of frequency, it is the number of times it should be included 
in an average relative to an observation with unit weight (i.e., a weight of 1).  It does not matter that
it is not an integer.  There is no problem in adding 1.7 of A to 3.1 of B and dividing by 4.8. Hence 
the general form for a weighted average is:

x =
(w1 x1 ) + (w2 x2 ) + (w3 x3 ) + . . . + (wn xn ) 

Σwi

where: wi = 1/σxi²

Here we have used the summation symbol without indicating the range, an informal shorthand that 
means "sum over the whole range". The weighted average is more compactly written:

x = ( Σwi  xi ) / ( Σwi )

Now to work out the uncertanty in x, we note that the derivatives are given by:

∂x/∂xi = wi  / ( Σwi )

Hence:

σx = √[ (x1 w1 / Σwi )² + (x2 w2 / Σwi )² + (x3 w3 / Σwi )² + . . . . . + (xn wn / Σwi )² ]

but 1/(Σwi )² can be factored out of the square root bracket:

σx = (1/Σwi ) √[ (x1 w1 )² + (x2 w2 )² + (x3 w3 )² + . . . . . + (xn wn )² ]

Hence:

σx = [ √(wi xi )² ] / ( Σwi )

Relative weight:
The absolute weight of an observation is given by the reciprocal of its variance.  There are 
occasions however, when the variances of the observations are not known in advance of the 
averaging process but there are instrumental or mathematical considerations that permit the relative 
variances to be computed.  In such cases we can take an average using relative weights in place of 
absolute weights and still obtain an unbiased result.  This follows by inspection of the expression 
for the weighted average (above), where it is apparent that multiplying all of the weights by the 
same arbitrary constant k (say) will not change the result:

x = [ Σ( k/σxi² ) xi ] / [ Σ( k/σxi² )] = [ k Σ(1/σxi² ) xi ) ] / [ k Σ(1/σxi² ) ]

It is for this reason that we give the weights their own symbol rather than writing them explicitly as 
reciprocal variances: they do not have to be variances as long as they are proportional to the 
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variances of the observations.
     A situation in which a weighted average is required but absolute variance might not be known in 
advance is that which arises when data have to be processed by means of some mathematical 
formula before they can be averaged.  This statement is actually a description of the generalised 
process of mathematical modelling or data reduction.  It is often the case that the input data all have
the same uncertainty, but are are scaled by some non-linear function.  This means that the amount 
by which the uncertainty is scaled will vary depending on the value of the measurement.  If we give 
the original measurements a relative weight of 1, we can easily work out the new weight after 
scaling and so take the weighted average.  Furthermore, we can then work out the variance of the 
average, and from it deduce the standard deviation of an observation of unit weight.  This subject is 
examined in more detail in section 11.

9. Correlation
In the event that uncertainty contributions are uncorrelated, we treat them as the orthogonal 
components of a vector and find the overall uncertainty by taking the magnitude.  There are 
however situations in which uncertainties will be correlated, in which case it is appropriate to add 
the error contributions directly.  A typical example of correlation is when a formula is used to 
combine two measurements taken from the same meter, and the meter has a scale calibration error, 
i.e., there is some fixed proportionate error or scale factor that affects all readings.  The situation we
have is:

y = f(x1 , x2 )

and due to the correlation (if x1 is above its parent mean then so will be x2 and vice versa), the error 
in y is:

δy = ( δx1 ∂y/∂x1 ) + ( δx2 ∂y/∂x2 )

The effect of the correlation depends entirely on the derivatives.  If both derivatives have the same 
sign, then the two errors will add.  This will mean that the overall error will be greater than if the 
errors were unrelated, and there is said to be a positive correlation.  If on the other hand, the 
derivatives have opposite signs, then the two errors will tend to cancel, and there is said to be 
negative correlation.  Hence, if there is positive correlation, the error contributions can be 
considered to be both pointing in the same direction; if there is negative correlation, the error 
contributions can be considered to be pointing in opposition; and if there is no correlation then, as 
we have seen before, the error contributions should be considered to be pointing at right angles. 
     Now consider the example of a moving-coil meter with a scale calibration error.  For each 
reading there will also be a random error, due to the friction of the bearings and the need to 
interpolate between the scale markings by eye.  Hence every reading will have two error 
components; the calibration error and the noise.  The upshot is that it will not be correct to consider 
the error vectors to be orthogonal, but neither will it be correct to consider them to be aligned.  
Consequently they must be considered to be at some intermediate angle.  The cosine of that angle is
known as the correlation coefficient.  It is often given the symbol ρ (rho), and is defined in such a 
way that  ρ = Cos(180°) = -1  when the correlation is positive, ρ = Cos(0) = +1  when the correlation
is negative, and of course,  ρ = Cos(90°) = 0  when there is no correlation.  The correlation 
coefficient is however a very formal way of dealing with the present problem, and is best reserved 
as a measure of the independence of the parameters obtained by fitting data to a mathematical 
model.  For the purpose of dealing with the correlation between instrumental measurements, it is far
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simpler to take the view that the noise and the calibration errors can be treated separately.  Thus we 
might have two error components for a single measurement; one being the calibration error, which 
we will call  δx(cal)  ; and the other being the precision, which we will call  δx(rnd) (random).  If we 
just take a single measurement from the meter, then, since the random error and the calibration error
are not correlated, the standard deviation will be:

σx = √[ δx(rnd)² + δx(cal)² ]

If we use two measurements from the meter however (x1, x2), and put them into a formula to obtain 
a quantity y, then:

σy = √[ (δx1(rnd) ∂y/∂x1)² + (δx2(rnd) ∂y/∂x2)² + { (δx1(cal) ∂y/∂x1)+(δx2(cal) ∂y/∂x2) }² ]

In this case, we have added the calibration error components directly; but then, since the total 
calibration error is not correlated with the random errors, we have squared it and included it in the 
ordinary RMS error sum.
     There is one obvious way to improve the accuracy of the derived quantity, and that is to calibrate
the measuring instrument against a reference standard.  There are occasions however, when 
correlation works to the advantage of the experimenter, provided that the measurements are made in
a sensible way.  Such is the case when there is a need to measure a ratio. 

Measuring a ratio:
Consider the commonly encountered transfer function:

η = V2 / V1

If both voltages are measured using the same meter, and the meter has an unknown scale calibration
error s, then for every reading taken from the meter:

Vi = s Vi'

where Vi' is the reading that would have been given had the meter been calibrated. Hence:

Vi = Vi' + (s-1) Vi'

and so the calibration error in Vi is:

δvi(cal) = (s-1)Vi' = Vi (s-1)/s = Vi (1-1/s)

The error transferred into the voltage ratio is:

δη = (δv1(cal) ∂η/∂V1 ) + (δv2(cal) ∂η/∂V2 )

where:   ∂η / ∂V1 = -V2 / V1²     and     ∂η / ∂V2 = 1 / V1

Hence:

δη = [ -V1 (1-1/s) V2 / V1² ] + ( V2 (1-1/s) / V1 )  =  0
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Hence, if a ratio is obtained by using two measurements from the same meter, and also using the 
same range if range switching is possible, then any scale calibration errors are cancelled.  The 
random errors in the measurements are, of course, still present, and can be combined in the usual 
way.

10. Linear Regression
It is often possible to discover a linear relationship between two variables, or to rearrange a formula 
involving those variables and thereby extract a linear relationship from it.  Data from a series of 
measurements can then be analysed using a model of the general form:

y = a + bx

This is the equation of a straight-line graph, where b is the slope or gradient of the line, and a is the 
y-axis intercept point, i.e., the value of y when x=0. 
     Consider an experiment or measurement procedure for which it is known or suspected that a 
linear relationship exists between two variables x and y.  Traditionally, y is the dependent variable 
and x is the independent variable; and so we will assume that a measurement involves adjusting x to
a particular value and recording the corresponding value of y.  If a set of such measurements is 
obtained for a sufficiently broad range of x values, we will at some stage acquire sufficient data to 
test whether or not the linear relationship hypothesis is reasonable; and if it is reasonable, we will be
in a position to obtain usefully accurate values for the slope and the intercept point.
     We will assume that measurements are numbered from 1 to n , and that we have at our disposal a
list of paired values of x and y , i.e.:

(x1 , y1 ) , (x2 , y2 ) , (x3 , y3 ) , . . . . , (xn , yn )

The process of finding a straight-line graph to fit a data set is called linear regression.  The term 
'regression' implies the act of reducing the data to some underlying law; the point being that, if it 
works, we will in this case replace an entire data set with just two numbers, a and b.  To find the 
procedure, we will start with a special case, which is rarely valid but commonly applied regardless 
of tiresome details like appropriateness.  The special simplifying assumptions are:

● The xi can be fixed with arbitrary precision.
● The yi all have the same uncertainty σ .

Obviously, except in rare cases when the xi  are exact by definition (e.g., the number of turns of wire
on a magnetic toroid), there will be some uncertainty in the setting of x.  It is however acceptable to 
assume that the xi  are exact provided that: 

σxi / xi << σyi / yi

Note that an absolute uncertainty has the same units as the variable to which it belongs, and that the 
two ratios compared in the inequality above are therefore dimensionless.  The expression says that 
we may assume the xi  to be exact if their relative uncertainties are very small compared to the 
relative uncertainties of the yi  .  With regard to the assumption that the uncertainties in the yi  are all 
the same: that can sometimes be the case, but we will need to extend the procedure later to cope 
with situations in which it is not.
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We begin by assuming that the linear relationship is true, i.e.:

y = a + bx

On account of random measurement errors however, a given yi  will not fit the expression exactly.  
Hence, for the individual measurements, we must write the relationship with an additional error 
term:

yi = a + bxi + ei             . . . . . .    (10.1)

where ei  is known as the residual error in yi .

Now imagine the process of trying to fit the data by guesswork. To do that we would plot the data as
points on a graph, and then, using a ruler and pencil, we would try to draw the best straight line 
through the points.  That would involve sliding the ruler up and down and rotating it until the errors 
appeared to be scattered equally above and below the line all the way along it.  To do the same 
mathematically (and without guesswork), we satisfy two conditions.  The first is that the sum of all 
the errors should add up to zero (equivalent to sliding the ruler up and down), i.e.:

n

Σ
i=1

ei = 0

The second is that the sum of the squares of the errors should be as small as possible (equivalent to 
rotating the ruler).  The point here is that by making the errors add up to zero, we have found a line 
that passes through the mid-point of the data set.  We still need to rotate the line however, because it
may be that all of the residuals on one side of the mid point are positive while all of those on the 
other side are negative.  By squaring the errors, we make them all positive, so the square error sum 
will only be minimised when the line is optimally embedded in the data.  The process of fitting data 
by minimising the square error sum is called the method of least squares.
     To minimise the square error sum, we note that it will vary as each parameter is varied, and that 
a minimum occurs when its rate of change with respect to a parameter is zero.  Hence we want to 
find the two conditions:

∂Σei²/∂a = 0     

and     

∂Σei²/∂b = 0

To find the derivatives, we start by writing the square error sum explicitly using equation (10.1):

Σei² = Σ(yi - a - bxi )²

which expands to:

Σei² = Σ(yi² + a² + b² xi² - 2ayi - 2bxi yi + 2abxi )

Differentiating a summation is just a matter of differentiating the individual terms and adding them 
together, and so:
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∂Σei²/∂a = Σ( 2a -2yi +2bxi ) = 0

hence:

Σ(a -yi + bxi ) = 0

The term Σa just means 'add a to itself n times', and so  Σa = n a , hence:

Σyi = n a + b Σxi                     . . . . . .   (10.2)

Also:

∂Σei²/∂b = Σ( 2bxi² - 2xi  yi + 2axi ) = 0

hence:

Σ( bxi² - xi  yi + axi ) = 0

Σxi  yi = a(Σxi ) + bΣxi²          . . . . . .   (10.3)  

This gives a solution for b in terms of a:

b = [ (Σxi  yi) - a(Σxi ) ] / Σxi²

Substituting this into (10.2) gives:

Σyi = na + { [ (Σxi  yi ) - a(Σxi )](Σxi ) / Σxi² }

Multiplying throughout by Σxi² then gives:

(Σxi²) Σyi = na(Σxi² ) + (Σxi  yi )(Σxi ) - a(Σxi )²

Which gives a full solution for a by rearrangement:

a =
(Σxi² )(Σyi ) - (Σxi yi ) Σxi 

n(Σxi² ) - (Σxi )²
(10.4)

Equation (10.3)  also gives a solution for a in terms of b: 

a = [ (Σxi yi ) - bΣxi² ] / Σxi

Substituting this into (10.2) gives:

Σyi = n{ [ (Σxi yi ) - bΣxi² ] / Σxi } + bΣxi

and multiplying throughout by Σxi gives:

(Σxi ) Σyi = n(Σxi yi ) - nb(Σxi² ) + b(Σxi )²
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Which gives a full solution for b by rearrangement:

b =
n(Σxi yi ) - (Σxi ) Σyi 

n(Σxi² ) - (Σxi )²
(10.5)

Note that equations (10.4) and  (10.5) share the same denominator. Also notice that solutions for a 
and b can be obtained by calculating four sums: 

Σxi   ,   Σyi   ,   Σxi yi   , and   Σxi² 

i.e., all it takes is four columns of a spreadsheet and two simple equations involving the totals to 
find the optimum regression line.

Example: Diode correction function.
When using a diode detector to measure the level of an AC signal, the output voltage of the detector
is always slightly lower than that predicted on the basis that the diode is a perfect rectifier.  
Consequently, in order to obtain accurate results, it is necessary to correct the data for the diode 
forward voltage drop.  Correction can be achieved by making a set of measurements of diode 
forward voltage vs. forward current and using them to determine a correction function.  If a signal 
diode with low junction resistance, such as the 1N5711 is used, the diode forward characteristic can 
be fitted to the following expression:

Vf = V0 + V1 Loge(If / Iref )

This relationship holds good over several decades, and is therefore more than adequate for the 
correction of readings taken from a single meter range.

In the spreadsheet shown below, a set of diode measurements has been entered in the first two 
columns, and a linear regression analysis (explained below) has determined the formula:

Vf = 0.15834185 + 0.02906031 Loge(If / [μA] )       [Volts]

Note that the units of the current are shown as a divisor in the logarithm bracket, i.e., the reference 
current is 1 μA and so every current value put into the formula must be stated in μA.  The 
significance of this notation is that the quantity enclosed by the log bracket must be dimensionless, 
and a measurement is rendered dimensionless by dividing it by its units.  Hence " If /[μA] " means 
'be sure that the number you put here represents a value measured in μA.
     The microammeter readings in the first column are nominal (i.e., uncalibrated), because this is a 
calibration function for a particular diode used in conjunction with a particular meter.  The meter 
should be the same as that used for the acquisition of the experimental data to be corrected, the 
point being to cancel calibration errors by exploiting negative correlation as discussed in section 9.
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A B C D E F G H

In this case, defining the regression line as y=a+bx, we identify: 

y=Vf ,   a=V0 ,   b=V1   and   x=Loge(If /μA)

The subscript  i  has been dropped in the spreadsheet column headings, because it should be obvious
that an x or y value associated with a particular measurement is unique to that measurement (i.e., 
the  i  is implicit).
     In columns C, D, and E we calculate the quantities  xi ,  xi yi , and xi² .  The sums in row 14 are 
then calculated using the spreadsheet Σ function, so that:

B14 = Σyi   ,   C14 = Σxi   ,   D14 = Σxi  yi   , and   E14 = Σxi².

The fitting parameters a and b are then calculated using equations (10.4) and  (10.5); where, for the 
data above, the number of observations n=11. 

A regression line has now been determined, but it would be unwise to discontinue the analysis at 
this point.  If we use the fitting function to produce a set of calculated yi values and compare them 
with the observed values, the exercise becomes self-policing with regard to any mistakes that might 
have been made in entering the formulae. Note that the formula used in column F must use absolute
addressing to pick-up a and b from cells G17 and G18. In Open Office Calc (and other 
spreadsheets), this is done by placing a $ symbol in front of any row or column designators that 
must be held constant; i.e., the seed formula for row 3 is:

F3= G$17 + G$18 * C3

The residuals (observed - calculated) are then obtained in column G using the seed formula:

G3 = B3 - F3

The sum in cell G14 is just a check to show that the least-squares fitting procedure has indeed 

IN5711 Vf vs If data, fitted to regression line. 1
Vf = y ln(If) = x xy x 2̂ Vf calc obs-calc (obs-calc) 2̂ 2

50 0.2720 3.9120 1.0641 15.3039 0.272026 -0.000026 0.000000001 3
55 0.2750 4.0073 1.1020 16.0587 0.274796 0.000204 0.000000042 4
60 0.2770 4.0943 1.1341 16.7637 0.277325 -0.000325 0.000000105 5
65 0.2795 4.1744 1.1667 17.4255 0.279651 -0.000151 0.000000023 6
70 0.2820 4.2485 1.1981 18.0497 0.281804 0.000196 0.000000038 7
75 0.2840 4.3175 1.2262 18.6407 0.283809 0.000191 0.000000036 8
80 0.2860 4.3820 1.2533 19.2022 0.285685 0.000315 0.000000099 9
85 0.2870 4.4427 1.2750 19.7372 0.287447 -0.000447 0.000000200 10
90 0.2890 4.4998 1.3004 20.2483 0.289108 -0.000108 0.000000012 11
95 0.2910 4.5539 1.3252 20.7378 0.290679 0.000321 0.000000103 12

100 0.2920 4.6052 1.3447 21.2076 0.292170 -0.000170 0.000000029 13
3.1145 47.2376 13.3898 203.3752 0.000000 0.000000687 14

esd of fit = 0.000276340 15
esd 16

Open document spreadsheet a = V0 = 0.158341851 0.000004092 17
            IN5711.ods b = V1 = 0.029060313 0.000000952 18

If /μA

sums →
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established the condition  Σei = 0 .

Standard deviation of fit:
The calculated values from a least-squares fit are, in effect, a set of estimates for the parent means 
(i.e., true values) of the individual observations.  Consequently, if all of the observations have the 
same precision, the residual errors can be treated as though they are all deviations from the same 
mean.  This implies that we can calculate the variance of the fit and relate it to the variance of an 
observation as if we had made repeated measurements at that particular setting of x.  To that end, 
column I of the spreadsheet shown above is used to calculate the quantity  Σei²  (cell H14), and the 
standard deviation of an observation is estimated (cell H15) as:

σfit = √[ (Σei² ) / (n-2) ]

The divisor n-2 is the number of degrees of freedom in the data, and is two less than the number of 
observations because the estimate is based on the use of two parameters (a and b) that have been 
extracted from the data.  Once again, we can see that this divisor is correct by considering boundary
conditions.  If a data set consisting of only two observations is fitted to a function having two 
variable parameters, then the fit will be exact and the square error sum will be zero.  In that case, all
knowledge of uncertainties vanishes, and so the number of degrees of freedom must be n-2 .  In 
general, the number of degrees of freedom for any fitting process is the number of observations 
included in the fit minus the number of variable parameters.

In the example above, we obtained σfit = 0.00028 Volts, and it is interesting to consider how this 
number came about.  The experiment was conducted using a moving-coil microammeter, and a 
digital Voltmeter giving 3 decimal places on its 2 V range.  By gently tapping the case of the 
moving-coil meter with a pencil to minimise errors due to bearing friction, it was estimated that the 
current could be set with a precision of about ±0.2 μA.  These current settings were then destined to 
converted into logarithms; a process that, although non-linear, has the effect of scaling-down the 
uncertainties.  Hence it was considered reasonable to ignore the setting errors, and since the voltage 
measurements all have near identical precision, the data were deemed suitable for a simple 
regression analysis. 
     The digital voltmeter used had, in its manual, a stated accuracy of ±0.5%, ±0.001 for the 2 V DC
range.  The first uncertainty is however primarily a measure of the expected scale error, and the 
second uncertainty (±1 in the last digit) is primarily the offset error.  These quantities say very little 
about the actual precision of the measurements under the conditions encountered, and σfit  is a 
measure of precision, not accuracy.  We can however deduce the likely precision by noting that the 
range of voltages involved was very small (0.272 to 0.292), and that the meter is unlikely to have 
exhibited significant non-linearity over such a range.  Therefore, the principal causes of deviation 
between observed and calculated values are either rounding error, or invalid assumptions about 
setting error, or failure of the data to conform to the model.  Now, the meter reads to three decimal 
places, which means that there will be a maximum rounding error of ±0.0005 in any reading.  On 
average however, we should expect a rounding error of about half the maximum, on which basis we
should expect  σfit = 0.00025  if the deviations are due entirely to rounding.  We got σfit = 0.00028 , 
which tells us that the data do conform to the model within the uncertainty of the method, and that 
rounding error is the primary cause of deviation.
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11. Weighted Linear Regression
The problem with the simple linear regression process described above is that it is only valid when 
the precision of the dependent variable is the same for all samples.  This is often not the case, and it 
definitely ceases to be the case if the dependent variable must be subjected to some non-linear 
transformation before it can be equated with y.  Take, for example, a situation in which the 
dependent variable is governed by an exponential relationship:

z = k exp(bx)

where 'exp' means "e to the power of", z is the dependent variable, x is the independent variable, 
and k and b are parameters.  We can linearise this relationship by taking the logarithms of both 
sides:

Loge(z) = Loge(k) + bx

which means that we can determine a regression line y = a +bx , with y = Loge(z)  and  a = Loge(k) .
Now let us suppose that all of the measurements of z have the same uncertainty σz (which may or 
may not be known). The uncertainty of a given value of y will be:

σi = √[ (σz dy/dz )² ]

where, in this case, dy/dz = 1/z
Hence, expressed in terms of variances: 

σi² = σz² / zi²

The variance of a given yi  will depend strongly on the value of the corresponding zi . Hence the 
deviations of the yi  can no longer be treated as though they relate to the same mean.  The immediate
practical consequence is that simple linear regression analysis will not give the best fitting 
parameters because it will give equal weight to all observations.
     The solution to this problem is related to dimensional analysis.  No two quantities can be added 
unless they are expressed in the same units, and so all terms in the error sum and in the square error 
sum must be measured in the same units.  If the data are all subjected to some non-linear scaling 
process, then each element of each sum should be subjected to the reciprocal of that scaling process,
or the arithmetic will be invalid.  The most consistent action therefore is to divide each error by 
some external measure of relative error that has the same units.  The resulting dimensionless square 
error sum is known as the goodness of fit (GooF) and is famously referred to as Chi squared:

χ² = Σ( ei²/σi² ) 

This can also be written:

χ² = Σ( wi ei² )

where 

wi = 1/σi²

is called the weight of an observation.  We have met this quantity before in the discussion of 
weighted averages, but now we can see that it is a normalisation parameter, i.e., it serves to scale 
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deviations so that they all behave as though they belong to the same mean.  Hence χ², in this 
context, is the weighted square error sum.

Now, for the weighted regression analysis, using equation (10.1) we have:

χ² = Σwi (yi - a - bxi )²

which expands to:

χ² = Σwi (yi²+ a² + b²xi² -2ayi - 2bxi yi + 2abxi )

To find the weighted least squares fit, we minimise the weighted square error sum with respect to 
each variable parameter, i.e.,

∂χ²/∂a = 0     and     ∂χ²/∂b = 0

hence:

∂χ²/∂a = Σwi (2a -2yi +2bxi ) = 0

Which gives:

Σwi yi = a(Σwi ) + bΣwi xi                           . . . . . .      (11.1)

and

∂χ²/∂b = Σwi (2bxi² -2xi yi +2axi ) = 0

Which gives:

Σwi  xi  yi = a(Σwi  xi ) + bΣwi  xi²                   . . . . . .      (11.2)

Solution of these two simultaneous equations can be obtained by using (11.2) to substitute for b in 
(11.1) and rearranging for a, then using (11.2) to substitute for a in (11.1) and rearranging for b.  The
result is:

a =
(Σwi xi²)(Σwi yi ) -(Σwi xi )(Σwi xi yi ) 

(Σwi  )(Σwi xi²) -(Σwi xi )²
(11.3)

b =
(Σwi )(Σwi xi yi ) -(Σwi xi )(Σwi yi ) 

(Σwi  )(Σwi xi²) -(Σwi xi )²
(11.4)

Once again, the expressions for the parameters have the same denominator. Also notice that if the 
weights are all set to 1, the expressions revert to the non weighted form (equations 10.4 and 10.5). 

The weighted fitting procedure will work just as well with relative weights, and these can be 
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deduced from the rule by which raw data are converted into y values.  Also notice that an 
observation can be excluded from the fit by setting its weight to zero.  This is useful when a 
particular observation is found to have a large residual and an illegitimate error (i.e. a mistake) or a 
breakdown of the model is suspected.  Note that if an observation is excluded in this way, then the 
number of observations is reduced by one, and the number of degrees of freedom used in 
calculating the variance of the fit (see below) must be reduced accordingly.  A technique that allows 
data to be excluded and re-included quickly in spreadsheet calculations (to see what happens) is that
of defining a fitting-flag for each observation.  The fitting flag can have a value of 1 or 0.  The 
theoretical weight of an observation is multiplied by the flag to decide whether it will be included, 
and the number of observations is determined by taking the sum of the flags.  If fitting flags are 
defined in a computer program; users can be prevented from entering values other than 0 or 1 by 
including a statement to the effect that:

If wi ≠ 0 then wi =1

For weighted linear regression, the input data must be given as a three-column list (xi , yi , wi ) ; 
although these quantities may of course be computed according to some transformation of the raw 
data.  We then need to compute the quantities:

Σwi   ,   Σwi xi    ,   Σwi yi    ,   Σwi xi yi   , and   Σwi xi² 

If using a spreadsheet, Σwi  is the sum at the bottom of the weights column, and so four extra 
columns are needed to assemble the quantities needed for equations (11.3) and (11.4).

By incorporating weights, we have effectively scaled all of the sample populations so that they have
the same variance.  Hence, we can estimate the standard deviation of an observation of unit weight 
by treating all of the normalised deviations as though they are deviations from the same mean.  A 
deviation is normalised by dividing it by its standard deviation (or by a quantity proportional to its 
standard deviation), i.e.:

ei / σi = [yi(observed) - yi(calculated) ] / σi 

Note that this expression says that the deviation of a y value with a large uncertainty should be 
taken less seriously than than the deviation of a y value with a small uncertainty.  Hence:

σfit² = ( Σei²/σi² ) / ν 

where ν (Greek "nu") is the number of degrees of freedom, defined as: 

ν = n - p

n being the number of observations of finite weight, and p the number of variable parameters.  For a
linear regression analysis, ν = n - 2 .

Now observe that:

σfit² = χ² / ν 

This quantity is known as "reduced chi-squared " and has a very special property.  It is the variance
of an observation of unit weight.  If the weights used in the fit are absolute, i.e., they are derived 
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from the known variances of the observations, then:

χ²/ν ≈ 1

If the fit is based on absolute weights, then there must be something wrong if the variance of an 
observation of unit weight is not found to be approximately 1.  This relationship is the basis of the 
reduced chi-squared test, which will be discussed in section 12.

If we use relative weights, then the true variance of an observation of unit weight is not expected to 
be 1.  In this case, the quantity:

σfit = √[ (Σwi ei² ) / (n-p) ]

becomes the estimated standard deviation (ESD) of an observation of unit weight, and the ESD of 
any particular observation is given by:

σi = σfit / √wi

Note that the σi is the ESD of a yi , not of a quantity (zi say) from which yi was obtained by 
transformation.  To obtain the uncertainty of zi , it is necessary to apply the reverse transformation, 
i.e., if:

zi = f(yi )

then

σzi = σi dz/dy

Uncertainties in the fitting parameters:
If the parameters obtained from a least-squares fit are to be used solely for the purpose of recreating
the data, then we have little interest in them apart from plugging them into a formula to make use of
the values they produce.  In many situations however, the parameters themselves can be related to 
physical quantities, in which case we are also interested in their uncertainties.  These uncertainties 
can be obtained by applying the normal rules relating to the propagation of uncertainties, i.e., we 
calculate the error contribution from the uncertainty in each observation, and add the squares of 
these contributions to find the variance of the parameter.  This, of course, will only apply if the error
contributions are uncorrelated, i.e, the calculated variance will only tell us about the precision of the
parameter, it will not tell us its accuracy.  Hence, for the parameters from a linear regression 
analysis:

σa² = Σ(σi ∂a/∂yi )²     and     σb² = Σ(σi ∂b/∂yi )²

but   σi = σfit /√wi   , hence:

σa² = σfit² Σ[ (∂a/∂yi )² /wi ]     and     σb² = σfit² Σ[ (∂b/∂yi )²/wi ]

The required derivatives are of course obtained by differentiating equations (11.3) and (11.4), a task 
facilitated by the fact that the expressions for a and b both have the same denominator, and that y 
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does not appear in the denominator.  This means that the denominator will remain constant in the 
differentiation; and it will already have been evaluated for the purpose of obtaining a and b.  We 
will therefore give it the symbol D, a local constant, defined as:

D = (Σwi )(Σwi  xi²) -(Σwi  xi )² (11.5)

Hence:

a = [ (Σwi  xi²)(Σwi  yi ) - (Σwi  xi )(Σwi  xi  yi ) ] / D

∂a/∂yi = [ (Σwi  xi²) wi - (Σwi  xi ) wi  xi  ] / D

          = wi [ (Σwi  xi² ) - xi  (Σwi  xi ) ] / D

σa² = σfit² Σ(∂a/∂yi )²/ wi

     = (σfit²/D²) Σwi ²[(Σwi xi²) - xi (Σwi xi )]²/wi

     = (σfit²/D²) Σwi [ (Σwi xi²)² - 2xi (Σwi xi )(Σwi xi²) + xi²(Σwi xi )² ]

     = (σfit²/D²) [ (Σwi xi²)²(Σwi ) - 2(Σwi xi )²(Σwi xi²) + (Σwi xi²)(Σwi xi )² ]

     = (σfit²/D²) (Σwi xi²)[ (Σwi xi²)(Σwi ) - (Σwi xi )² ] 

     = (σfit²/D²) (Σwi xi²) D 

σa² = σfit² (Σwi xi²) / D (11.6)

b = [ (Σwi )(Σwi xi yi ) -(Σwi xi )(Σwi yi ) ] / D

∂b/∂yi = [ (Σwi )wi xi  -(Σwi xi ) wi  ] / D

           = wi [ xi (Σwi ) -(Σwi xi ) ] / D

σb² = σfit² Σ[ (∂b/∂yi )²/wi ]

     = (σfit²/D²) Σwi²[ xi (Σwi ) -(Σwi xi ) ]²/wi 

     = (σfit²/D²) Σwi [ xi²(Σwi )² -2xi (Σwi )(Σwi xi ) +(Σwi xi )² ]

     = (σfit²/D²) [ (Σwi xi²)(Σwi )² -2(Σwi xi )²(Σwi ) +(Σwi xi)²(Σwi) ]

     = (σfit²/D²) (Σwi )[ (Σwi xi²)(Σwi ) -(Σwi xi )² ]

     = (σfit²/D²) (Σwi ) D

σb² = σfit² (Σwi ) / D   (11.7)
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Thus the parameter uncertainties are easily computed from quantities already determined during the
fitting process.
     If the weights of all of the observations are set to 1 (except for any exclusions) then:

σa² = σfit² (Σxi²) / D

and

σb²  = σfit² n / D

where n is the number of observations included in the fit.

12. The reduced chi-squared test
In sections 10 and 11 we alluded to the idea that the goodness of a fitting process can evaluated on 
the basis of a comparison between the observed and the expected variances of the measurements.  
This test is known as the reduced χ² test and is a very powerful tool for the analysis of scientific 
data (and also a method for detecting scientific fraud).  χ² in this case is defined as the weighted 
square error sum based on absolute weights .  'Reduced χ² ' is χ² divided by the number of degrees 
of freedom in the data (ν = n-p) and is given by:

χ²/ν = (1/ν)

n

Σ
i=1

[ (yi(obs) - yi(calc)) /σi ]² (12.1)

This quantity is, of course, the variance of the fit based on absolute weights, and is therefore the 
variance of an observation of unit weight.  Since an absolute weight is a reciprocal variance, the 
variation of an observation with a weight of 1 should be 1.
     The point about the χ² test is that, if the variance of the fit is considerably larger than the 
estimated variance of an observation of unit weight, then the model does not agree with the data and
should be modified or discarded.  If the variance of the fit is about the same as the variance of an 
observation of unit weight, then the model accounts for the data and is valid within the accuracy of 
the experimental technique.  If the variance of the fit is considerably smaller than the variance of an
observation of unit weight, then the data may have been faked, or too many variable parameters 
have been used and and the model is fitting noise, or the estimates of the σi  are too pessimistic.  The
corresponding ranges of  χ²/ν  for the three possible outcomes are accordingly:

χ²/ν >> 1 The model is incorrect, the errors are not random, or the σi are underestimated.

χ²/ν ≈ 1 The data agree with the model.

χ²/ν << 1 The data are fake, there are too many variable parameters, or the σi are overestimated.

Note, that if all observations (yi ) have the same standard deviation σ, then the weights can be 
factored out of the summation in equation (12.1) above and we have:

χ²/ν = (1/σ²)(1/ν)

n

Σ
i=1

(yi(obs) - yi(calc))²
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Hence, in this simplified case, we can define the variance of an observation as estimated from the fit
as:

σfit² = σ² χ²/ν = (1/ν)

n

Σ
i=1

(yi(obs) - yi(calc))²

To obtain χ²/ν, all we have to do is calculate  σfit²  from the data and divide it by σ² . 

In the example at the end of section 10 we obtained  σfit=0.00027634 Volts and deduced that if the 
errors were entirely due to rounding of the readings of the DVM used to acquire the data then a 
standard deviation of 0.00025 V should be expected.  For this example:

χ²/9 = (0.00027634 / 0.00025)² = 1.22

The reduced χ² test can be applied with considerable sophistication by reference to the χ² 
distribution8, but for a simple qualitative interpretation, it is fair to say that the model gave an 
excellent fit to the data, and the main effect of least-squares fitting was to drive a line between the 
DVM rounding errors.

█

8 See, for example: Data Reduction and Error Analysis for the Physical Sciences, Philip R Bevington. McGraw-
Hill, 1969. LCCN: 69-16942. 5-4: χ² test of distribution.


