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Introduction
For some types of data reduction problem, the 'least-squares' fitting criterion is inappropriate.  This 
is the case (for example) when determining an approximate empirical formula to be used in place of 
a more complicated calculation procedure, where it is better to minimise the peak error (the runout) 
than it is to minimise the RMS error.  There is also a choice over whether to define the fitting 
residuals as absolute (observed minus calculated) or as proportionate errors; and the average used in 
determining the proportion can be weighted anywhere between the observed and the calculated 
value.  This article discusses some of the possibilities and their effects in the context of non-linear 
empirical modelling using downhill search methods. 

Downhill search methods
When fitting data to a theoretical model, and presuming that there is no restriction on the number of 
variable parameters; the usual procedure for determining the optimal parameter values is to 
configure the problem as a set of simultaneous equations that can be solved numerically by 
inverting a matrix1.  One reason for using this approach is that it provides intermediate results for 
the estimation of parameter uncertainties and correlation coefficients. If the model is empirical 
however, then the parameters have no physical significance and so cannot be used in other 
calculations; which means that the full statistical analysis is not required.  The matrix inversion 
procedure can still be used of course, and has the advantage of computational efficiency; but for 
one-off fitting problems, such as developing approximate formulae or converting tabulated data into 
functions, a great deal of programming can be avoided by using a search method.
     For the solution of any fitting problem, it is first necessary to define the fitting criterion.  This is 
usually embodied in a composite error-function that produces a single number called the 'goodness 
of fit' or "Goof".  The Goof is calculated from the fitting residuals in such a way that it takes every 
residual of finite weight into account and diminishes smoothly (i.e., without discontinuities) as the 
parameters are shifted towards their optimum values. 
     When solving by means of a search method, the variable parameters can be considered as the co-
ordinates of a point on an N-dimensional hypersurface (this is easiest to imagine when N, the 
number of variable parameters, is 2, in which case the surface is simply a sheet). The Goof provides 
an extra dimension, the height of the terrain, and the job of the search algorithm is to walk downhill, 
using information obtained by applying increments to the parameters, until it finds itself at the 
bottom of a basin.  Any minimum it finds is a possible solution; but note that for complicated non-
linear systems, it could be just a local minimum, and there might be a better solution elsewhere. 
Hence, for many problems, there should be an initial hand optimisation phase (to get close to a good 
solution), before the parameters are passed over to the search routine. It is also sometimes useful to 

1 The procedure is described in numerous references.  See for example: Data Reduction and Error Analysis for the 
Physical Sciences, Philip R Bevington. McGraw-Hill, 1969. Library of Congress cat. card # 69-16942.  
A brief explanation and Fortran code is given in D W  Knight PhD 1985, Appendix 6. [www.g3ynh.info].

http://www.g3ynh.info/
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give the system a kick, to see if it can be made to jump out of one minimum and find another; and 
that can be done by adjusting the initial parameter shifts, or by changing parameters manually 
between fitting runs.
     The simplest search strategy is that of cycling through the parameters one at a time and adjusting 
them to minimise the Goof. If the problem is non-linear (i.e., the parameters are not orthogonal), 
then, after one parameter has been adjusted, all of the others may require re-adjustment, and so it is 
necessary to repeat the cycle a large number of times until no further significant improvement can 
be obtained.  This is known as a 'grid search', and the process can be painfully slow.  The 
inefficiency can be overcome, to some extent, by using methods that involve shifting all (or, at least, 
some) of the parameters simultaneously.
     There are numerous ways in which searches involving simultaneous parameter shifts can be 
carried out.  One that works well and is popular for its reliability is the Nelder-Mead downhill 
simplex method2 3.  The Nelder-Mead  algorithm is not necessarily the most efficient in terms of 
speed, but it has the ability to expand and contract the size of the parameter perturbations used, 
enabling it to find narrow wells in the hypersurface.  A good reason for recommending it also is that 
it has been turned into an Open-Document spreadsheet macro function by Robert Weaver4. This 
makes it possible to attack elaborate non-linear optimisation problems using the free Open Office5 
software package.  

Fitting Criteria
Since the only dynamic information available to the fitting algorithm is a single number (the Goof), 
the type and acceptability of the solution is determined by the way in which this number is 
calculated.  If a least-squares fit is required, the correct choice for the Goof is Chi-squared6, i.e:

χ² = Σ(wi ei²)

where ei is the ith error or 'residual', and is usually defined as:

ei = yi(obs) - yi(calc)

yi(obs) is an observed value of the dependent variable, and yi(calc) is the corresponding value calculated 
using the fitting function. The weight wi is strictly analytically proportional to the reciprocal of the 
variance of the observation (i.e., wi =1/σi² or some multiple thereof, making χ² dimensionless), but 
may sometimes be set manually to exclude bad data or otherwise gerrymander the result. 
     For some types of problem however, the least-squares criterion is inappropriate.  In particular, 
when adjusting a function to agree with an exact or reference dataset (such as when developing an 
approximation formula), the residuals will not be normally distributed, and so the only valid 
criterion is that which guarantees that the maximum error will lie within strict limits. In other 
words, we do not want to minimise the RMS error (which is what a least-squares fit does), we want 
to minimise the maximum error.  Also we need to consider the definition of error (should it be 
absolute; or should it be proportionate so that the overall error can be expressed as a percentage or 
in parts-per-million, etc.), and perhaps consider the relative authority of the reference data in 
comparison to the fitting function. To explain these issues, let us start with a generalised composite 
error function "eta to the 2m":

2 http://en.wikipedia.org/wiki/Nelder-Mead_method  
3 Numerical Recipes  .  W H Press, B P Flannery, S A Teukolsky, W T Vetterling. CUP 1986. ISBN 0521 30811 9.

[newer editions exist] Section 10.4: Downhill Simplex method in multidimensions.
4 http://electronbunker.sasktelwebsite.net/  
5 http://www.openoffice.org/  
6 See, for example: Scientific Data Analysis, D W Knight [www.g3ynh.info].

http://www.openoffice.org/
http://electronbunker.sasktelwebsite.net/
http://en.wikipedia.org/wiki/Nelder-Mead_method
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η2m = Σ(wi ei
2m)

If m=1, and the weight and error are as defined above, then this is the same as  χ² and a least-
squares-type fit will result.  If m is a much larger positive integer however, then large errors will 
have vastly greater effect than small ones and the parameter adjustment process will tend to crush 
the larger errors. The result will then be the desired minimisation of maximum error (minimisation 
of runout). The power 2m is limited only by the need to to condition the problem so that the error 
terms do not cause floating-point underflow or overflow, in which case η2m will become 
discontinuous and the fitting process could become erratic. Note that the factor of 2 in the power is 
to ensure an even number, the point being to  keep all summation terms positive and prevent error 
cancellation.
     For the individual residuals; if we want to minimise the absolute error, then 
yi(obs)- yi(calc)   should be used as the definition.  Otherwise, we might want to minimise the 
proportionate difference between yi(obs) and yi(calc) , and that difference needs to be defined in a way 
that not only produces the composite error function required by the fitting algorithm,  but also 
produces a rigorous measure of the goodness of the fitting process. 
     For a least-squares fit, the correct overall measure of goodness is 'reduced chi-squared', i.e.; χ²/ν , 
where ν (Greek "nu") is the number of degrees of freedom in the data, i.e., the number of 
observations of finite weight minus the number of variable parameters used in the fit.  Since ν is a 
constant for a particular fitting run, it makes no difference to a search routine whether χ² is divided 
by ν or not (provided that floating-point errors do not occur).  For minimum runout problems 
however, the statistic required is often the worst-case error; and that depends on both the error in the 
fitting process and the error in the reference data.
     In the most general case, the proportionate difference between two numbers is the absolute 
difference divided by the weighted average. The weighted average  is:

(w(obs) y(obs) + w(calc) y(calc) ) / (w(obs) + w(calc) )

where the weights are proportional to the squares of the respective reciprocal uncertainties (i.e., 
w α 1/σ²  for normally distributed errors).  Note that when both weights are the same, this reverts to 
(y(obs)+y(calc) )/2, which is the familiar straight average. The proportionate difference is thus (in 
general):

ei = (yi(obs) - yi(calc)) (wi(obs) + wi(calc) ) / (wi(obs) yi(obs) + wi(calc) yi(calc) )

This might seem complicated, but if we import some knowledge about the data, it will revert to its 
most familiar form. The most common assumption is that one of the y values is absolutely 
authoritative, and the other has no authority by comparison. This situation applies (correctly) when 
we have an exact (or at least extremely accurate) way of calculating say yi(obs).  Such would be the 
case, for example, when trying to develop a simple fitting function to replace a much more 
complicated calculation procedure.  In that case, wi(obs) = 1  and  wi(calc) = 0 , and we get:

ei = (yi(obs) - yi(calc)) / yi(obs) 

or

ei = 1 - yi(calc) / yi(obs) 

which can be multiplied by 100 to give the familiar formula for calculating the error in yi(calc) as a 
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percentage, or multiplied by 106 to give the error in ppM, etc.. If this type of error definition is put 
into η2m  (with wi = 1), then the search process (if successful, and presuming that m is large) will 
minimise the proportionate runout. Furthermore, the worst case runout can be determined as: 
Max( |ei| ), and this is the statistic that will be required by people who intend to use the fitted 
formula.
     Sometimes however, we might want to refer the proportionate error to the fitting function rather 
than to the supplied data, or we might want some intermediate form using relative weights. Every 
situation should be considered separately, but one that crops up frequently is that of wishing to fit 
data that are accurate but not precise to a function that is precise but not accurate. Such is the case, 
for example, when fitting data that are of theoretical origin (accurate), but which have been rounded 
to a fixed number of decimal places or exhibit significant floating-point machine error (and are 
therefore imprecise).  The fitting process in this case is a type of smoothing; the proper objective 
being to find a curve that averages the noise in the data.  The end result will be that the smoothing 
function has a better knowledge of the exact y-values than does the original data, and so the average 
used in obtaining the proportionate error (should we decide to fit the data in that way) should be 
weighted to the calculated values.  Thus we get:

ei = (yi(obs) - yi(calc)) / yi(calc) 

i.e.,

ei = (yi(obs) / yi(calc)  ) - 1

and the error function given to the fitting algorithm is:

η2m = Σ(wi ei
2m)

as it was before, but with the definition of ei altered.  For a  fitting exercise in which all of the 
observations are taken to have the same uncertainty (absolute, or proportional, depending on how 
the residuals are defined), the weight of an observation, wi , is usually set to 1 initially; but if we 
find that the dataset contains illegitimate errors (typographic errors, etc), or if the model breaks 
down in some regions, we can exclude individual observations from the fit by setting the 
corresponding wi to zero. The problem of how to deal with data that do not all have the same 
uncertainty will be examined later.

Progressive weighting
When fitting data to minimise runout; it will often be found, after a first attempt, that the error 
increases or diminishes as the independent variable (x) is increased.  Consider that we have a 
smooth non-linear fitting function:

y(calc) = f(x)

which has a reasonably large number of parameters to be adjusted to bring it into near coincidence 
with a smooth reference function:

y(obs) = g(x)

After fitting using a runout criterion, a plot of the error curve (ei vs xi) will usually show a series of 
undulations, but the peaks of the undulations will not necessarily be of the same height over the 
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entire range of x.  Instead, they will typically either increase or decrease in magnitude with 
increasing x, and if lines are drawn across the tops of the positive and negative peaks, it will be seen 
that the fitting function has developed a wedge-shaped pair of error boundaries.  Now, if the 
problem is well-conditioned, it will be possible to trade peak height in one location for peak height 
in another, and so this is not the optimum fit. The solution is to apply progressive weighting.  Recall 
that we have an error function:

η2m = Σ(wi ei
2m)

where the weights are usually set to 1.  All we have to do to apply progressive weighting is use 
weighting coefficients defined thus:

wi = xi
u

For the first fitting run, we set u=0, so that all of the weights are unity.  Then if we find that the 
error increases with x, we set u to a positive number (say 0.5), and run the fitting routine again.  The 
fitting weight will then increase as x increases; the error for large x will decrease slightly, and the 
error for small x will increase slightly.  With a little judicious adjustment of u between fitting runs, 
the error boundaries can be made parallel, and the maximum runout will then be less than it was 
before.  Similarly, if the error decreases with increasing x, we make u negative; and the converse 
applies.

Sampling interval 
When fitting experimental data to a mathematical model, the size of the dataset is limited by 
practical considerations.  When comparing two smooth functions however, the dataset is potentially 
infinite, and we must select a finite number of points at which to make comparisons.  There are no 
hard and fast rules on how to do that, but there is a simple test that will tell if the number of samples 
is insufficient.  Always plot a graph of the residuals (ei vs. xi). The plotting software will draw 
straight lines between the points.  If straight sections are visible in the peaks of the residual 
function, and especially if it obvious that a peak lies between two points, then the maximum runout 
will not be reported correctly if that is the highest (positive or negative) peak. The solution is to 
increase the number of data.
     Since the size of the dataset can become enormous in some cases, the problem can often be made 
more manageable by noting that it is not necessary to use a constant sampling interval when 
generating argument values.  Say we have a reference function:

y(obs) = g(x)

The obvious thing to do is create a spreadsheet column for x and then populate it with xi values 
using the 'Fill down' tool.  Frequently however, we will find that the residual function has much 
more detail for low values of x than it has for high values, especially if the fitting function is an 
asymptotic form. The solution is to create a log(x) column (with a constant interval between 
values), and calculate xi values from it using x=10log(x).  
     In general; the interval generator can be any function that bunches the data where the residual 
function is changing rapidly and spreads it out where nothing much is happening.  In this way the 
total number of samples can be reduced to a few hundred (say), rather than the thousands it might 
have taken to do the job well using a linear interval generator.
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Dimensionless Goof
From the nature of the foregoing discussion, it might appear that the process of deciding how to go 
about fitting a given set of data is somewhat vaguely defined.  Certainly, it can seem like that when 
trying to deal with unusual problems; but in fact there is an underlying logic that, if applied 
specifically, will indicate what should be done.  It is a matter of addressing two issues:

● Are the errors normally distributed?
● Is the Goof (effectively) dimensionless?

If the errors are normally distributed (such as when fitting experimental data) then the data should 
be subjected to a least-squares fit.  In that case, the Goof is:

χ² = Σ(wi ei²)

and if the residuals are defined as 

ei = yi(obs) - yi(calc)

then the weights must be defined as proportional to reciprocal variances. 
We can re-write the expression for chi-squared as follows.

χ² = k Σ[ wi(fit) (ei /σi )²  ]

Now we have separated the fitting weight into three parts, i.e.;

wi = wi(fit) k / σi ² 

wi(fit) is a fitting flag, which can be set to 1 of we want to include the ith observation, or set to 0 if it 
is suspected that a logging mistake or a breakdown of the model prevents this particular observation 
from being fitted.  The number of observations of finite weight (used for calculating reduced chi-
squared)  is then simply Σwi(fit) .  k is a global constant, which should be 1 if the standard deviations 
of the observations have been correctly scaled, but we might need to re-scale the standard 
deviations after fitting in order to get k=1.  
     Now notice that both ei and σi  have the same dimensions. Hence the effect of all of the decisions 
that were made in constructing the composite error function is to make the Goof dimensionless.   

Now consider the problem of fitting data that do not have normally distributed errors. We can tell 
whether or not the errors are normally distributed by asking the question: 'Will the apparent 
standard deviation of fit change if the data are sampled in a different way?'  In the case where one 
smooth function is being fitted to another (for example); the degree of agreement between the two 
functions will depend on the chosen range of x-values.  Hence the concept of standard deviation 
becomes meaningless, because the differences are not random and depend on choices made by the 
investigator.  Hence we must first try to make the dataset comprehensive; by taking plenty of 
samples overall, and particularly in regions where the disagreement is greatest. This has the effect 
of maximising the composite error (however we might choose to define it).  Then, still unable to 
define a standard deviation, we must use a runout criterion. Thus we define the Goof as:

η2m = Σ(wi ei
2m)

Now the weighting coefficients become empirical parameters, initially set to 1, but later used to 
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adjust the final error boundaries.  They cannot be defined as reciprocal variances because the errors 
are not random.  Finally, we need to decide on a definition for the residuals.  In most cases 
involving runout minimisation, the error is defined as a proportion, in which case the residuals are 
dimensionless.  Indeed, it is not possible to define a meaningful single-valued statistic for the 
accuracy of the fitting function unless the error is expressed as a proportion (%, ppM, etc.).  Thus, 
unless we intend to supply users of the function with a comprehensive table of differences; the 
residuals must be defined according to a criterion that makes the Goof dimensionless.

Using the preceding logic, we can, if so desired, use a runout criterion for fitting data with normally 
distributed (or quasi-normally distributed) errors. The typical reason for wanting to do that is to fit 
the data using the minimum possible number of variable parameters; i.e., to keep the fitting formula 
as simple as possible but still get a good fit.  
     A commonly encountered situation is that of wanting to produce a formula to reproduce 
theoretical data given as a table.  The numbers in the table will have rounding errors; i.e., the errors 
will not be strictly normally distributed, but there is a relationship between rounding error and 
apparent standard deviation that gives important information about the fitting function.  If the errors 
are randomly distributed, then the most probable error in an observation is σi.  If the errors are due 
to rounding, then the most probable error is half the worst-case rounding error.  Hence, if the fitting 
function has sufficient variable parameters to smooth the data, the estimated 'standard deviation' of 
fit will be very close to half the worst-case rounding error.  Thus, for example, if we have data 
rounded to 4 decimal places, we should get  

σfit = √[ (1/ν) Σ(wi(fit) ei²) ] = 0.000025

(where wi(fit) is a fitting flag, 0 or 1). If the ESD is much smaller than that, then there are too many 
parameters and the empirical function is fitting the noise.  If the ESD is much larger than that, then 
the function does not fit the data.
     Nevertheless, despite the diagnostic value of σfit, we still want to fit the data using a runout 
criterion.  The reason is that the true errors have a 'brick-wall' tolerance, i.e., there should be no 
errors significantly outside the maximum rounding error, and a runout criterion will enforce that 
condition. Hence the success criterion is different from the fitting criterion. The Goof used by the 
fitting algorithm is:

η2m = Σ(wi(fit) ei
2m)

but note that all of the residuals have the same uncertainty (all of the numbers are rounded to the 
same number of decimal places).  Hence, the residuals can all be notionally divided by an arbitrary 
number having the same dimensions, and the only effect will be to scale the Goof.  Scaling the Goof 
(multiplying the whole thing by a constant) has no effect on the fit (provided that the operation does 
not lead to floating-point errors).  Hence the Goof is effectively dimensionless.

Now, having spotted that the trick in fitting data properly is to make the Goof either actually or 
effectively dimensionless, we can use this requirement as a test of correctness.  It is impossible to 
envisage all of the situations that might arise; but take, for example, the problem of fitting accurate 
tabulated data that do not have a constant number of decimal places.  In that case, the most probable 
error differs between observations. The solution is to divide each residual by its most probable error. 
Thus, if we call the most probable error ei(mp) , then we have:
for 2 decimal places:  ei(mp) = 0.0025
for 3 decimal places:  ei(mp) = 0.00025 
for 4 decimal places:  ei(mp) = 0.000025
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etc. 
The fitting criterion is then:

η2m = Σ[wi(fit) (ei /ei(mp))2m ]

which is dimensionless.  
The success criterion is reduced chi-squared:

χ²/ν = (1/ν) Σ[wi(fit) (ei /ei(mp))²] ≈ 1

That this statistic should come out to be approximately 1 may not be immediately obvious, but note 
that an error divided by the most probable error should, on average, be 1.  For a statistically 
representative dataset, the number of degrees of freedom (ν) should tend towards the number of 
observations.  Hence, if the number of observations is n; the sum of n quantities that should be 1 on 
average, divided by a number that tends towards n, should tend towards 1 in the limit of large n if 
the data reduction has been carried out correctly.

*     *     *

A demonstration of the Nelder-Mead downhill simplex search method, using some of the fitting 
optimisation techniques discussed in this article is given in the accompanying Open Document 
spreadsheet: Nelder_demo.ods .
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