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Preface

Author's note:

This document is a work in progress.

An issue under consideration is whether inductance shortfall due to field inhomogeneity should be
represented as an operator acting on the number of turns, or as a finite reluctance on the external
magnetic path. The turns operator approach has been used in this version and is mathematically
consistent for all of the applications considered. The path redefinition approach is another
possibility, but needs to be made capable of distinguishing between inductance which fails to
materialise (self-inductance shortfall) and inductance which fails to couple (mutual inductance
shortfall). It may be that in future revisions, an alternative way of allowing for field inhomogeneity

will be discussed.

For the air-cored solenoid, the path length is defined as the length of the coil. This implies that
the reluctance of the path for flux loops outside the coil (i.e., the path in series with the path within
the coil) is zero. This is strictly correct when the coil is infinitely long and the field is
homogeneous. When the coil is not infinitely long, the inductance is reduced because the field

becomes inhomogeneous and flux linking is incomplete.

Should this be interpreted as a reduction in the effective number of turns, or as a finite reluctance
in the segment of path outside the coil (the gap)? In the former case, the correction parameter might
also be regarded as a shunt reluctance. In the latter case the correction is a series reluctance, and
Nagaoka's coeff. becomes part of A, . The latter may be more in keeping with standard practice;
but was previously rejected by this author on the basis that it appears to allow for flux shortcuts
(incomplete linkage, which is a form of shunting or bypassing) by increasing the effective path
length. It also makes no clear distinction between inductance which fails to materialise and

inductance which fails to couple to other inductances.

Glossary

Quantity Symbol | Definition Units

Poynting vector P =ExH [Watts / metre?]

Electric field E [Volts / metre]

Magnetic field H [Ampere turns / metre] , [A turns / m]
Field strength H =F/¢ [A turns / m]

ﬁ;ﬁgfiﬁ;&?ﬁgge’ F =N1 [Ampere turns] , [A turns]
Instantaneous current I [Amperes] , [A]

Flux density B =uH [Tesla] , [T], [gauss x10],
(magnetic induction) B =uH=®/A [Wb/m?]

Permeability u = Mo Wr [Henrys / metre] , [H/m]

Complex permeability 1) = Uo Mr [Webers/Ampere metre] , [Wb/A m]
Vacuum permeability o =4n x 107 [Henrys / metre] , [H/m]




Relative permeability ﬁ r
. = A B 8
Magnetic flux () x [Webers] , [Wb] , [maxwells x10°]
=NIAL
: =N @
Flux linkage A s [Weber turns] , [Wb.turns]
=N2ALI
Effective No. of turns N =Nku [turns]
Number of turns N [turns]
Linkage efty. Vku
Current sheet linkage effy. Vke | V(Nagaoka's coeff.)
Path area A [m?]
Path length ¢ [m]
) =A/1 [WD turns / A],
Self inductance L —NP A/ (Henrys] , [H]
Inductance factor AL =pA/L [Wb /A turns] , [H / turns?]
(magnetic conductance) B H ’
Reluctance S =1/AL A turns / Wb
, . =(k k»)
Coupling coefficient k — M/ V(L: L)
ki =0,/ O
Voltage shortfall factor K — D, /D,
. =An/L
Mutual inductance M - \/(L] Ly) [H]
Inductive reactance X, |=2nfL [Ohms] , [Q]
Mutual reactance Xm  |[=2nfM [Ohms] , [Q]
cgs magnetic units Symbol | Unit Conversion
Field strength H | Orsted, Oe 1 Oe=1000/4n A turns/m
Flux () maxwell (line) 1 maxwell = 10®* Wb
. _ 104
Flux density B sauss I gauss=10" T

(magnetic induction)

1 Tesla =10 000 gauss




1. Introduction

When engaged in the business of designing electrical circuits, is possible to come to an
understanding of inductors without giving much thought to the magnetic fields which give rise to
their properties. Such neglect of fundamentals is no longer possible when we come to the subject of
transformers however (or electrical machines for that matter, but they are not the subject of this
monograph). For an ability to analyse circuits involving transformers of any type (not just ideal
ones), or to quantify the effects of spurious magnetic coupling, it becomes necessary to relate the
physics of fields to the mathematical conventions of circuit analysis. The principles involved are
fairly straightforward; but, for reasons which warrant careful consideration by anyone attempting to
teach the subject, the reconciliation appears to be an area of some difficulty.

A rigorous approach to the subject of electricity involves starting with Maxwell's equations and
working out everything from there. Obviously, there is room for a more accessible theory when
dealing with lumped-element circuits, and the mathematics of phasors fulfils that requirement.
There is a caveat however; which is that the definitions and conventions of phasor analysis need to
be consistent with the underlying electromagnetic phenomena. That this issue receives little
consideration can be confirmed by examining the various elementary textbooks which purport to
cover the subject of magnetic induction. A knowledgeable reader who cares to follow the
discussions on offer will soon discover inconsistencies (and may experience a disconcerting
reminder of what it felt like to be a beginner).

One problem lies with the definition of flux linkage, which falls victim to casual amendment
when texts originally written using cgs (centimetre, gram, second) units are updated to use SI
(metre, kilogram, second) units. In particular, in searching through a number of sources, it was
found that none of the SI publications mentioned field non-uniformity corrections (Nagaoka's
coefficient, etc.). This omission precludes the giving of self-consistent definitions for magnetic
flux, inductance and reluctance (reciprocal inductance factor), and so confronts the reader with
symbols which have the strange habit of changing their meanings according to context.

Notwithstanding the questionable definition of basic quantities, there is also a strong tradition of
confusion over phase relationships and algebraic signs. This problem arises for two reasons.
Firstly: flux linkage is habitually transformed as a magnitude, but is used to derive quantities which
require a sign'. Secondly: the concept of back EMF (which arises from use of the compensation
theorem) is not applicable to closed conservative systems such as circuit models. Such vector
inconsistencies can be seen in diagrams which are obviously incorrectly labelled; and result in the
need for guesswork when attempting to deduce the phase relationships which occur in inductively-
coupled systems.

Then there are issues which do not relate to mathematical error, but are deleterious to
understanding nonetheless. The main one is that there is no consensus regarding whether 'turns'
belong in the system of magnetic units. The upshot is that some authors delete 'turns' wherever it
occurs, presumably to divert students from the vice of including numerical factors in dimensional
analysis. It seems probable however, that readers wil/ be able to grasp the idea that turns do not
have the fundamental status of metres, kilograms and seconds; and that people may be prepared to
risk perdition in the interests of clarifying (say) the difference between Webers and Weber turns.

A critique of the way in which magnetic induction is typically presented could go on to
considerable length, but we will confine ourselves here to one last cause for complaint. That is the
tendency to assume that there is no such thing as a transformer having active networks connected to
more than one winding. The disease usually begins with a statement to the effect that: "a
transformer has a primary winding and one or more secondary windings"; despite the fact that the
transformer itself has no opinion on such matters. The designation of windings comes purely from
external circuit considerations, and imposes restrictions on the subsequent analysis. Hence, for a

1 A polarity for flux-linkage, J. Fiennes and C. R. de Souza, International Journal of Electrical Engineering
Education, ISSN: 0020-7209, Volume 38 Issue 3, July 2001, p256-259.



mastery of transformers which displays ambition beyond the ability to design mains power supplies,
the theory needs to emphasise the essentially bi-directional nature of inductive coupling. This is not
to say that there is any objection to the use of the terms 'primary' and 'secondary'; but that we can
only say: 'when a transformer is wired conventionally (i.e., with ports chosen to have DC
continuity), and provided that there is only one port connected to an active network; the winding
connected to the active network may be called the primary, and all of the others can be called
secondaries'. If there are active networks connected to more than one winding, then the windings
are neither primary nor secondary, and the transformer is called a 'hybrid'.

The list of issues given above will perhaps go some way towards explaining how transformers
come to be regarded as incomprehensible beyond the 'ideal case with lumped parasitics' model. The
challenge, of course, is to cover the subject in a manner which addresses those issues. This
warrants a somewhat oblique approach, not least because it must convince those who have been
taught things differently. In particular, in addition to giving the essential information, it seems
necessary to demonstrate the following points:

® The definition of inductance in documents using the SI system requires flux linkages to be
counted in a manner which is equivalent to the method used by Maxwell and Faraday.
® Circuit analysis parameters derived from field vectors are pseudoscalar, not scalar; i.e., they
change sign when the direction of the parent vector is reversed.
® Contrary to the theory given in certain radio textbooks; voltage-shortfall reciprocity is not an
inherent property of coupled inductors; i.e., a 1:1 transformer can have different voltage
ratios when the roles of primary and secondary are swapped.
® The extraordinary range or technical possibilities offered by the transformer can be
appreciated by thinking of it as a device which allows the impedance of one inductor to be
modified (almost arbitrarily) by the time-varying magnetic field produced by another
inductor.
Some calculus, of course, is unavoidable in dealing with a subject such as this; but the transition
from fields to phasors, with pseudoscalars intact, is nowhere near as arduous as an approach which
tries to resolve mathematical inconsistencies by making use of dubious physical arguments. Before
we move on to the details however, we will address the most glaring oversight in nearly every
discussion of magnetically-coupled devices, which is that the information will be incomprehensible
to anyone who does not have a Maxwellian understanding of electricity.

2. Maxwellian Electricity

The phasor approach to circuit analysis can be seen as a set of techniques which allows the
empirical laws of DC electricity to be adapted to deal with AC electricity. Phasor analysis manages
to be both straightforward and extraordinarily useful, but it has the notable disadvantage that it can
encourage bad habits of thought. In particular, it allows the conception that electricity is a fluid
which travels through conductive materials; a physical picture which might have seemed promising
in the early days of electrical discovery, but which has subsequently turned out to be wrong.

The idea that electrical energy is carried by electrons flowing through wires cannot even account
for DC electricity. The reason has to do with the fact that electrons drift through conductors in DC
circuits with an average velocity of the order of a few mm/sec, and electrons have very little mass.
This means that the transfer of momentum due to electron movements is insufficient to account for
the power which a generator delivers to a load. Phasor theory does not concern itself with such
issues; but even when strict energy-accounting principles are not applied, accepted techniques of
circuit analysis remain inconsistent with electron transport concepts.

The obvious way in which phasor analysis departs from the primitive DC theory is that it
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involves drawing current direction arrows which point through capacitors. Such arrows serve to
give algebraic signs to the circuit parameters, just as they do in DC circuit analysis; but they can no
longer be imagined to represent migrating mass. Thus, since AC theory is more general than DC
theory (and includes DC theory as a special case), we must conclude that an 'electric current' is not
as envisaged when the term was coined.

Power in electrical circuits is usually regarded as a scalar quantity, i.e., it is represented by a
positive real number and cannot be made negative by swapping the generator terminals. It still
carries a sense of direction however, this being the thermodynamic principle that, on average,
energy flows from a source to a sink. Power is, of course, a product of voltage and current; and so
it follows that the voltages and currents used in circuit analysis must be defined in such a way that
power flows from generator to load. This rule dictates the interpretation of the arrow conventions
used in the diagrams below:

I1=V/Z

In the left-hand diagram, it is assumed that electric potential increases on moving from a reference
point to some other part of the circuit. In this case, the reference is taken to be the ground potential;
but the choice is, in principle, arbitrary. Hence the voltage arrow shows the assumed direction of
increase from zero to a finite potential, as defined purely for the purpose of circuit analysis. Once
that definition has been made, the direction of the current is automatically fixed according to the
convention that power is positive when flowing into a positive resistance.

When a generator is connected to a pure resistance, the voltage is in phase with the current. In
that case, since both phasors point in the same direction and the choice of reference phase is
arbitrary; the imaginary parts of both the voltage and the current can be set to zero (this is how AC
theory maps onto DC theory). Effectively, the phasors have dropped a dimension and turned into
one-dimensional objects; but note that they have not turned into scalars. They belong instead to a
special class of vectors called pseudoscalars, which are distinct from scalars in that they change
sign under the operation of 180° rotation. This special property is illustrated in the middle diagram,
where a redefinition of the voltage via phase reversal has forced a reversal in the definition of the
current direction. The outcome, of course, is that power remains positive, the direction of energy
flow being dictated not by the chosen signs of the voltage and current, but by the sign of the
resistance.

The right-hand diagram represents the more general situation in which a generator applies a
voltage to an impedance. Now, although power will be transferred provided that the impedance has
a resistive component; we also have the theoretical possibility that the impedance may be purely
reactive, in which case the net power transfer will be zero. We nevertheless adopt the relative sign
conventions for voltage and current on the basis that power will flow into the impedance if the
impedance has a positive resistive component. The choice remains correct because the mechanism
which decides how power will flow is built into the definition of impedance itself. That
mechanism, of course, depends on the properties of the 90° rotation operator j.

If the load impedance is purely reactive we have:
7=jX
where the reactance, X, is (by convention) positive if inductive and negative if capacitive. Thus:
I=V/(jX)=-jV/X
A pure reactance rotates the phase of I by £90° relative to V. The effect of this rotation is that
(depending on the instantaneous signs of the voltage and current) sometimes power flows from
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generator to load, and sometimes it flows from load to generator; and the net power transfer
averaged over a whole cycle of the AC waveform is zero.

In general, the average power delivered to an impedance is given by the scalar (dot) product of
voltage and current, i.e.:

P=Vel = V| I] Coso

where Coso is known as the power-factor and, for an impedance Z = R + jX

¢ = Arctan(X/R)

The dot product, according to generally accepted convention, only ever gives a positive result.
Hence its use may now seem slightly paradoxical given that we have admitted that instantaneous
power can flow the wrong way. We could try to wriggle out of that problem by saying that the
formula only relates to average power, but actually, it has to be admitted that the scalar product is
not quite as scalar as it might seem. It will give a negative answer if the power-factor is negative.

Recall that the impedance of a passive network can only ever lie in the right-hand
side of the Z-plane. No true passive network can contain a negative resistance X
because energy produced from nothing violates the classical principle of causality.
There is however, nothing to prevent energy from flowing out of an active network;
and so we could, should we happen to be feeling sufficiently misanthropic, devise a
theory of circuits using negative resistances instead of generators.

In fact, negative resistances do crop-up in circuit analysis from time to time. They occur when a
network 'unexpectedly' turns out to be active. This can happen, for example, when modelling
antenna systems with multiple feed-points, the negative resistance at one input being due to energy
originating from another input. The same can occur in any set of mutually coupled two-terminal
elements (such as a transformer); but in that case, the situation is not unexpected, and we can
usually analyse the problem more sensibly by redefining auxiliary energy sources as generators.

Still, it has to be said that negative resistance is not forbidden. It occurs when a two-terminal
network defined as an impedance has energy flowing into it from outside the system under
consideration (provided, of course, that the energy input exceeds the amount required to cancel the
true resistance of the network). The resulting impedance then lies in the left-hand side of the Z-
plane, and the power in relation to that impedance is negative. Thus it might seem that the V I
scalar product rule for power has let us down in terms of generality; but in fact, there is an
interpretation which would be incorrect for general n-dimensional vector theory, but which must be
valid in two-dimensional phasor theory because it resolves the power-flow paradox.

The dot product of general vector theory is obtained using the acute angle (0 say) between two
vectors lying in n-space. There is also however an obtuse angle (180 - 0) which suggests an
alternative solution but is always ignored by convention. Now recall that:

Cos(180 - 8) =-Cosb

The obtuse-angle dot product is the negative of the ordinary dot product. Hence, in phasor theory,
we must conclude that the V I dot product should be taken using the actual phase angle ¢ of the
impedance Z=V/I. Then, if || is greater than 90°, as will occur if the resistive component of Z is
negative, the power 'flowing into' Z will be negative as required.

Thus it transpires that power, in phasor theory, although normally considered to be positive, is in
fact pseudoscalar. It is not a true vector, but neither is it a magnitude, and it can become negative in
some circumstances. Armed with that information, we can now return to the question: "what is an
electric current?"; but we cannot give a satisfying answer just yet. The best we can say so far is that
'current is that which has to be defined in conjunction with voltage in order to account for electrical
power'. It transpires that, from within the horizons of phasor theory, we do not know what
electricity is. That means that the phasor theory, and the DC theory it supersedes, are both
incomplete.

The reason why phasor theory cannot answer fundamental questions, is that it is a projection or
'degenerate form' of a higher-dimensional theory. Just what has been lost in projection can be




deduced by asking the question: "where exactly on a circuit diagram are the spatial dimensions and
coordinates of the components?" It is easy to forget that circuit theory is purely topological. It
assumes that all spatial dimensions tend to zero, which is why it is only valid when the wavelength
at the analysis frequency is much greater than the length of any energy transmission path.

The parent theory which does answer the question "what is electricity?" is, of course, James
Clerk Maxwell's electromagnetic theory. This was presented in early form in 1864, and in a more
mature form in 1873. To a 19™ Century audience expecting some kind of confirmation of the 'fluid
in transit' idea, the change in perception was radical, and for some, impossible to digest. Maxwell
established that electricity is an invisible form of light. The difference between it and visible light
is determined only by the frequency; and the empirical rules of electrical circuit building turn out to
be those which persuade light of very long wavelength to cling to the outside surfaces of electrical
conductors.

Maxwell's extraordinary contribution to physics was to postulate the existence of a type of
electric current (which he called "displacement current") which needs no charges in order to flow.
It is often said that he made this deduction by noticing that the then known laws of electricity were
in violation of the 'principle of local conservation of charge'; but that is a modern re-interpretation.
A more plausible route to the discovery lies in the fact that Maxwell was pioneer and advocate of a
technique known as dimensional analysis. He had, at his disposal, fairly good measurements of the
permeability of free space, |, (obtained from the force between current-carrying conductors) and
the permittivity of free space, €, (obtained from the force between charged bodies). What he is
likely to have noticed at an early stage therefore, is that the reciprocal of the geometric mean of p,
and g, has dimensions of velocity, and that the velocity so obtained is the same as the speed of light,
1e.:
c=1/Ve)

Hence it is conceivable that Maxwell realised first that electrical energy is light; and then set about
the task of reconciling the known electrical laws with that conviction. On a historical point
incidentally, notice that the unification of electricity and light is not the same as the hypothesis that
light is electromagnetic radiation. Maxwell attributed the latter to Faraday, who had suggested it in
1846 as a result of studies of the effect of a magnetic field on the polarisation of light passing
through rods of diamagnetic glass.

Maxwell produced a complete set of equations which describe the strengths and directions of
lines of electric and magnetic force at any point in relation to an electrical system, i.e., a description
of the electromagnetic field. With the inclusion of the displacement current to maintain
conservation of charge; it then becomes possible to delete all terms relating to physical matter and
still have energy present. This energy exists by virtue of continuous exchange between the electric
and magnetic fields, exactly according to the ordinary laws of electricity; i.e., a changing magnetic
field produces an electric field, and a changing electric field produces a magnetic field; the two
fields being represented as vectors which point at right angles. In the absence of matter however,
the cyclical variation of the electric field is always exactly in phase with the variation of the
magnetic field (from the viewpoint of a stationary observer), and to keep the energy exchange
process in balance, the energy must propagate in a direction at right angles to both fields at velocity
c.

On the matter of this phase relationship incidentally, it may be helpful to identify the source of a
common misconception. In the last years of his life, Maxwell had only one student of note; and that
was John Ambrose Fleming, now controversially associated with the invention of the thermionic
diode. In 1908, Fleming published his 'Elementary Manual of Radio Telegraphy', in which he
described the propagating wave as having the maximum of one field corresponding to the zero of
the other®. This blunder, from an influential writer who had sat at the feet of the great Maxwell, is
an enduring source of confusion. The offending passage was corrected in the second edition of the

2 The genesis of the thermionic valve. G W O Howe, IEE Lecture Nov. 1954.
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book, but the damage was done and the error found its way into other books to muddle
understanding for generations. The reality is that the energy travels at the speed of light and so, if
we could observe the fields from the viewpoint of the energy, they would indeed be 90° out of
phase. To an ordinary observer however, the electric and magnetic components of a radiation field
are perfectly in phase, as is required to make the impedance of free-space resistive (i.e., Fleming's
picture of the electromagnetic wave was not consistent with the concept of radiation resistance).

The important inference is that propagating energy will be found to have its electric field in
phase with its magnetic field; and the velocity is a constant independent of the physical frame of
reference. This is the 'relativistic' property of Maxwell's equations, which eventually led Einstein to
the Special Theory of Relativity. For our purposes however, we simply note that this is analogous
to the requirement that the voltage must be in phase with the current at any point in a circuit where
energy dissipation is the only process occurring. The analogy becomes even clearer when we note
that the units of the electric field E are Volts per metre, and the fundamental units of the magnetic
field H are Amperes per metre. In a degenerate version of electromagnetism, the spatial dimensions
are all replaced by unity; so that the electric field is replaced by voltage, and the magnetic field is
replaced by current. The product of voltage and current has units of energy per unit of time, or
power. The product of E and H has units of power per unit area, which is a measure of
illumination.

Hence, an electrical circuit is a structure which causes electromagnetic energy of very long
wavelength to follow wires and converge upon resistances. Another part of the story we already
know, of course, is that if the structure becomes large in relation to wavelength, then some of the
electricity escapes and propagates off into space. The question we have yet to answer however is:
"if the free electrons in the wires do not carry the energy, then what exactly do they do?" The
answer is that they modify the refractive index of space in the vicinity of conductors, causing
energy in transit to be steered into the region just outside, and to some extent slightly inside, the
conducting surface.

A problem which we may have now, is that electricity is only the second most badly taught
subject in pre-university physics. The worst taught subject is that of optical refraction, which is
generally explained in terms of light slowing down. The speed of light in vacuum is the same for
all observers, and since matter consists mainly of empty space, there is no other conceivable
medium. The apparent velocity can be less than or greater than ¢ however, as a result of
interference effects. Light is actually steered or 'refracted' by partially cancelling it in one place and
augmenting it in another. The steering fields for electrical conduction are mainly provided by the
free electrons in the conductors. What happens is that the electrons oscillate in response to the
alternating electric field of a passing electromagnetic wave. This constitutes absorption of energy,
but a collection of free charges will re-radiate most of that energy almost immediately, albeit with a
slight shift of phase. The process of absorption and near-simultaneous re-emission is called
'scattering'. Once an EM wave enters a region rich in scattering objects, it very quickly loses its
identity and is replaced by the sum or 'superposition' of all of the scattered waves. It is the
superposition of incident and scattered waves which describes the way in which energy flows
through the system; a resultant wave (which can be thought of as a contiguous vector path traced
through the overall field) having the ability to negotiate bends, and appearing to travel at a velocity
(called the wave velocity or the phase velocity) which differs from c. Not all of the energy is
scattered back incidentally. Some of it is absorbed because the moving electrons can donate energy
to other processes occurring in the body of the conductor; i.e., there is some loss due to 'resistance’,
but that is the price we pay for the steering service.

So now we have a picture of electricity which is very different from the 'magical fluid' idea
which prevails in the popular imagination. We need to make a circuit in order to obtain energy from
a generator, not because matter must flow from one terminal to the other, but because energy
transport requires the combination of an electric field and a magnetic field. In the case of household
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electricity; the utility company provides the electric field, and the consumer provides the magnetic
field by closing the circuit. A further possible manipulation is then to correct the power factor, so
that the maximum amount of energy flows to the desired destination. It is also possible to send
energy back into to distribution system, by using a local generator to shift the load impedance into
the left-hand side of the Z-plane.

Through the logical contortions involved in the process of discovery, a scientific culture is bound
to develop many terms which all turn out to mean 'light'. Thus we have: 'gamma rays', 'X-rays',
'radio’, 'electromagnetic energy', 'electricity’; and several others. The distinction between electricity
and light should be regarded primarily as a technological matter; i.e., the nomenclature changes at
the shifting boundary at which it becomes difficult to manufacture structures which are small in
comparison to wavelength. The scientific importance of electricity is that it leads to the
understanding that light can be decomposed into electric and magnetic fields, which have a quasi-
independent existence in the sense that they can be separately detected and manipulated. The
technology of electricity is that which allows the relative phases of the two fields from a given
energy source to be controlled, so that energy can be made to flow in some desired manner.

3. Fields

The 'electrons moving through wires' conception of electricity causes magnetism to be regarded as a
peripheral phenomenon; which means that an understanding of magnetism usually requires a
simultaneous re-appraisal of everything which has previously been learned about electricity. Hence
the need to make the point that, if voltage is to be regarded as electric potential, then current must
be regarded as magnetic potential; and the corresponding fields have equal status in the
transmission of energy. The next step therefore is to visualise electricity in terms of its fields.

In physics, a field is defined as 'a physical quantity which can take on different values at
different points in space and time. The field itself is independent of the system of co-ordinates (it
stays the same regardless of how we choose to define a point within it) and its value at a given point
may be described by a scalar, a vector, or, in general, a tensor (which is a mathematical object
having an arbitrary number of variable attributes, not just magnitude and direction).

If the medium is homogeneous and isotropic (i.e., on average, the same throughout and the same
in all directions), the electric and magnetic fields can be treated as vectors; i.e., they can be defined
by stating the magnitude and direction at any given point. It is usual to conceptualise vector fields
using the analogy of fluid motion; i.e., each point in the field is assigned an arrow indicating the
direction of flow, and a number indicating the flow rate. Thus we find ourselves using the old-
fashioned terms "electric flux" and "magnetic flux"; although it must be stressed that an electric or
magnetic field, on its own, does not represent a transportation process. Instead, the E and H fields
are represented as vectors so that their interaction can be represented by an operation called 'vector
multiplication', which produces a new vector at right angles to the original two. It is this vector
product (or 'cross product') which represents a true flux, it being the illumination field with units of
energy per unit time per unit area. Notice, incidentally, that this implies that the E and H fields can
be treated together as a tensor field; which is known as the Maxwell bivector or electromagnetic
tensor. For many purposes however, it is sufficient to deal with the E and H fields separately; albeit
while keeping the notion of energy flow in mind.

The electric and magnetic fields can be visualised using Faraday's "lines of force"; as
demonstrated by the diagrams below:
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The left-hand diagram is a two-dimensional representation of the electric field as it might exist
between two charged particles or spheres, or between two conductors seen in cross-section. There
1s, of course, a line for any arbitrarily chosen point in the field, but the drawing shows only a few of
them to give the idea. The important property is that the field lines emerge almost perpendicular to
a conducting surface and follow curved curved paths between points of high and low potential.
Note, incidentally, that although the field lines are often called 'lines of force', the field does not
have the Newtonian dimensions of force (mass % acceleration). The lines represent force only in
the loose sense, that a positively charged particle in the field will be repelled by the (+) electrode
and attracted to the (-) electrode and will be accelerated in the direction of the field vector.

The middle diagram depicts the magnetic field around a wire when the instantaneous current of
moving charges (which by convention flows from + to -) is flowing away from the observer. The
right hand diagram shows the field when charges are moving towards the observer. The direction of
charge migration is indicated by a cross or a dot drawn inside the conductor, the cross representing
the tail fins of an arrow moving away, and the dot representing the point of an arrow approaching.
The convention that the magnetic field lines rotate in a clockwise direction when positive
charges are moving away is known as 'Maxwell's corkscrew rule', or alternatively as 'the B
right-hand rule' of electromagnetism. Electrons, of course, move contrary to the arrow —(}-‘]
convention, but nothing was known of their existence in Maxwell's lifetime. Once again,
the dimensions of the field [Amperes per metre] do not correspond to Newtonian force, but the
direction of the 'magnetic flux' indicates the sense of the force which will be exerted on a compass
needle. The North-seeking pole of a magnet will be repelled by field lines coming towards it and
attracted by the field lines going away from it. Hence, if the current is large enough to overcome
the Earth's magnetic field, a compass placed near the wire will point in the direction of the field
vector.

The diagram below shows how the electric and magnetic fields combine to make
electromagnetic energy. In this case we consider only a single electric field line (and all of the
others are left to the imagination). The key at the top left gives the direction of the vector cross
product:

P=ExH

where P is a field representing the energy per unit time flowing through an infinitesimal area, and is
known as the Poynting Vector. Notice incidentally, that the terms 'field' and 'vector' tend to be used
interchangeably. Strictly, a vector is a list of numbers (e.g., magnitude in each co-ordinate
direction), whereas a vector field is a list of equations which give a vector when the co-ordinates of
a point are put in.
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The presence of an impedance in the circuit gives rise to a potential difference, which causes
electric field lines to curve from one side of the impedance to the other. The diagram shows an
instant when both E and H are positive according to the convention of the vector cross product, in
which case energy flows into the impedance. If the impedance is purely reactive, the energy will be
stored. If the impedance is purely resistive (a black object in optical terms), then the energy will be
converted into heat or transduced into useful work. If the impedance represents the terminals of
another network, then the energy will be transported away to a place where its fate can also be
determined using fields.

The basic rules of phasor theory now follow from Maxwell's discovery that E is in phase with H
when energy is propagating towards an absorbing boundary. Consider first, what happens when the
impedance is a pure resistance. In that case, V is in phase with I, and so E is in phase with H.
Hence E and H change sign together, and P always points towards the impedance. When the
impedance is a pure reactance however, V and I are exactly 90° out of phase. This means that E
and H have the same sign for exactly 50% of a generator cycle, and opposite signs for the other
50% of the cycle. Hence the direction of P reverses cyclically, and the average power flowing into
the impedance is exactly the same as the average power flowing out. Intermediates between pure
resistance and pure reactance correspond, of course, to the relative amounts of time that P spends
pointing towards or away from the impedance.

On the issue of where the electrical energy is located relative to the connecting wires, note the
earlier comment that electric field lines emerge almost perpendicular to a conducting surface. They
only bend away from the perpendicular when there is a potential difference parallel to the surface.
With the magnetic field lines encircling the wire, this means that the Poynting vector lies parallel to
the wire provided that there is no potential difference on moving along the wire. In fact, a detailed
analysis shows that the Poynting vector, considered as the average of a large number of microscopic
energy transfer processes, is tilted very slightly towards a conductor on the outside (due to the small
voltage drop caused by the internal resistance), and points almost directly inwards once under the
surface. This means that the electrical energy is located almost completely outside the wire, and the
small amount which flows inwards only does so to be absorbed.

So that is how electricity is visualised using fields; but it has to be said that there are subtleties.
One peculiar consequence; on which we depend when solving routine electromagnetic problems,
but which also relates to the fundamental rules of physics; is known as the principle of continuity
of energy (not to be confused with the principle of conservation of energy). Maxwell's equations
imply that energy does not simply disappear from one part of the Universe and reappear in another;
it flows through space in a definable way and maintains its integrity (i.e., it is conserved in transit®).

3 Is the Universe leaking energy? Tamara M Davis, Scientific American, July 2010 p20-27.
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This was deduced independently and almost simultaneously in 1884 by John Henry Poynting (after
whom the Poynting vector is named) and Oliver Heaviside*. The underlying reason for continuity
was, of course, not understood at the time; but nowadays we associate electromagnetic energy with
photons, i.e., de-localised particles which can be emitted or absorbed, but not modified.

The principle of continuity dictates that electric and magnetic fields from different sources do
not combine to produce electromagnetic radiation. If they did, the Universe would turn in to a
fireball; but then again, perhaps it has already done that, and has subsequently inflated to attain a
density at which such interference no longer occurs. The practical significance of energy continuity
however, is that it allows us to consider different energy transport processes separately insofar as a
system is linear (i.e., does not convert energy at one frequency into energy at other frequencies).
Hence, when we model the fields around an electrical system, we know that there are other fields
present (such as the Earth's magnetic field), but they can usually be ignored. Thus the fields
imagined or depicted relate only to the process under consideration; and this allows us to tackle
complicated problems by breaking them down into separate parts. Without continuity of energy, we
would not be able to understand the Universe (quite apart from the inconvenience of being blasted
apart while trying to do so).

4. Magnetic dipoles

It was allowed to pass without comment in the previous section, but it should have been obvious,
that the spatial characteristics of electric and magnetic fields are very different. An electric field
line may start from a point (a positive charge say) and terminate on another point (a negative charge
say). It transpires however that magnetic field lines cannot do that, which means that they can only
be envisaged as as continuous loops. This peculiar principle is embodied in Maxwell's equations as
the statement that 'the divergence of the magnetic field is zero', i.e., it doesn't spread out from or
converge onto points. The reason is that there are no magnetic charges, i.e., there are no tiny North
poles and South poles swarming around on their own. The last statement warrants some
qualification however, there being considerable lore attached to 'magnetic monopoles'.

The set of relations we nowadays call "Maxwell's equations" is actually due to Oliver Heaviside
[see Nahin, cited above]. Heaviside reduced an original twenty equations to the four which relate
the electric and magnetic fields, but he disliked the asymmetry which allowed electric fields to
diverge while magnetic fields could not. Therefore he added a term to allow for the possibility of
magnetic charges (which he called 'magnetons'), even though it could always be set to zero in the
problems he studied. Later on, this idea was followed-up by Paul Dirac, who went on to formulate
a relativistic version of quantum mechanics (and thereby predicted the existence of anti-matter) and
showed that the existence of magnetic monopoles could explain the quantisation of electric charge
(i.e., that charge is not infinitely divisible, but comes in discrete amounts). Monopoles figure in
some of the various attempts to formulate a grand unification theory of physics, i.e., they might
have existed shortly after the Big Bang; but they do not necessarily exist now, and have so-far never
been isolated experimentally (monopole-like behaviour is seen in some exotic magnetic materials’,
but but such particles are composite rather than fundamental).

In the absence of charges on which to land, magnetic field lines can only form loops. Thus,
when we imagine the field lines coming out of the North pole of a magnet and looping around to the
South pole, we don't imagine that there are monopoles crowded at the poles like the charges on a
capacitor plate. The act of cutting a bar-magnet in two produces two new magnets, rather than
separate poles, and so we must conclude that the lines entering at one pole travel through the body

4 Oliver Heaviside, Paul J Nahin. 2nd edition. John Hopkins University Press 2002. ISBN 0-8018-6909-9.
Maxwell's Equations: Ch 6, p85-88 and Note 24. Ch 7, p128.

5 Monopole Position, John Matson. Scientific American, Nov. 2009. p16. A sighting, of sorts, of separate North and
South magnetic poles in spin ices.
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of the magnet and emerge at the other.

Which brings us to the subject of magnetic materials and the origins of their properties.
Magnetic materials can be classified as either diamagnetic (1 < o) or paramagnetic (1> po). The
'ferromagnetism' exhibited by some substances corresponds to the ability to store very large
amounts of magnetic energy, and is a giant form of paramagnetism. The ferromagnetic materials
can also be further divided into 'hard' and 'soft', the former becoming permanently polarised during
exposure to a strong magnetic field, an the latter losing its magnetism upon removal. Hard
magnetic materials are, of course, used to make permanent magnets.

Recall that dielectric materials, which lack free charges, can be polarised by an electric field.
Polarisation depends on the existence or creation of electric dipoles, which correspond to molecules
or crystalline unit cells which have asymmetric internal charge distribution. Similarly, there are
polarisable magnetic dipoles within materials; the difference being that there is no metaphorical
knife sharp enough to allow us to cut the smallest magnetic dipole in half. The reason is that
magnetic dipoles are not associated with pairs of monopoles, but with the spins and orbital
behaviour of the charged sub-atomic particles themselves.

A magnetic field of material origin is always associated with an electric current, and the spin of a
charged particle can be taken to constitute a current. Normally we say that protons and electrons
"have spin", rather than simply saying that they spin; because a fundamental particle is a small
package of electromagnetic energy, and it is unrealistic to envisage it spinning in the same way as a
macroscopic object. A charged particle is essentially a quantity of energy (E=mc?), trapped in some
manner involving a non-divergent energy flow, and having a patent monopolar electric field, and a
patent dipolar magnetic field.

Spinning charges can be imagined as tiny bar magnets; or better still, since they are able to
change their orientations, as tiny compass needles. The difference is that, while a compass needle
can point in any direction to align itself with an externally applied field, the orientations of
microscopic dipoles are quantised, i.e., limited in terms of possible energy of orientation relative to
an external field. The ordinary charges (protons and electrons) can have spin quantum numbers of
+, which means that they can absorb or emit energy to align their dipoles with an external field, or
against it, but there are no intermediate states.

Diamagnetism is associated with paired spins, and paramagnetism is associated with un-paired
spins. Spin pairing can be understood by considering what happens when two bar-magnets are
placed side by side, with North poles adjacent to South poles. The fields from the two magnets
form closed loops, and the combination ceases to interact with external fields and becomes
diamagnetic (i.e., a collection of such paired magnets is, on average, slightly less permeable than
free space). Hence, among the vast numbers of spinning sub-atomic particles in materials, most are
paired, and paramagnetism arises from the relatively small number of un-paired particles which can
exist in some types of material.

The materials of primary interest for the construction of inductive devices are, of course,
ferromagnetic. Ferromagnetism occurs when the spins of un-paired electrons become aligned over
relatively long distances, like strings of bar magnets attached North to South. These regions of
constructive alignment are called 'magnetic domains', and are capable of internal re-arrangement to
change the orientation of the overall magnetic dipole. In a soft ferromagnetic material, in the
absence of an externally applied field, the domains are randomly orientated and there is no overall
magnetism. When a field is applied however, the domains are progressively forced into alignment
and energy is stored, to be returned when the external field decreases in strength and the material
relaxes. Hence, the presence of ferromagnetic material vastly increases the magnetic energy which
can be stored in a given volume of space, and the macroscopic average relative permeability of the
volume is consequently much greater than 1.

In a hard ferromagnetic material, there exists an energy barrier with respect to domain
realignment. Hence, if a field strong enough to overcome the barrier is applied, energy is absorbed,
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but not all of it is returned when the field is reduced. The domains become permanently aligned to
some extent over very long range, and so the material obtains a permanent magnetic field. Hard
materials are, of course, not suitable for ordinary inductor cores, because they behave in a highly
non-linear fashion. It is important to be aware however, that no ferromagnetic material is
completely soft; there will always be some residual magnetism after removal of an external field,
and so coils with magnetic cores are not perfect linear devices.

5. Flux linkage

When the term 'linkage' is used in the context of magnetism, the metaphor is meant to be interpreted
in the strong sense; i.e., a link is a loop interlocked with another loop, as in a chain. Particularly, the
term 'flux linkage' refers to the fact that the magnetic flux lines which form around a current-
carrying conductor can also loop around other conductors, this being part of the explanation for the
phenomenon of electromagnetic induction. Hence, flux linkage is involved in the process whereby
electrical energy supplied to one current loop can be dissipated in a resistance in series with a
separate loop, the resulting structure, called a transformer-coupled network, being analogous to a
chain. Before we consider inter-circuit linkages however, we need to consider the linkages which
occur in a single circuit, particularly when that circuit is coiled into a set of overlapping loops all
carrying the same conduction current.

A flux linkage can be considered to exist whenever a loop of magnetic flux
completely surrounds a current. The diagram on the right represents the flux
surrounding a pair of wires (seen in cross section) which are both carrying the
same current (i.e., such as might occur in a two-turn coil). Notice first, that if
there is any appreciable depth of current penetration into the body of the
conductor (i.e., skin depth), then there can be lines of flux below the conductor
surface. These lines, which are associated with internal inductance, do not
encircle all of the current, and so contribute less than a whole flux linkage. On
the outside, at or very close to the surface, there are lines which encircle the
current only once and so correspond to single flux linkages. At greater distances however, the field
is best considered as a superposition of the lines from both (or, in general, many) turns, and it takes
the form of loops which enclose more than one turn. A flux loop which girdles the current N times
is said to contribute N flux linkages.

The reason why we evoke the concept of flux linkage, is that it gives us a simple way of defining
inductance. To understand it however, we must use Faraday's way of thinking about magnetic
energy storage. Faraday imagined a conductor to be surrounded by a flux of lines (sometimes also
called tubes) each having equal weight. In other words, every one of his lines contributed a unit of
flux (later called a maxwell); so that regions where the field is strong have many lines, and regions
where the field is weak have few lines. Also, lines are created by putting energy into the field, and
disappear when energy is removed. Taken in conjunction with the observation that the inductance
of a coil is proportional to N? (where N is the number of turns); it transpires that the increase in the
amount of magnetic energy which can be stored, for a given current, when a conducting loop is
coiled, can be determined by counting the flux linkages. Thus, according to Faraday's
interpretation, coiling increases inductance because it allows field lines to link the current more than
once. Hence the definition:

‘ Inductance = flux linkages per unit of current

Notice that we have not bothered to include a constant of proportionality. The units are to be
defined so that such a constant will not be needed.

Nowadays, given wider familiarity with vectors; we are a lot happier to think of magnetic flux in
an abstract way. It is sufficient to assign a magnitude and a direction to describe a point in a vector
field; but the magnitude which describes the intensity of the magnetic flux can nevertheless be
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envisaged as the number of maxwells (i.e., lines) enclosed by an infinitesimal area perpendicular to
the flux. Hence there is a perfect correspondence between Faraday's and the modern conceptions of
flux density (i.e., flux per unit area), provided that we define the relationship correctly. Herein lies
a difficulty however, which is that Faraday and Maxwell saw the determination of inductance as a
counting problem, whereas later writers saw it as a field integration problem. There is no
philosophical difference, but neglect of detail can result in a set of field parameter definitions which
are only approximate. We should note that the phrase 'approximate definition' is an oxymoron.

A typical attempt at defining inductance is based on the idea that the flux links the current once
in a single loop circuit, and that it links the current N times in an N-turn coil. As we have seen
however, neither proposition is strictly true. The flux associated with internal inductance
contributes less than 1 flux linkage per line; and of the flux associated with external inductance, not
all of it will link with all of the turns. Thus, except in the special case of a single turn loop at very
high frequency (when the skin depth has gone to zero), the assumption of maximum possible
linkage will lead to error. One way to solve that problem is to define a linkage efficiency parameter,
1.e., a correction factor (<1) by which the number of turns can be multiplied in order to ensure that
the linkages have been counted correctly. We will start by calling the number of turns so corrected
the effective number of turns, and give it the symbol N. Thus:
0<N<N
The correction parameter is then N/N, which, for reasons which will shortly become clear, can also
be written as Vku ,l.e.:

N =N vky

ku is a field inhomogeneity factor which, in general, depends on the geometry of the system and the
properties of the materials involved. For the hypothetical special case of a current-sheet solenoid
(which has no internal inductance):

k]—[ = kL

where ki, is known as 'Nagaoka's coefficient' and is readily calculated using procedures described
elsewhere®.

One way in which to maximise linkage efficiency is to provide a magnetic path
of low reluctance; i.e., a path of high permeability, short length, and reasonably
large cross section. This can be achieved by (say) winding wire onto a ferrite
bead. There will still be internal inductance, and there will still be external flux
which only links the current once; and in a coil of many turns, there will also be
flux which links some but not all of the turns; but the amount of energy which can
be stored in the magnetic material will be so great, in comparison to that which
can be stored in the wire and the surrounding medium, that it will make other
contributions almost negligible. That is why the inductance of a coil wound on a
closed transformer core is almost entirely dependent on the number of turns and
the core inductance factor (Ar). The 'reluctance’ of a transformer core, incidentally, is defined as
S=1/A.. Reluctance in a magnetic circuit is analogous to resistance in an electrical circuit, and so
Ay is analogous to conductance.

Notice that the possible range of N (effective turns) was stated above to lie between 0 and N.
We might expect a lower limit of 1 (or very slightly less, due to the partial linking associated with
internal inductance), but the linking can be considerably less than 1 when the flux from one part of
the loop cancels the flux in another part of the loop; 1.e.; linking can be constructive or destructive.
In a single turn loop, linkage is maximised by maximising the loop area; i.e., by getting a particular
point in the conductor to be as far away as possible from any other point which is not carrying
current in exactly the same spatial direction. Hence we need a loop shape criterion when defining
linkage; and so, unless stated otherwise, it is assumed that the external flux of a single turn loop
links the current once (i.e., maximally) when the area is at its maximum; i.e., when the loop is

6 See: Solenoids. D W Knight. Still in HTML form at time of writing.



17

circular.

In a multi-turn coil, the effective number of turns (and hence the number of flux linkages) can be
reduced by changing the winding direction at some point during the making of the coil. This is
often done for the purpose of minimising inductance; i.e., to cancel linkages so that N is as close to
zero as is possible. This is (for example) the reason for the hairpin bifilar pattern used in
some types of wirewound resistor (see right). It follows that if we start counting upwards
when winding a coil, and then change direction and start counting downwards; the ::;3
effective number of turns will eventually become negative (at least, notionally). The
definition of a particular winding direction as positive or negative is not completely
arbitrary, because it affects the relative directions of the flux lines on the inside and
outside of the coil. Hence the handedness of a helix (i.e., left-handed or right-handed) 1
plays a part in determining the orientation of the overall magnetic field. The usual choice
however, is to define the effective turns number as positive (i.e., to treat it as a magnitude)
and use Maxwell's corkscrew rule to determine the field polarity. This has the effect of
fixing the polarity of the overall flux solely according to the sign of the current; i.e.; since
inductance is defined as flux linkage per unit current (and is by convention positive), then flux
linkage is positive when current is positive.

6. Magnetic induction

The term 'electromotive force' or 'EMF' is sometimes used when referring to a voltage produced by
the action of a generator; i.e., an EMF is a voltage associated with a source of energy. Similarly,
'magnetomotive' force or ' MMF', is proportional to the current supplied by a generator; but, due to
the phenomenon of flux linkage, MMF is only equal to current when the circuit is composed of a
single (i.e., non-overlapping) circular loop.

In electrical systems, power and energy, and also the illumination fields 'power per unit area' and
'energy per unit area' are always proportional to the square of an EMF, the square of an MMF, or to
a product of EMF and MMF. This is evident from the elementary formulae: P=V?/R, P=I’R, P=I1V,
E=(2)CV?, E=('%)LI? and so on. Thus, both EMF and MMF have units which are proportional to
the square-root of energy. We can also observe that the energy stored in an inductor is proportional
to the inductance, and inductance is proportional to N?; from which it follows that, if MMF is a
function of N, then it must be directly proportional to N.

The act of winding a current loop into a coil must be deemed to increase the MMF, because it
increases the magnetic contribution to stored energy without the need for an increase in current.
Thus, given that we have deduced the proportionality from dimensional requirements, MMF has
units of Ampere turns. (and is often referred to as 'Ampere turns'). It is also typically defined as the
current multiplied by the number of turns; but that last step is questionable. Flux linkage is a
logically-consistent explanation for the increase in MMF which results from coiling, and we know
that there will always be flux which cannot link with every turn. Hence we will define MMF as:
F=NI
where N is the effective number of turns, as discussed earlier. Now notice that the symbol for
current (I) has been written un-bold, whereas in AC circuit analysis we would normally write it in
bold script, to indicate that it is a phasor. The reason is that we are presently engaged in the
business of relating circuit parameters to the actual magnetic field; and the field strength is strictly
proportional to the instantaneous current. It is also the case that, for the purpose of obtaining a
complete description of the field, the current has only magnitude and one of two possible directions;
1.e., by reversing it, we reverse the direction of all of the flux loops (and thereby reverse the poles in
the case of an electromagnet), but we cannot otherwise alter the relative distribution of the field.
Hence the current, as defined for the purpose of mapping from electromagnetics to circuit theory, is
pseudoscalar, just as it is in DC circuit analysis. We can convert it back into a phasor later, because
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by then we will have defined all of our new magnetic parameters and the generalisation will not
affect them; but for now, we must consider only instantaneous current (or DC).

The units of electric field strength are [Volts / metre]. Similarly, the units of magnetic field
strength are [Ampere turns / metre]. Hence the intensity at some point in the magnetic field is given
by a vector (H ) which has a magnitude proportional to the MMF, divided by some distance over
which the MMF is considered to act. That distance is known as the path length, and is given the
symbol £ (sometimes with subscripts, depending on the context). The path length in a single-loop
circuit is the average length of a flux loop, which is difficult to calculate; but for solenoids and
closed transformer cores, the situation is more straightforward. In the case of a solenoid, it is the
length (or height) of the cylinder taken from centre-to centre of the connecting wires. In the case of
a transformer core, assuming that the field outside the core is negligible, it is the average length of a
flux loop in the core body, and is given as the £, value (effective path length) in the manufacturer's
datasheet.

The amount of energy which can be stored in the magnetic field around a current loop is
proportional to the average permeability of the magnetic path. Hence, according to Faraday's way
of thinking; for a given current, the number of field lines is multiplied by the permeability. Hence
we can define a new field which is more fundamental and informative than H, i.e.;

B=pH

where the vector B is called the magnetic induction or flux density, i.e., it is the number of Faraday
lines per unit area at a given point in the field. It should be obvious, that the inductance of a loop is
dependent on B, rather than on H alone.

To define the complete spatial distribution of the magnetic field, we must solve Maxwell's
equations for the system. For the derivation of circuit analysis parameters however, it is not
necessary to do that. Instead, we can define an average flux density as the total flux divided by the
total path area. Notice that this new quantity is still a field vector. By defining it over the total area
however, we imply that its direction is the average direction of all of the field lines in the bundle
enclosed by the area. This average direction is always perpendicular to the plane of the loop.
Therefore the total flux has only two possible directions (depending on the direction of the current),
1.e., it is pseudoscalar, and so we give average flux density the symbol B (un-bold, in italic script,
not to be confused with susceptance, B). Hence:

B=pH=®/A [Tesla]

where

H=F/¢( [Amp. turns / metre]

1s the average field strength on the path, and @ is the total magnetic flux associated with a single
loop. Notice that @ is also pseudoscalar (as is H ); i.e., it can be positive or negative, and so it is
definitely not a magnitude. The SI unit of flux is the Weber [Wb], which is equivalent to 10® lines
(or maxwells). The unit of flux density (magnetic induction) is the Tesla [T], or Wb/m?, which is
equivalent to 10* gauss. The gauss is still commonly used in scientific papers, transformer-core
datasheets, etc., and its relationship to the Tesla should therefore be memorised.

When a coil is wound on a closed-circuit high-permeability transformer core, the energy stored
in the core is so great in comparison to that stored elsewhere, that the path area is, to a good first-
order approximation, the same as the average cross-sectional area of the magnetic channel (i.e., the
A. value given in the core's datasheet). For an un-cored loop or coil, the path area is perhaps less-
immediately obvious, but the definition is not difficult to understand.

Consider a planar (i.e., flat) current loop. However we
determine the total flux, the process is equivalent to counting the I /
lines, and each line must be counted only once. Now, noting that —p—/:!:_-
each line encircles the current, the number can be determined by /
counting in the plane of the loop, either on the inside, or on the
outside (but not both). Counting the flux on the outside is

B
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somewhat problematic, because the field extends (at least notionally) to infinity. Hence the
integration is carried out over the area enclosed by the loop; and that area is consequently identified
as the path area.

While the logic behind the definition is straightforward however, exact determination of the area
is not so easy. The problem is that practical conductors have finite (and often substantial) thickness,
which means that the boundary established by the conduction current is necessarily diffuse. The
process of incorporating known physical behaviour into a model by defining what happens at
various points in a co-ordinate system is known as "establishing the boundary conditions". In this
case, we want to count all of the flux lines exactly once, and so the relevant boundary condition is
established by defining a perimeter line such that the conduction current flowing outside this line is
exactly equal to the current flowing on the inside. Widespread practice is then to assume that the
boundary lies at the conductor centre-line; but this is not an accurate choice for several reasons:
Firstly, the conduction path on the inside of a loop is shorter than on the outside (i.e., the resistance
is less), and so the current will tend to concentrate on the inside. Secondly, there will be a
redistribution of the current at high frequencies; especially in multi-turn coils, due to the proximity
effect. Lastly, there will be displacement currents and interfacial effects (i.e., it is not possible to
make an electrical connection without disturbing the magnetic field); and so, what looks initially
like a simple problem turns out to be rather complicated.

Due to the difficulties in establishing the path area, magnetic problems are usually addressed by
starting with simplified models. The simplification in question is that of assuming that conductors
are filamentary, i.e., of negligible thickness in comparison to other dimensions. Note that a
hypothetical filament has no internal inductance, because it is too small to have flux loops inside it.
Recall also, that the conductor in a current-sheet solenoid has width, but no radial thickness, and so
1s filamentary when the solenoid is viewed end-on. The filamentary current model will provide a
first (and usually fairly accurate) approximation for the behaviour of a practical magnetic device,
and can be further refined by the inclusion of internal inductance and various other correction terms.

Although the process of determining the path area may involve approximation in practice, it is
nevertheless rigorously defined as the area bounded by the median line of the conduction current
density; i.e., a line chosen so that the integral of the current density on the inside is equal to the
integral of the current density on the outside’. Hence we may take the final step in defining the
inductance of a multi-turn coil, by multiplying the total flux through a single turn by the effective
number of turns, to obtain a parameter called the 'number of flux linkages' (or 'flux linkage' for
short). To that we assign the symbol A (Capital "Lambda"), i.e.:

A=N® [Weber turns]
Notice that A is pseudoscalar, because @ is pseudoscalar; i,e., all quantities derived from the field
are bi-directional vectors.

Inductance, the absolute measure of the ability of an electrical device to store energy in the
magnetic field, was identified earlier as the number of flux linkages per unit of current. Hence:
L=A/1 [Weber turns / Amp.]

The composite unit is known as the Henry, in honour of Joseph Henry (1797 - 1878) who studied
magnetic induction at the same time as Faraday, and made comparable scientific contributions.

The inductance of a coil or current loop is, by convention, positive. Negative inductance can
occur in circuit analysis, but only in situations involving inductance subtraction; which means that
negative inductance can be synthesised, but does not physically exist. Thus, in the relationship
given above, it can be seen that flux linkage must be allowed to be either positive or negative,
because instantaneous current can be either positive or negative. This freedom is required for
reasons of mathematical consistencyj; i.e., failure to allow it constitutes the ludicrous proposition
that inductance changes sign when the current is reversed. It also allows us to determine the overall
direction of the dipolar field around a coil by using Maxwell's corkscrew rule.

7 LF effective radius of a single-layer solenoid. D W Knight [available from g3ynh.info]
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The general formula for the inductance of a coil can now be obtained by working backwards
through the preceding discussion. Thus:

L=A/I1 Flux linkage, A=N ®
=N®/I Flux through the path, ® =A B
=NAB/I Flux density (magnetic induction), B=pu H
=NApH/1 Field strength, H=F /¢
=NAuF/ (1) Magnetomotive force (MMF), F=N1
=NAuNI/(£1])
=uN2A/¢ Effective turns, N =Nvky

Hence:

L=uNkuA/¢ [Henrys]

For a coil wound on a closed transformer core, where (to a reasonably good approximation) ky—1,
this becomes:

L=uN?A./ ¢

(Where A. and ¢, are the effective path area and effective path length, as given in the manufacturer's
datasheet). The quantity:

AL=pA./ L. [Henrys / turn?]

is, of course, the core inductance factor or magnetic conductance (and its reciprocal is the core
reluctance).

For a current-sheet solenoid, ku = ki, where kpis =~ 4
the fringing-field or field non-uniformity correction ;4
factor known as Nagaoka's coefficient. ki is always ;.
less than 1, because some of the field lines come out « 47
through the sides of a solenoid, and so fail to link 2 ;5
with all of the turns. k.—1 when a solenoid is very E 05
long and thin because the flux lines only spread out 2 ;.
towards the ends of a helical coil (to loop around on cZE'J 03

the outside), and if the ends are far apart, the 02
spreading (non-uniform) region is small in 01
comparison to the major part of the enclosed field. 0 Solenoid Length / Diameter

0 1 2 3 4 5 & 7 & § 10

Before we move on; it is perhaps worth drawing attention to the fact that 'turns' have been included
in the system of magnetic units used here. Turns is, of course, just a number, and so has no unit of
measurement. Hence some authors do not include turns when stating units, and may even go so far
as to claim that the deletion is in aid of mathematical rigour. There is a slight downside; in that the
distinctions between current and MMF, and flux and flux linkage, are then lost; not helped by the
once widespread practice of using the symbol @ for both flux and flux linkage; but these privations
no doubt help to provide the student with a challenging learning environment.

On a more serious note; those familiar with dimensional analysis will know of it as a technique
which allows relationships to be determined by comparing the measurement units of the variables
associated with a physical system. The limitation of dimensional analysis is that it cannot
determine constants of proportionality, because scale factors (i.e., pure numbers) have no units. The
corollary however, is that pseudo-dimensions, such as turns, can have no effect on the validity of
dimensional analysis (and may provide valuable additional information). Hence the argument, that
the inclusion of numerical parameters is unrigorous, falls down; and the deletion of turns from
magnetic units serves no purpose except to spread confusion.
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7. Electromagnetic induction

It is important to distinguish between the terms magnetic induction and electromagnetic induction.
Magnetic induction (flux density) is, literally, the amount of magnetism induced (i.e, forced) into a
volume of space. Electromagnetic induction, on the other hand, is the propensity for a time-varying
magnetic field to create an electric field (and vice versa). The latter phenomenon was discovered
by Faraday, in 1831, after he had spent some six years pondering the riddle: 'why is it that a current
produces a magnetic field, but a magnetic field does not produce a current'. With hindsight, we can
easily identify the barrier to understanding by inserting the adjectives 'direct' in front of 'current, and
'static’ in front of 'magnetic field'. Faraday's final experimental apparatus for this investigation was
effectively a transformer (although the term was not coined until some years later); i.e., he used a
separate coil and a battery to provide the field. The riddle was solved when he noticed that the
galvanometer gave tiny kicks in opposite directions as he switched the battery on and off.

Faraday's subsequent interpretation of the induction coil experiment (in terms of flux linkages, of
course) became one of the cornerstones of Maxwell's great synthesis of electricity and optics. It
was Einstein who gave the full explanation however, by deducing that a magnetic field acquires the
character of an electric field when viewed from a moving frame of reference (and vice versa); the
degree of mapping from one to the other being proportional to the relative velocity, and becoming
absolute at velocity c. This means that there can be no greater relative velocity than c in the world
of ordinary matter (but not, as is often assumed, that nothing can travel faster than light®), and so the
geometry of space-time had to be redefined as a consequence of Maxwell's equations. Einstein's
Special Relativity also tells us that there is no distinction between a changing field and a moving
field; and so an electric field can be created from a magnetic field in either way. Nowadays, an
electromagnetic induction engine of the changing field variety is called a transformer, and a rotating
engine of the moving field variety is called an alternator or generator.

Recall that, using Faraday's mental picture of the magnetic field, flux lines (and hence linkages)
are created when energy is put into the field, and destroyed when energy is taken out. Hence
Faraday's astonishingly simple explanation for what turned out to be the seed for the whole of
modern physics (here paraphrased):

'"The voltage induced across the ends of a coil is proportional to the rate of change of flux linkages
per unit of time' (Faraday's Law of induction).

Note that the word "proportional' can be replaced by 'equal’ if the system of units is chosen
correctly; and that was one of the effects of Maxwell's later unification of the E and H fields.
Hence:

V =dA/dt [Volts]

This equation has enormous implications; not least, for our purposes, because it lies behind the
theory of AC electricity in general, and inductive devices in particular.

8. Self-induction

The definition of inductance was given earlier as:

L=A/1 [Henrys]

This can be re-written:

A=LI [Weber turns]

Now recall that inductance, here seen as the factor of proportionality in the relationship between
flux linkages and current, depends only on the physical geometry of the system and the permeability
of the magnetic path. Both permeability and geometry can change with field strength, in the latter
case (for example) because the force between parallel current-carrying conductors causes coils to
contract in length as the current is increased; but these are small effects, and it is not unrigorous to

8 Quantum Non-Locality and Relativity, Tim Maudlin, 2nd ed. 2002. ISBN 978-0-6312-3221-6



22

conceive of an idealised coil, of constant inductance, and then apply corrections when dealing with
practical devices. Hence we can differentiate the expression above on the assumption of constant
inductance; 1.e.:

OAN/ot=L ol/ot

(here we use the partial differential symbol, 0, to indicate that other dependent variables are being
held constant). Now, according to Faraday's law, 0A/0t 1s a voltage, and so, assigning a symbol to
it, we can write:

V, =L ol/ot

Some readers may be familiar with a different version of this equation, in which the voltage is given
as negative. In fact, there is a reason for choosing a sign at this point, but the argument is a subtle
one and we will look at it in detail later (it will turn out that the choice made here is the correct one
for purposes of circuit theory). For the time being therefore, simply note that both L and t are
defined as positive, and so the sign of the voltage is dictated by the derivative (i.e., by the sign of
the gradient of the graph of I vs. t). Hence, an increasing current gives a positive voltage, and vice
versa.

The expression above tells us that when the current passing through a coil changes, a voltage is
induced in the coil itself. This phenomenon is called 'self induction', and was discovered
independently by Joseph Henry in 1832 (although it is, of course, a corollary of Faraday's law of
1831). The voltage produced is habitually referred-to as the "back EMF", which is unfortunate
because it is not an EMF in the strictest sense. An inductor (not affected by any magnetic field but
its own) is a passive electrical device, and no amount of work with a hacksaw will reveal a
generator inside it. Hence the self-induced voltage is a reaction force, or potential-difference; and
we will refer to it here as the 'back voltage' or 'reaction voltage'. The effect of the reaction voltage
1s to oppose the change giving rise to it (Lenz's law); which means that when an inductive circuit is
connected to a generator of time-varying voltage, there will be a limitation on the current which can
flow (this being in addition to the limitation provided by the resistance). By noting that the reaction
is in opposition to the driving force, we have cryptically chosen a sign for Lol/ot (and, as we shall
see, it 1s positive according to the conventions of circuit analysis).

Now suppose that we have an idealised coil of negligible resistance. If we connect it to a
battery, the back voltage will prevent the current from rising instantaneously, but the system will
eventually reach equilibrium and an enormous constant current will flow. If we connect it to an
alternator however, the current will never become constant, and so the back voltage will prevent the
current from rising to its DC limit and will remain equal to the instantaneous applied voltage. If the
generator produces a sinusoidal output, and the time reference is arbitrary (so that we can assume
that V=0 when t=0), the instantaneous driving voltage at time t is given by the expression:

V(t) =V, Sin(2nf t)

where V(t) should be read as " V, a function of t " (i.e., all parameters are constant, except for t), and
V, is the peak voltage. Hence, using Faraday's law:

V, =L dl/ot = V, Sin(2nf't)

1e.:

ol/ot = (V, /L) Sin(2xnf't)

The instantaneous current can now be found by integrating both sides of this expression with
respect to time, 1.e.:

ol Ve standard b
J —dt= — | Sin(2nf't) dt . Sin(ax) dx = — Cos(ax) + ¢
ot L solution .

Hence:
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-V,
I

Cos(2nf't)
2nf L

Note that the constant of integration (c) in the expression above must be zero, because it is obvious
that when the peak generator voltage is set to zero, the current will always be zero. Thus Faraday's
law has given us the relationship between voltage and current for a pure inductance connected to a
sine-wave generator. Notice also the appearance of the quantity 2nfL, which, since the cosine
function is dimensionless, has units of [ Volts / Amp.] or [Ohms]. Thus we attribute the current
limitation to a type of resistance: 'reaction resistance' or 'reactance'; and this quantity is, of course,
important enough to warrant its own symbol, X .

What we can do now with the expressions for instantaneous voltage and current is to multiply
them together to determine the instantaneous power flowing between the generator and the coil.
Thus:

P(t) =-( V?/ X1) Sin(2nf t) Cos(2nf t)

This can be simplified using the standard trigonometric identity:

Sin(a) Cos(b) = (*2)[ Sin(atb) + Sin(a-b) ]

1e.:

Sin(x) Cos(x) = (%2)Sin(2x)

Hence:

P(t) =-("2) (Vy*/ Xv) Sin(4nf't)

The quantity V,? is, incidentally, equal to 2V,ms (i.e. V, is the RMS voltage multiplied by V2), and
SO:

P(t) = -( Vims* / X1 ) Sin(4nf t)

The instantaneous power is a pure sine wave at twice the excitation frequency; and therefore, as
advertised earlier, alternates between positive and negative. The average of a sine wave is, of
course, zero; and so the overall work carried out by a generator on an idealised inductance is nil.

Now consider the phase relationship which exists between the instantaneous values of the
voltage and current. We have:

V(t) =V, Sin(2nf t)

and

I(t) = -(Vp/Xv1) Cos(2nf' t)

If the time co-ordinate is chosen so that the voltage is a sine wave in the mathematical sense (i.e.,
V=0 and changing in the positive direction when t=0), then the current is the negative of a cosine
wave. There is a fixed 90° phase difference between current and voltage. Notice also that when
t=0, -Cos(2nf t)=-1. When the voltage is at zero, but changing in the positive direction; the current
is at its most negative, and will take a further 4 of a cycle before it reaches zero. Thus the current
in an inductance lags the applied voltage; a fact learned in kindergarten of course, but here we see
how it comes from Faraday's law.

If there is a fixed phase difference between the voltage and current associated with a purely
reactive circuit element, then the mathematical relationship can be established without stating the
time variations of V and I explicitly. Hence we can dispense with sine and cosine functions, and
devise a formal mapping into an algebra which represents the phase difference by means of a unit
vector in the +90° direction of a planar co-ordinate system. The choice which puts V 90° ahead of
I, assuming that the phase co-ordinate increases in the anticlockwise direction (i.e., adopting the
standard trigonometrical convention) is:

V/I=jXu

The unit vector j converts the relationship into a two-dimensional vector operation, and so V and I
are now written in bold typeface. j, of course, transforms algebraically as \-1; and so we pass from
Faraday's law to phasor theory.
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9. Polarity of the induced voltage

In the preceding section, we obtained an expression for the reaction voltage of a passive inductor:
V, =L ol/ot

It was then commented that this expression is frequently written with a minus sign. Such
amendment was avoided however, and the AC behaviour of inductors fell out of the algebra without
mishap. Now we find ourselves in the strange position of having to justify our failure to make a
widely repeated mistake. The confusion results from the misapplication of Lenz's law.

Faraday's law states that a changing magnetic field will induce a voltage across the ends of a
conductor suitably disposed within the field. Maxwell's equations have it that a changing magnetic
field produces an electric field, but that is the same thing. If the conductor forms part of a closed
circuit; then a current will flow, and may be registered by a fast-responding galvanometer. Lenz's
law of 1835 tells us that the current is such that the magnetic field it produces opposes the change
giving rise to it. Lenz's law, as most authors are wont to point out, is actually a manifestation of the
principle of conservation of energy; the corollary being that work must be done in order to make the
current flow.

The implication of Lenz's law in relation to inductors is that; if a coil or loop of wire is
connected to an alternator, the current which flows will induce a voltage which opposes the applied
voltage. Now, since the instantaneous value of this reaction force is always in opposition to the
applied force; then, according to many textbooks, the expression for it must be negative. Well,
perhaps; but here we need to be extremely careful because, if we make a logical error at this point,
our attempts to derive the important results of transformer theory will run into trouble. The
problem is that a minus sign seems to imply that the reaction voltage is 180° out-of-phase with the
driving voltage; but such a view is contrary to the conventions of circuit theory.

The issue can be resolved by considering the distinction between an EMF and a potential
difference (PD). Except for a special case known as a 'short circuit', every impedance produces a
reaction force. We can conceptualise the mechanism by saying that the generator produces a
driving or 'electromotive' force, and the load pushes-back by developing a potential difference.
Since every action has an equal and opposite reaction (cf. Newton's 3rd law), we may reasonably
deduce that:
Vemf - Vpd =0 l
Thus V4 gets its minus sign, but that does not not imply that it is out-

Vem Vpn:l yA
P

of-phase with Veme . On the contrary, as should be obvious from the
diagram on the right, what we are really saying is that:

Vemf = Vpd

The ambiguity arises because Kirchhoff's second law can be stated in two ways: either, "the
algebraic sum of the voltages around a circuit is zero"; or, "the sum of the PDs is equal to the sum
of the EMFs". In the first case, PDs are negative with respect to EMFs. When analysing circuits
however, we draw arrows, which tell us how to combine the terms in the expressions which
describe the circuit behaviour; in which case the minus sign belongs to the analysis, rather than to
the term itself. It should all come out the same in the end of course; but it is not unusual to find
confusion carried forward into the mathematical working.

The difference between EMF and PD was once emphasised in the teaching of electricity. The
matter lost its weight in the latter third of the 20th Century however, there being some doubt about
the importance of distinguishing between two quantities which are always equal. It becomes
important in dealing with inductance however, as an antidote to the assumption that the reaction
force needs to be treated in a special way. There is nothing wrong with Lenz's law. In 1835 it was a
brilliant observation; but the principle of conservation of energy is now axiomatic upon all physical
investigation, and while Lenz's law is important, it does not need to be specifically applied in this
context. What is meant by that is that, if we measure voltages relative to a common reference, the
"back EMF" is actually a PD, and is therefore equal in magnitude and phase to the force giving rise
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to it.

Hence, should we be able to find a way of measuring the back voltage independently, we will
find that it is very definitely in phase with the generator voltage. In fact, there is a way of doing
that, using an exotic device to which we might apply the snappy title: 'inductor with integral field-
probe winding' (although some might be inclined to call it a 'transformer").

The reason why the reaction force produced by an inductor is special, is that the agency giving
rise to the force can be intercepted, i.e., back voltage can be observed in a manner which separates it
from the driving voltage. If the intention is to measure it accurately, then this can be done by
arranging another coil to be affected by the magnetic field in almost exactly the same way as the
driven coil. A simple solution is to take two strands of insulated wire and twist them together, then
wind several turns of this bifilar pair onto a high-permeability closed-circuit magnetic core, such as
a ferrite toroid. One of the windings can then be connected to a signal generator, and the
magnitudes and phases of the voltages across the driven and the sensor windings can be compared
using a dual-channel oscilloscope. In doing that however, we must keep track of the phasing of the
windings, and so we arbitrarily define a lead wire going into one side of the core as the 'start', and
the wire coming out of the other side as the 'finish' of the associated winding. We then label the
'starts' with dots on the circuit diagram.

Now, provided that the magnetic coupling between the two coils is
very tight, it will be found that closing the switch 's' in the circuit on
the right will make practically no difference to the relationship between
Veen and Ve . In fact, there will be a small difference due to losses
and incomplete flux linkage, but not sufficient to be noticeable within
the precision achievable from oscilloscope measurements.

So now to the question of why the voltage (strictly, the open-circuit
voltage) across the additional winding is equal to the back voltage produced by the inductor. The
reason is that the back voltage is due to a changing magnetic field, and the experiment has been
constructed in such a way that the fields affecting the two windings are practically the same.

Hence, since the two windings in this case are also identical (they have the same number of turns
and occupy almost the same volume of space), the voltage across the sensor coil is (practically)
equal to the reaction voltage which controls the current flowing from the generator.

We have not learned anything new about magnetism from that; but what we have deduced is
fundamental. A transformer is a device which allows the reaction voltage produced by one inductor
to be sampled by means of another inductor (without necessarily making any direct electrical
connection). To that we can add, that the sampling can be in whole or in part, depending on the
degree of magnetic coupling; a matter which we will quantify shortly by introducing the concept of
mutual inductance. At the risk of getting a little ahead of ourselves, we can also note that all
windings can can carry a current. Hence we can use an auxiliary coil to create a time-varying
magnetic field which will modify the reaction voltage produced by an inductor. The simplest way in
which to do that is to connect an impedance to the second winding; in which case, if the load
contains a resistive element, then the reaction will be changed in such a way as to allow a net
energy flow from the generator to the resistance. Another possibility however, so deleteriously
neglected in many textbooks, is to connect an active network to the second winding and thereby use
a transformer (say) to cancel an unwanted component of a signal, or use a 'neutralisation' winding to
cancel the 'self-capacitance' of an inductor.

The more exotic uses of transformers require a clear understanding of the
phase relationships between all of the currents and voltages involved. This,
as mentioned above, is a general source of confusion; but to begin, we can
note that closing the switch in the circuit above converts our bifilar
transformer into an inductor wound with two-strand bunch-wire, and we end
up with the circuit on the right. What we have now is a 1:1 autotransformer;

Vback
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a network of dubious practical merit, but leaving little doubt regarding the relative phases of Vi, and
Vout .

10. Mutual induction

The extraordinary property of Faraday's way of thinking about electromagnetic induction is that it is
relativistic. Increasing the current increases the number of flux lines, and reducing it vice versa.
Moving a loop through a field of external origin causes flux lines to switch from being on the
outside of the loop to being on the inside, and vice versa. Either way, the number of flux linkages
changes and a voltage is induced; and there is no distinction between a moving field and a changing
field. This strange correspondence fascinated both Maxwell and Einstein, and led to a mathematical
formulation which Faraday, by his own confession, did not fully understand. Still Faraday could
see what was going on in his mind's eye, and we reject his wonderful metaphor in favour of a more
abstract view at our peril. We need a formal and rigorous general approach of course; but there is
no substitute for having a good idea of what the answer will be before tackling some complicated
mathematical problem.

Here, of course, we focus on the effect of a changing field (transformers), rather than the effect
of a moving field (generators); but regardless of how we fix our attention (and given the
complicated nature of the three-dimensional problem) it must seem, at first, that we are in
theoretical deep water. It transpires however that, by using the concept of flux linkage, the matter
of incorporating transformers into circuit theory becomes a straightforward topological problem;
1.e., a matter of interconnectedness, like two-terminal network theory itself. By using a topological
argument, we can capture the magnetic interaction between a pair of inductors in a single
parameter; and although we will still need to use arguments involving fields in order to calculate
that parameter from first principles, there will be many situations in which we will be content just to
measure it.

The general mechanism whereby a time varying current in one coil
induces a voltage in another is illustrated on the right. Here we can see that
some, but not all, of the flux links with the pick-up coil; and it should also
be obvious that the induced voltage will depend on the proximity of the
coils. The law which governs the relationship between inter-coil distance
and output voltage is dependent on the geometry of the field, and so will be
complicated; but if the system is linear (which it will be to a good
approximation in the absence of hard magnetic materials), then the
complexity of the field problem cannot add complexity to the circuit-
analysis problem. In other words; for any given frequency component in
the input current, there will only be one frequency component in the output
voltage. This means that, for a given geometry, the relationship between I,
and V, at a particular frequency is governed by a mathematical constant.

Recall that the self-inductance of a coil is defined as the number of flux linkages per unit current.
It follows that, in the case where current in one coil produces flux linkages in another; there is a
parameter, having units of inductance, which will allow us to calculate the induced voltage. That
parameter, not surprisingly, is called the mutual inductance, and is defined as: 'the number of flux
linkages in coil 2 per unit of current in coil 1'; i.e.:

M=Ay/1 [Henrys]

Notice that the current is written as a pseudoscalar. As before, it is necessary to use instantaneous
voltages and currents when relating circuit parameters to field parameters; and the actual phase
relationships can be incorporated later.

Now, referring again to the diagram above, consider what will happen if the pick-up coil is
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rotated through 90° about its centre point in the plane of the diagram. The flux which links with
one half of the coil will then be in the opposite sense to that which links the other half; and there
will be found a critical point at which the total number of linkages is zero. Individual linkages can
be positive or negative. Hence, at the critical point, M will be zero, and there will be no output.

If the pick up coil is rotated through a full 180°, the polarity of the voltage V, will be reversed.
Notice however, that there will be no intermediate output phases during the course of the rotation;
the voltage will simply diminish with constant phase until the 90° point is reached, and then
reappear inverted. Hence mutual inductance is pseudoscalar; it can be positive or negative, but it
has no intermediate directions because it is conceived as the sum of positive and negative linkages
per unit current. A surprising corollary of this observation is that M must be given by a two-valued
function; and in view of the parameters from which it has to be derived, it must be related to the
geometric mean of the inductances of the two coils. Hence we can deduce the general form:
M=k V(L L,) [Henrys]
where k is a dimensionless factor, called the coupling coefficient, which we will shortly derive
from the field topology. Notice that, if we take the self-inductances as given, k provides a
dimensionless alternative to mutual inductance, and will therefore turn out to be a convenient
circuit-analysis parameter.

Before we declare unequivocally that M can be either positive or negative however, we must be
mindful of convention. When analysing circuits which have a fixed physical configuration, it is
good practice to mark the start of a winding with a dot.
Hence, upon 180° rotation of the pick-up coil (or reversal of
the winding direction, which amounts to the same thing), the
dot jumps from one end of the winding to the other. In that
case, if the circuit-analysis arrow adjacent to V, is always
drawn pointing towards the dot, then M will remain
unchanged. Hence M can usually be made positive by
considering the phasing of the windings; and this is
generally a sensible idea. There is one situation in which M
must be allowed to change polarity however, and that is
when dealing with variometers; a variometer being a pair of
coils with a control shaft allowing one to be rotated relative
to the other (see illustration).

Although we will shortly consider the general case in which the coupling between coils is
incomplete; it is instructive to begin with the special limiting case, never quite achievable in
practice, in which all of the flux from one coil links with the turns of another.
This, of course, is the condition which defines an ideal transformer. One way  I4 .
to approximate complete linkage (neglecting internal inductance) is to use
twisted bifilar winding (as in the example given in the previous section); but
that is only possible when both coils have the same number of turns (and the
distributed capacitance between the wires complicates matters at high
frequencies). To link the flux (almost) completely between coils having
arbitrary numbers of turns, a magnetic circuit of low reluctance (i.e., a
transformer core) is required. For circuit-analysis purposes however, we are
not concerned with how it is done; provided that the models we end up with
can be corrected for the deficiencies of practical devices.

The logical step which will enable us to deduce the input-output
relationships (transfer functions) for any system of coupled inductors in the lumped-component
limit (i.e., when conductor lengths and the distances between coils are small in comparison to
wavelength), lies in the observation that flux linkage is a relationship between the flux through the




28

path and the turns in a particular coil. In other words; flux linkage does not figure directly in the
coupling between separate circuits; because the two coils are coupled to the flux, not to each other.
Hence the flux on a path through several coils is notionally de-linked from the originating coil and
re-linked to the others. When we apply this idea to the simple ideal transformer case, the
generalisation will soon become apparent.

Note that, in much of the working to follow, we will assume that all coils are wound with wire
which has no resistance. This is permissible in the limit that there are no capacitive currents (i.e.,
all current follows the wires), because conductor resistance, like internal inductance, is associated
with energy-exchange processes in the body of the wire, and is therefore excluded from the
magnetic interaction (to a very good approximation at least). Conductor losses can therefore be
included in circuit analysis as a separate lumped component in series with the wire. Magnetic
losses are a separate matter, and can be handled by defining permeability (and hence inductance) as
complex; but for the present purpose we will assume that magnetic media are ideal.

11. Mutual inductance, ideal case

The diagram below gives a topological representation of the coupling which takes place in an ideal

transformer; i.e., the spatial distribution of the field is ignored, and only the route taken by the

magnetic flux as it threads through the coils is considered. Information about path length and area

has not been discarded however, because it is wrapped up in the inductances and turns numbers, i.e.,

in the parameters L;, N}, L, and N,. Note incidentally; that it might be argued that non-idealities

such as linkage inefficiency can be ignored in any discussion of ideal transformers. In the sections

to follow however, we will retain the distinction between effective turns and actual turns in order to

avoid confusing two separate physical phenomena; these being: inductance which fails to

materialise (because linking is inefficient); and inductance which fails to couple with other

inductances (because not all of the flux can loop around the turns of other coils).
The self-induced voltage across the coil L, is equal to the instantaneous

applied voltage V. It is also equal to the rate of change of flux linkages in L,

per unit time. Hence:

V.= aAl /ot = Nl 6(131/8t

Thus the rate of change of flux in the magnetic medium, i.e., the actual flux

after de-linking from L, is:

6CD] /8t = V] / N]

The instantaneous voltage induced across the coil L, is given by the rate of

change of its flux linkages per unit time. Hence:

Vz = 8A21 /8t = Nz 8@1/8‘[

Thus:

Vz = V1 Ng / Nl

Now recall that:

N =N kg

For a transformer to be ideal, all of its inductance must be coupled. Therefore it must either be a

1:1 autotransformer, or the coils must have no internal inductance and must be equally subject to

any field inhomogeneities. It follows that:

ki = ka2

and so:

Vz = V1 N2 / N1

This, of course, is the classic turns-ratio rule for the ideal transformer; and so offers no surprises,

except perhaps for the simplicity of its derivation. A point to note here however is that, although

linkage inefficiency is eliminated from the turns ratio, it is not eliminated from the process of

inductance calculation; so we cannot simply replace every instance of N with N.
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Now, mindful that the back voltage is equal to the applied voltage, the inductance L, is defined
in the relationship:
Vl = L1 811 / 8‘[
Using this as an analogy, we can propose a definition for mutual inductance having the same form;
1e.:

V,=Mdl, /ot
According to this definition, the voltage ratio is:
Vo/Vi=M/L (11.1)

In order to make the next logical step, it is necessary to establish an important point. Mutual
inductance is not merely a circuit-analysis parameter; it is an actual physical inductance. It
represents an energy-storage mechanism which is accessible to a pair of coils, whereas pure self-
inductance is an energy-storage mechanism which is only accessible to a single coil. This means
that the mutual inductance cannot change when the roles of the two coils are transposed. Thus we
can swap the input and the output; and in terms of the analysis, the only effect will be to swap the
subscripts 1 and 2. In this way, V, becomes the input voltage, and V, becomes the output, and we

get:

Vl /Vz = M / Lz
Thus:

M / L1 = L2 / M
i.e.:

M =7(L; L,)

M is the geometric mean of the coupled inductances. Recall, from the earlier discussion, that the
expression for mutual inductance was expected to be of the form:

M=k(L,L,)

Hence, the coupling coefficient, k, for an ideal transformer is 1 (or -1 if we point one of the voltage
arrows away from the dot).

12. Windings in series, ideal case

When two windings on the same transformer are placed in series, a single inductance is obtained,
but due to the coupling between the coils, the total inductance is not the same as the sum of the two
separate inductances. The reason for that, of course, is that the flux from coil 1 links with the turns
of coil 2, and vice versa. This situation is represented topologically in the diagram below. The two
fluxes are, of course, superposed (and therefore indistinguishable) in the actual field; but it is
perfectly legitimate to consider them separately for accounting purposes. Now (noting that both
coils carry the same current) we can determine the inductance, by inspection, as the total number of
flux linkages per unit current; i.e.:

L=[A+A+D, N, + D, N, ]/1

The terms are, in order: the flux linkage in coil 1 due to its own current; the
flux linkage in coil 2 likewise; the linkages in coil 2 due to the flux from coil
1; and the linkages in coil 1 due to the flux from coil 2. We can also make the
following substitutions:

A]/I :L1 N AZ/I:LQ , (D| :A|/N1 N (DzzAz/Nz
Hence:

L:L| +L2+L1 (Nz/N])"'Lz(N] /Nz)

But, from the previous section, we have:
N,/Ni=M/Li=L,/M

Hence

L=L +L,+2M

Now consider what happens when the connections to (say) L, are reversed. In that case, the number
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of turns N, becomes negative and the direction arrow for the flux @, is reversed (i.e., ®, becomes
negative also). Thus the cross linkages, ®,N, and ®,N,, both become negative. Hence:

L= L1 + Lz - 2M

The two fluxes in superposition tend to cancel. The amount of energy which can be stored in the
field for a given current is reduced, and so the inductance is reduced. Thus there are two
configurations for coupled inductors in series, known as series aiding, and series opposition; and in
general, the expression for the total inductance is:

L=L,+L,+2M

One property of this expression which is not immediately obvious is that the total inductance is
always positive (assuming that L; and L, are positive); even when the coils are in opposition and the
coil deemed to have negative turns has more turns than the other. This can be seen by considering
the requirement for complete inductance cancellation (which is only possible in the ideal case), i.e.
L=0 and so:

L] + L2 = 2M

Using the substitution: M=V(L, L) , we get:

Li+L,=2V(L L)

and squaring both sides gives:

(L] +L2)2:L12+L22+2L1 L2:4L] L2

Hence:

L12 + L22 = 2 L] L2

L2+L,y*-2L L,=0

1e.:

(Ll - Lz)2 = O

Complete cancellation can only occur when L, = L,, and so the mutual inductance term cannot be
greater than the sum of the separate inductances. This constraint also sets an upper limit on the
inductance which can be obtained when the coils are series aiding, i.e., when

L=L,+L,+2V(Li L)) and L =L, then L=4L,

What this says is that when the number of turns in a fully-linked coil is doubled, then the inductance
is increased by a factor of 4. This rule, of course, is also captured in the expression for L in terms of
the transformer-core inductance factor:

L=A.N> where Ap=pA./ L

Earlier we gave the inductance for two windings in series as:

L:L1+L2+L1 (Nz/Nl)""Lz(Nl/Nz)

Putting this in terms of the inductance factor we have:

L:AL[N12+N22+N1 (Nz/ )+N2 (Nl/ )]

1e.:

L :AL ( le + sz + ZNlNz )

which factorises:

L:AL(Nl +N2)2

This gives a slightly broader interpretation of the inductance factor formula because, in the series
opposition case, we can consider the quantity N,+N, to represent the effective number of turns as
the sum of positive and negative turns; i.e.:

L=A.N2 where N=N +N\,

with N, (say) positive and representing turns wound clockwise around a flux which recedes when
the current is positive; and N, negative and representing turns wound anticlockwise around the
same flux. No matter whether the negative number is greater in magnitude than the positive
number however; the inductance is always positive because it is proportional to the square of the
total.
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13. Mutual inductance, general case
The simple flux-linkage counting principle is straightforwardly extended to the general (i.e., non-
ideal) case. Starting with the unloaded transformer, we can say that the driven coil (which we may
refer to as the 'primary' when it is the only coil connected to an active network) produces a flux:
(1)1 = A] /N]
Of this however, only a proportion, k,®, (say), threads through the turns of L,, and the remainder,
(1-k,)®,, 1s private to L,. Notice here that the communal flux is shown, in the diagram below, as
threading through all of the (effective) turns of L,. What happens in reality is a mixture of
complete and partial linkages; but from a topological point-of-view, the only necessary condition is
that we count the total number correctly.

Now, as before, we relate the voltage driving L, to the rate of change of flux linkages; i.e.:
Vl =8A1 /6t=N1 6(131/8t I1

Thus, bearing in mind that only a proportion (xk;) of the flux threads L,, we = —i =
determine the induced voltage: L1 i
V= 0Ax /6t =N, k; 0D/ot V1 M
Hence: N1 -
V. /Vi=k Ny /N,
From this, it can be seen that the coefficient k; is the factor by which the "5“_ y
secondary induced-voltage falls short of that predicted from the turns ratio. = Lz V

. . o o 2
Defining mutual inductance as before, we have: M2
Vz =M 811 /ot and V] = L] 611 /ot
Hence:

Vz/V] :M/L1 :kl Nz/N]
Now, in order to complete the definition of mutual inductance, we swap the roles of the two
windings. Thus:
Vl'/Vz':M/Lzzkle/Nz
where the voltage-shortfall factor, k, , which results from using L, as primary
is, in general, not identical to and rarely exactly the same as k; (for which
reason the voltages have been primed, to show that their ratio is not the
reciprocal of that which appears in the preceding equation). Thus:
M/(L] k]):szz/M
and so the general expression for mutual inductance is:
M=5V(L ki Lo ko)
M can be either positive or negative because it is given by a square-root
function; but it is, by convention, taken to be positive when the circuit-
analysis currents flow towards the dots. The expression can also be written:
M =2k (L, L,)
Where the coupling coefficient, k, is the geometric mean of the two voltage-shortfall factors, i.e.;
k=+V(k; k)

Now notice from the working above that the transformer voltage ratios can be expressed using
only the inductances and the coupling coefficient k. This follows because:
V,/Vi=M/L =k [V(L,L,)]/L,
ie.
Va/Vi=kV(IL/Ly) |
and similarly, when L, is used as the primary:
Vi'/ V' =k (L /L)
This means that the basic properties of a two-coil transformer can be specified using only three
parameters, either {L,, L,, M} or {L,, L., k}; the latter choice being used for the standard SPICE
model and having the convenient property that k is dimensionless and lies between 0 and 1.
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Knowledge of the turns ratio is not necessary for circuit-modelling purposes (although it is needed
for the physical design). Likewise it is not necessary to specify the individual voltage shortfall
factors (k; and k,) explicitly; but note that this latter contraction can lead to a logical trap.

Some influential authors, notably Terman® and those who have followed his lead, make the
mistake of assuming that because only one k is needed, then, k = k; =k,. This implies that the
extent to which the flux from one coil fails to couple with another is dictated by the extent to which
a flux from the other coil fails to couple with it. Other than by accidental or carefully-engineered
coincidence, there is no physical basis on which that can be expected to happen. It is a fallacy,
because there will always be some proportion of the inductance of a coil which does not couple
with other coils and which is not under the control of other coils (internal inductance for example).
The consequence of the logical error is to give the transformer model an inherent property of
voltage-shortfall reciprocity which actual devices do not posses. As will be shown later, this is
equivalent to assuming that the off-load output voltage of a potential divider remains the same when
the input and output terminals are swapped. This mathematical inconsistency renders transformers
effectively incomprehensible to those who have failed to notice it.

With regard to the turns-ratio voltage-transformation rule of the ideal transformer, it is often stated
that this is no longer meaningful for loosely-coupled transformers. From the working above
however, we can see that the relationship has not gone away, it has simply become proportional
rather than absolute. Furthermore, the parameters which dictate the constants of proportionality are
governed by the physical dimensions and permeabilities of the magnetic paths, and so remain nearly
constant when the turns numbers are changed.

Recall that the effective number of turns in a coil is defined as:

N =N vVky

where, in the case of a current-sheet solenoid, ky = ki, (Nagaoka's coefficient). Hence, for pairs of
current-sheet solenoids in proximity:

Vz/Vl :k1 Nz/Nl :kl (Nz/Nl) \/(kLz/kL1)

and

Vi /szkle /szkz (N1 /Nz) \/(km /kLz)

ki, depends only on the length / diameter ratio of the solenoid. It does not change with the number
of turns, provided that the winding does not change in length (or diameter) when turns are added or
subtracted. Hence, for an air-cored transformer considered in the current-sheet approximation; the
induced voltage depends on the turns ratio, the distance between the coils, and the overall shapes of
the coils. It does not depend strongly on the turn spacings and wire diameters, provided that the
wire diameter is small in comparison to the coil diameter. Even so, the calculation of M (or k) from
field considerations is somewhat involved. For those interested in doing so, the subject is covered
in detail in F W Grover's monograph'® and in the (public domain) NBS science paper'' on which the
later book is based.

Note, incidentally, that in the current sheet approximation (i.e., neglecting internal inductance,
and other small corrections), k, can be made the same as k; by symmetry. If the two solenoids are
the same in both length and diameter, then the overall field patterns will be practically identical, and
the induced voltage shortfall will be the same either-way. Also, in that case, Nagaoka's coefficient
will be the same for the two coils, and so we get:

Vz/V] :sz/N1
Thus it is possible to engineer voltage reciprocity to a good first-order approximation; but it is not
sensible to assume that such reciprocity is a natural property of transformers.

9 Radio Engineering. F E Terman. 3rd edn. McGraw-Hill. 1947. p56.

10 Inductance Calculations: Working Formulas and Tables. F W Grover, 1946 and 1973.
Dover Phoenix Edition 2004. ISBN: 0 486 49577 9.

11 Formulas and Tables for the Calculation of Mutual and Self Induction. E B Rosa & F W Grover, 3rd edition
1916, with 1948 corrections. Bureau of Standards scientific paper No. 169. [BS Sci. 169]
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14. Coupled inductors in series, general case

Having established what is meant by incomplete coupling, determining the inductance of a series
combination of coupled inductors is now straightforward. It is, of course, the total number of
linkages per unit current; i.e.:

L: [A[ +A2+A21 +A12 ] /I

where the last two terms are respectively: the linkages in coil 2 due
to the flux from coil 1; and vice versa. Now identifying:

A21 = Nz (D21 Where (D21 = kl (Dl and (Dl = A1 /Nl

and vice versa, we have:
L:Ll+L2+[(Nz/Nl)klAl+(N1/N2)k2A2]/I

ie.:

L:L1+L2+(N2/N1)k1 L1+(N1/N2)k2L2

but, from the working in the previous section:
M:(Nz/Nl)k1L1:(N1/Nz)k2L2

Hence:

L=L +L,+2M

Also, if we swap the connections to one of the coils, we make both the turns in that coil and the flux
from that coil negative; causing both of the mutual inductance terms to change sign. Thus, in
general:

L=L +L,£2M

The expression is the same as for the ideal case, the difference being that the magnitude of the
mutual inductance is not at its theoretical maximum. An equivalent expression is:

L=L,+L,+2k V(L Ly

where

k =+V(k k»)

which gives the ideal case when k=1.

—a

<1

ka2

FataTtata)
=
a

(1-k2) D2

’

15. Measuring M

One matter which must be understood is that a pair of coupled inductors with a coupling coefficient
falling considerably short of unity does not constitute a failed transformer design. On the contrary,
there are many situations in which a small value of k is desirable; particularly in the design of
bandpass filters. An important application (which we will examine later) lies in the flat-topped
bandpass characteristic which can be obtained by using a pair of loosely-coupled LC parallel
resonators. This, of course, is the basis of the ubiquitous superheterodyne intermediate-frequency
(IF) transformer.

In contrast to the usefulness of loosely coupled transformers, there are fewer obvious
applications for series-connected pairs of loosely-coupled inductors. Instead, the utility of the
configuration lies in the fact that it can be used to measure the mutual inductance of a pair of coils
which are intended for use as a transformer. If the coils are connected series aiding, then the
inductance is:

L:= L1 + Lz +2M

And when the coils are connected in series opposition, the inductance is:

L.= L1 + L2 - 2M

Subtracting the latter from the former gives:

L+ -L.=4M

If the inductances of the coils are measured separately, k can also be determined; i.e.:
k=M/(L L)



34

16. Magnetic path analysis

The concept of 'effective turns number', N, was introduced earlier as a logical necessity in ensuring
that flux-linkages are counted correctly. It is involved in the definition of inductance twice, once in
the determination of MMF, and once in the counting of linkages to the resulting flux. Hence the
inductance of a coil is given by an expression:

L=N2puA/¢
This can be turned into an expression involving actual turns, thus:
L=N?ky 58 A/t

Where ky accounts for any inductance shortfall due to flux loops not enclosing all of the turns.
From this we obtain the identity of the linkage efficiency factor:
Vku=N/N
We can also aggregate the path geometry and permeability parameters into a single inductance
factor; which is defined as:
AL =H A / £
Hence:
L:I(IzzAxL:N2 kHAL
The use of inductance factors is familiar practice when dealing with transformer cores; but here we
generalise it to any coil, with the proviso that it is strictly the effective number of turns, not the
actual number, which is required when determining inductance. The square of the linkage
efficiency (i.e., kn ) is associated with the turns, not with the inductance factor; because Ay, is a
measure of magnetic conductance. In other words, we argue that ky cannot be made to disappear by
factoring it into A, because the reluctance of a path is not affected by the efficiency with which the
fluxes from the individual turns of a particular coil are injected into it.

Now, having separated linkage efficiency from the properties of the magnetic path; we can create
a complete topological model from which the physical identities of the voltage-shortfall factors, the
coupling coefficient, and the mutual inductance can be deduced. The key to what follows lies in
making use of a relationship which exists between magnetic flux and the generalised inductance
factor. Recall that inductance is defined as the number of flux linkages per unit current. Thus we
have several alternatives:
L=N?AL=A/I=N®/I

Hence:

NAL: d/1

1.e.:

O=NIA. | 161 |

Notice here that NI is magnetomotive force (MMF). Hence this is a statement of Ohm's law for
magnetic circuits:

Flux = MMF x magnetic conductance = MMF / reluctance

'Magnetic conductance' is the reciprocal of reluctance (i.e., magnetic resistance, S ), which means
that (16.1) is exactly analogous to the statement:

I=VG=V/R (Ohm's Law)

(G being the standard symbol for electrical conductance). It follows that we can complete the
topological theory of transformers by using a version of admittance theory involving magnetic
parameters; except that it is easier than general admittance theory because the behaviour we wish to
analyse involves only instantaneous fields; i.e., complex numbers are not involved. Phasors come
later, when we use Faraday's law to relate currents to induced voltages, using the mapping outlined
at the end of section 8. The instantaneous voltage induced in a pickup coil is, of course, the rate of
change of flux on the path multiplied by the effective number of turns. By differentiating (16.1)
with respect to time we get:

od/ot =N Ay, ol/ot
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and so we determine induced voltages using expressions of the form:

V =N od/ot=N> A, dl/ot = L dl/ot (cf. Faraday's Law)

The collection of the physical path parameters into a single coefficient Ay, constitutes the mapping
from the field to the topological representation; and Faraday's Law will later give us the mapping
into circuit theory.

In section 14, the magnetic flux associated with a pair of coupled inductors was separated into four
parts. These were: the flux which is private to coil 1; the flux which is private to coil 2; the flux
from coil 1 which links with the turns of coil 2; and the flux from coil 2 which links with the turns
of coil 1. In the context of transformer theory, the two private fluxes are known as leakage fluxes;
1.e., they are the fluxes which escape from involvement in the coupling. The magnetic system so
defined is also meant to account for al/ of the flux; i.e., any flux line which fails to link with the
turns of both coils belongs, by definition, to the leakage flux of the coil which produced it. In this
way, the four fluxes are notionally divided between three magnetic paths; these being: the
communal path and the two leakage paths.

The general situation, as just described, is captured in the topological model shown below. One
obvious feature of this model, is that it can also be taken to represent a structure consisting of two
coils wound on three transformer cores; the behaviour of the system being considered in the limit
where the magnetic flux outside the cores (or paths) is negligible. If we also take the liberty of
allowing the term 'ideal transformer' to be used in cases when the coils have ky <1 ; then we have an
ideal transformer made non-ideal by the provision of leakage paths; an arrangement which is
exactly analogous to the way in which coupling occurs in practical devices.

An important property of the model is that; if the reluctance is finite on a given path, but
elsewhere infinite; then the flux from a particular coil has no choice but to occupy the paths
provided for it. Hence, at least notionally, we can calculate the inductance L, from the turns and the
inductance factors Ap. and Ay .

The overall inductance factor which results when a coil is wound around a pair of transformer
cores is easily derived from first principles. The applied voltage is equal to the back voltage, which
is in turn equal to the rate of change of linkages per unit time. If the flux is linked to every turn,
then the total number of linkages is simply N® ; and since there are two paths, the flux is divided
into two parts. Hence, for coil 1 we can write:
V] = 8A1 /6t = N] 6@1 /6‘[

= Nl 8((I)1a + (le )/at = L1 611 /8t
but earlier we determined the relationship (16.1):
O=NIA,

Thus:
L1 811 /at = Nl 8(N1 IALa + Nl I ALb)/at
= N]Z (ALa + ALb) 611 /6t

1e.:
Li=NZ (AratAw) , Dia=(1-K1)d1  Pw=K1P1
We can also use an identical method (but with
different subscripts) to derive the inductance of coil 2. Thus:
L,=Ny? (A + ArLe)
When a coil is wound around several paths, the overall inductance factor is simply the sum of the
individual inductance factors. This can also be deduced directly by analogy with admittance theory;
because we know that the overall conductance of a set of parallel conductances is obtained by
addition (i.e.; I/R=1/R; + 1/R, +...).

Admittance theory will take us further than that however. Just as we can calculate the currents in
a set of parallel resistors as a proportion of the total, we can calculate the relative fluxes on a set of
magnetic paths. Analogous electrical and magnetic systems are depicted in the diagrams below;
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and if we bear in mind that flux (®) is the counterpart of current; inductance factor (A.) is the
counterpart of conductance (G); and MMF (NI) is the counterpart of EMF (V); then it is apparent
that we can produce expressions for the partial fluxes ®, and @y, .

ti=latle 5] Is

V

Ga=11'rRa
Go=1/Rb

In the electrical case, if G=G,*+G, , and R=R,//R,=R.R;/(Ra+Rp) , then;
EMF =V =1R =1/G = 1/(G,+Gyp)

L=V/R.=VG.=1G,/(G.+Gyp)

Similarly:

Ib = I Gb / (G3+Gb)

In the magnetic case, if A;=Ar.tAuws , then;
MMEF = NI = ®S = ®/Ar = O/(Ara+Awy)
Hence:

®a = NI ALa = @ ALa /(ALa+ALb)

and

Dy =D Ay /(AratAwp)

We can now apply this generalised result to the three-path model for a pair of coupled inductors.
Using the nomenclature given earlier, for the leakage flux of coil L, :

D, = (1-k)) @1 = Dy Ara/(AratAry)

ie.;

1-k; = Ara/(ArLatAuwp)

and for the coupled flux:

D=k ©1 =Dy Ay /(AratAwy)

1.e., the voltage shortfall factor is:

ki =Aw/(AatAw) oL (16.2)

Similarly, for the coil L, :

ko =Ary/(AptALc)

and

1 -kz = ALc / (ALb+ALc )

Now, recall from section 13, that the transformer coupling coefficient is the geometric mean of the
voltage shortfall factors, i.e.:

k=+V(k; k)

Thus:

k=%Auw/ V[ (AutAw) Au+A)] | 163

Also recall from section 13 that:
M/leklNz/Nl and M/Lzzkle/Nz
ie.:

M:kl L1 Nz/lekszNl/NZ

but
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L =N;2 (ALatAw) and L,= N,2 (ArvtArLe)

Substituting for L, in the expression for M we get:

M = k1 (AL3+ALb) le Nz / Nl

and substituting for k; gives:

M = Nl Nz (ALatAvy ) Awp/ (AratAwp)

ie.:

M = Nl Nz ALb ‘ 16.4 ‘

The same result will be obtained if L, and k, are used in the derivation. Mutual inductance, perhaps
unsurprisingly, turns out to be the geometric mean of those parts of the coupled inductances which
share a common magnetic path. Note incidentally, that in this formulation (not involving a square-
root), the sign of M is dictated by the relative signs of N, and N, ; i.e., if the turns are in opposition,
it is negative.

Unfortunately, knowing that M is governed by the inductance factor of the shared path does not
simplify the process of calculating it for pairs of loosely coupled coils with non-magnetic cores; the
reason being that the difficulty of calculating Ay is no less than that of calculating M itself. It does
however permit quantitative analysis of systems based on high-permeability transformer cores. The
three-path topological model also suggests ways of using magnetic cores to make loosely-coupled
transformers for bandpass filters, one possible advantage being minimal stray magnetism (i.e., no
need for a screening can).

17. Reciprocity failure

Some important general points are raised by the preceding discussion. Most significantly, the
magnetic path through an inductor can be arbitrarily divided into sub-paths, and the overall
inductance is given by the sum of the inductances on the separate paths. This means that, for circuit
analysis purposes, the leakage inductance and the coupled inductance associated with a given coil
can be treated as separate elements in series. Furthermore, the leakage inductance can be
subdivided into (say) internal inductance and external uncoupled inductance, one possible reason
for doing so being that these different parts have different frequency dependences and are described
by very different mathematical expressions.

As has already been mentioned in section 13, voltage shortfall reciprocity is not an inherent
property of transformers. This can be understood from the working in the previous section, because
the three path model can be constructed using (say) toroidal inductor cores, and it is obvious that we
are at liberty to choose radically different values for Ar. and Ar. . The point is perhaps most
convincingly made however, if we separate the coupled I Als Al
inductances from the leakage inductances, as the path
analysis permits. This is done in the diagram on the
right, and results in an electrical model comprising a
pair of completely-independent leakage inductances in
series with the windings of an ideal transformer. It is Vi
for this reason, incidentally, that the ideal transformer is
important; not because it is realisable, but because one kil 1
lies (analytically) at the heart of every practical V2 -
transformer. N1

An ideal transformer is completely specified by its
A value and its turns numbers. Because we have ALb
separated the inductances involved into pairs of elements in series however, it might seem that we
have lost knowledge of how many turns there are in the coupled inductances; but it transpires that
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we have not. From an analytical viewpoint, the partial inductances all have the same number of
turns as the parent inductance. This curious fact is easily proved as follows:

The two paths accessible to L, are A, and Ay and the coil has N, turns. Hence:

L, =N (AvatAwy)

The associated leakage inductance is:

(1-ki) Ly = (1-k;) Ny? (AratAw )

but, from equation (16.2):

ki = Awy/(AratAuwy)

Hence:

(1-k)) Ly = [1-Awp /(AratAwp)] N2 (AvatAuw)

multiplying out:

(1-ki) L1 = (Ara+ Ary - Ay ) Ny?

Hence, the number of turns in the leakage-inductance component of L, is N; .

The coupled inductance component of L, is:

kL= le (ALu*Al,h ) Arp / (Al,a*ALh)

Hence, the number of turns in the coupled part of the inductance is also N, . A similar exercise
(with different subscripts) will show that the components of L, all have N, turns. The reason is that
the separability of a path into sub-paths gives rise to a set of inductances which must be added to
obtain the complete inductance; and in circuit-analysis terms, that corresponds to a set of
inductances in series. The number of turns around each sub-path however, is always the same as
the number of turns in the whole coil. This artefact of the analysis is, from a modelling standpoint,
largely irrelevant in the case of leakage inductances, but useful with regard to the coupled
inductances. Thus (presuming that we can determine the linkage efficiency factors) we know the
turns-ratio, and hence the voltage ratio, of the ideal-transformer part of the model.

Now we can explain the lack of voltage-shortfall reciprocity by treating the series elements as
potential dividers. Referring again to the diagram; when the current I, is flowing, the voltage (V1»)
at the input to the ideal transformer is determined by the ratio of the impedances of the leakage
inductance and the coupled inductance. Hence:

Ve=kV,

The output of the ideal transformer (the induced voltage) is given by the turns ratio, and so:

V21 /V12 = Ng/Nl

1e.:

V21/V1:k1N2/N1

But when the transformer is unloaded, the voltage drop across the secondary leakage inductance is
zero, and so V,; = V,. Hence:

Vz/V] :kl NQ/N]

If we swap the roles of the two windings and repeat the exercise, we get:

V]' /Vz’ = kz N] /Nz

where the voltages have this time been given primes, as a reminder that they are not the same as in
the previous case. Voltage reciprocity only occurs when k; = k,, and that only occurs when

Ara = Arc. Note however, that an ideal transformer (considered in isolation) does have perfect
reciprocity, because it has no leakage inductances and so, in that case; A =AL.=0.

So now, having already laboured the point somewhat; we might wonder why it is that some
textbooks assume reciprocity to be true and proceed to analyse networks on that basis. Perhaps the
answer lies in the symmetry of the mathematics? But were that correct, it would be possible to take
a transformer which does obey the principle of reciprocity and place an arbitrary inductance in
series with one of its windings. That inductance would then become part of the leakage
inductance, and on adding it to that already existing, we might expect to be able to redefine the
network in such a way that reciprocity is once again true. We will leave that as a short exercise for
those who are particularly interested in this matter; but be assured that it does not work.
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It might be argued however, that the reciprocity defect is not important. Many transformers do
have comparable leakage paths on both sides; and as we will see when we come to discuss
impedance transformation, it is possible to create equivalent networks by transferring impedances
from one side to the other (provided that the external reactances are small in comparison to the
coupled reactances). Thus a reciprocal transformer model might prove successful in some
circumstances; but there is a great deal of difference between making an approximation as a
conscious act and applying a theory which is wrong.

Furthermore, there is an important class of transformers which are highly asymmetric. These are
the ubiquitous voltage-magnifier transformers; which find use in such diverse applications as spark
generators (ignition coils and Tesla coils), vertical antennas, cathode-ray tube EHT supplies, and the
narrow-band filter and oscillator coils used in radio equipment. The basic principle is illustrated in
the diagram below, where a coupling-coil of a few turns is wound at the earthed end of a much
larger coil. The coupling-coil or 'link-winding' is used to inject energy, so that a large voltage can
build-up at the top of the main coil by a process of resonant voltage-magnification. Resonance is
either due to to the self-resonance of the large coil, which occurs when the length of the winding
wire is an electrical half-wavelength, or it can be brought down in frequency by attaching an
external capacitance (which, in the case of a Tesla coil, is often provided by a metal ball at the top).
Whatever the details however, the secondary network can be represented as a parallel resonator (in
the lumped-element approximation at least).

The asymmetry of the coupling
arrangement can be understood by
considering the fields. When a current (I,)
flows in the coupling-coil, it can be seen that
most of the lines of magnetic flux enclose 14
turns of the main coil, which means that =
there will be very little leakage inductance
on the primary side. When we consider the e
flux due to a current (I, ) flowing in the
secondary however, it becomes apparent that
the coupling-coil is placed at a location
where the field-lines are spreading-out. Hence most of the flux will fail to link with the primary,
and the secondary leakage inductance will be large.

The point can also be understood by considering the magnetic paths. If the coupling coil is
wound directly over the main coil, then the paths for the two coils will have roughly the same area.
The coupling coil will have very little inductance, because it has few turns and its value of
Nagaoka's coefficient will be somewhat less than 1; but its path is short and so its Ay, value will be
relatively large. The main coil, on the other hand, will have a large inductance, because it has
many turns and its value of Nagaoka's coefficient will be closer to 1; but its path is long and so its
Ay will be relatively small. Hence we have:

L] << Lz but AL] >> ALz

Now if we let:

A=A +tAw and A=A + AL

where b is the common path, and a and c are the leakage paths, we have:

Apa T Ay >> Ay + Are

1.e.;

ALa >> ALc

The voltage magnifier is highly asymmetric, but that is an essential feature of the design. If we
were to spread the turns of the coupler coil over the whole length of the main coil, then the coupling
could be made nearly symmetric, but the Q would be severely degraded by smothering the high-
voltage end with lossy insulation and stray capacitive coupling to resistive energy-sinks. In spark
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coils and transmitter coils, of course, there would also be the problem of insulation breakdown.

Note, incidentally, that the coupling does not have to be via a separate winding. It can also be
achieved using an autotransformer connection, i.e., by tapping into the main winding a few turns up
from the earthed end. In that case, apart from the lack of DC isolation, the physical behaviour will
be similar to that of separate coils; the difference being that there will be no leakage inductance for
the coupling winding (because it is physically coincident with the main winding - even the internal
inductance will be coupled), and there will be some additional resistive coupling (because the two
inductors will share the voltage-drop across the series loss resistance of the common conductor).
Thus the autotransformer has the advantage of very tight coupling in one direction, but the possible
disadvantage of spurious resistive coupling (which can degrade the out-of-band signal attenuation in
narrow-band filter applications).

Notice also that, in the context if intentionally loosely-coupled magnetic systems, the term
'leakage inductance' is not a pejorative. What might be leakage inductance to the transformer
analysis, can nevertheless be desired inductance in the overall scheme.

Thus, having established that physically asymmetric transformers are not an oddity to be
ignored; it must be observed that there will be serious error if such devices are analysed using the
k =k, =k, approach. In order to get the geometric-mean coupling-coefficient (k) right, it will be
necessary to shift leakage inductance artificially into the link-winding side. That will give the
coupling-coil a fiercely-reactive input impedance, which will not be present in the actual circuit;
and the discrepancy can easily be so great as to make the analysis worthless.

18. Magnetic shunt transformer

Depicted on the right is a coil of wire wound conventionally on a two-hole
transformer core. Ignoring the leakage fluxes outside the core material, there = —gs
are actually three magnetic paths in this system; but since no coil wound on the ¢ !
central pillar can induce a net flux on the path labelled 'b ', that path can safely E:
be ignored if the core is used according to the manufacturer's instructions. |
Hence the manufacturer's catalogue gives a nominal (production average) Ay
value for the core which is in fact Apa+Ar.. Thus (assuming perfect linkage
efficiency, i.e., N=N) we calculate the inductance of the coil: g b C
L= N2 (ALa+ALc)

There is nothing in the rules of transformer design however, to say that we cannot make use of the
outer path; and manufacturers might sell more cores should they care to publish information about
1t.

In the diagram on the right, a transformer has been constructed by
winding coils on the wings of the core, rather than on the central
pillar. Now the coupling between the coils is via the undocumented
path b, and the fluxes on paths a and c are leakage fluxes. What
might not be quite so obvious is that this model is exactly analogous
to the three-path system discussed in section 16. To see why, we
need to evoke the electromagnetic principle of continuity, which was
introduced in section 3.

Consider what happens when the two coils are connected in the
series-aiding configuration (i.e., when the un-dotted end of L, is connected to the dotted end of L,).
That means that current will be flowing into the dotted end of L, and thus, on the left-hand side of
that coil, it will be flowing towards the observer. Hence, the resulting flux on path ¢ will be anti-
clockwise and, in the central pillar, it will be in opposition to the flux on path a. Transformer cores
are usually made to be as nearly symmetric as manufacturing processes will allow. Hence the AL
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values for paths a and ¢ will practically identical. We can therefore make the fluxes on paths a and
¢ equal and opposite in the central pillar by using the same number of turns in both coils; in which
case the total magnetic field strength in the central pillar will be zero. We might be tempted to
conclude that paths a and ¢ have been rendered inoperative, but that would be incorrect.

The continuity principle states that the fields associated with separate energy-transfer processes
(i.e., photons) do not interact, provided that the medium in which wave propagation occurs is linear
with respect to electromagnetic stress. Thus (assuming for the moment that the transformer core is
linear) the fact that there is no net flux in the middle pillar does not mean that there is no flux. The
two fluxes can perfectly well thread through each other without interaction, and they still exist even
when they add up to zero. Hence, in order to understand the electrical behaviour of transformers,
we only need to identify the flux paths which are unique, and it does not matter if some of the route
1s shared by flux from other paths. It follows that paths a, b and c are independent in the regime in
which the core material behaves linearly; in which case the analysis of the system shown above can
proceed exactly as it did in section 16.

One gaping hole in the argument so-far, of course, is that no ferromagnetic material is perfectly
linear. It turns out however, that non-linearity does not alter the principles of magnetic circuit
analysis. The reason is that the divergence of the magnetic field is always zero. No process can
cause the existing magnetic lines to split. Thus the topology of the system is unaffected, and non-
linearity must be attributed to changes in the overall permeability of the path followed by a
particular field line. This implies that p for a given region within the material is a non-linear
function of the magnetic induction (flux density) B in that region. It also means that p is strictly
complex, because non-linear processes give rise to losses; i.e., core loss translates into electrical
resistance, and this corresponds to a phasor component in the coil impedance which lies at -90°
relative to the component due to pure inductive reactance. When large flux-densities are involved
(the definition of 'large' being dependent on the material); the upshot is core heating and signal
distortion (i.e., the production of harmonics because p changes during the course of a wave cycle).
None of this however affects the fundamental principles which govern the operation of the device.

So now, we can make sense of the unorthodox transformer depicted above. By winding coils on
the wings of the core, we make use of the central pillar as a magnetic shunt. This provides two low-
reluctance leakage paths, and thereby drastically reduces the coupling between the two coils. The
result is a low-k transformer such as might be used to make double-tuned bandpass filters (IF
transformers, etc.). Consequently, the point of interest here is to determine the coupling factor k,
but that is now trivial. It is given by equation (16.3):
k=Aw/ \/[ (AratAw) (AptAve) |
where, if the core is symmetric, Ay, and Ay are the same and can be estimated by dividing the
manufacturer's Ay, value by 2.

If we presume that the permeability of the material is uniform throughout (a reasonable
assumption for the low flux densities involved in signal-processing circuits), then (neglecting
leakage paths external to the core) the coupling coefficient is determined by the geometry of the
core. Thus manufacturers could publish k-values for two-hole cores used in the shunt
configuration. In the absence of that information however, the relevant parameters are easily
determined by measurement. It is a matter of winding a few turns of wire around each of the pillars
in turn and measuring the inductances. If we call the pillars 'left-hand' (LH), 'middle' (Mid) and
'right-hand' (RH), then we have:

Lin/N*=Ap+ A

LMid / N2 = ALa + ALc

Lru/ N? = Avpp T AL

Hence, assuming that the same number of turns was used in each case:
( LLH + LRH - LMid ) / (2N2 ) = ALb ......... (18.1)
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To give an idea of the shunting effect which might be obtained in small-signal RF applications,
some measurements were made on an Amidon BN-43-202 balun core'?. Coil impedances were
obtained using an admittance bridge operating at a frequency of 10" radians/sec (1.591545 MHz),
the basic reading accuracy being about £2.5%.

An admittance bridge gives impedance in parallel form (Z=R,//jX;). There is often a tendency
to neglect this point; because parallel resistance is very large for high-Q components, and so the
series-form reactance is usually practically the same as the parallel-form reactance. This however,
1s not true for inductors wound on high-permeability RF transformer cores; and so, in this case, a
parallel-to-series transformation is required. This involves treating the direct inductance reading
from the bridge as apparent inductance (L,' ), converting it to a reactance, then combining it with
the parallel resistance to obtain the inductance in series form. Thus we have:

Xp=2nf L,

and

Ri+jXs=Rp// jJXp=Rp jXp / (Rp +jXp )

Multiplying numerator and denominator by the complex conjugate of the denominator gives:

Ry + jXs =Ry jXp (Rp - jXp ) / (Ry? + X*) = (Rp Xp* +j Ry X ) / (R, + X,7)

Hence, equating imaginaries:

X =Ry’ X,/ (Ry2+X,?) and L'=X,/2nf

Notice however, that the inductance so extracted is still marked with a prime. This is because there
1s a contribution to the reactance from the self-capacitance of the coil (Cy.), and thus the inductance
obtained remains apparent rather than true. It is not possible to determine self-capacitance from a
measurement made at a single frequency; but some additional experimentation with the model,
using a fairly realistic estimate for Cy, for the windings used (about 1pF) indicated that the error due
to its neglect is about +1% for the inductance data given below. Furthermore, the object of the
exercise is to combine A values obtained from three inductance measurements to obtain a coupling
coefficient (k); and it can be seen by examining equation (18.1) that there is a correlation (because
the error is always positive, rather than random) which will tend to cancel the the effect of
neglecting C..

In the spreadsheet table below, A;, measurements made by winding 3-turn coils on each of the
pillars in turn show that the Ay, value for the BN-43-202 core is about 0.3uH/turn?, and the
coupling factor for a shunt transformer is 0.17 . This is sufficiently low to be useful for making
double-tuned bandpass filters; although the lossy nature of
the type 43 ferrite might be a counter-indication". To
confirm the result, a 3+3 turn shunt transformer was
constructed (see illustration) and the coupling was measured
using the mutual inductance method described in section 15.
In that case, the correction for parasitics is not so
straightforward, but the crude determination given agrees with the A, method within 2%. The point
is thus well established, that the lack of net magnetisation in the central pillar when the coils are
connected-series aiding does not diminish the shunting effect.

12 Type 43 ferrite, w = 850, Ar(nom)=2.89uH/turn? ; outside dimensions: 13.3 x 7.5 x 14 mm; hole diam: 3.7mm.
Datasheet: www.amidoncorp.com/specs/2-34.pdf

13 A type 61 ferrite version is also available: BN-61-202 (w = 125), requiring more turns for a given inductance, but
having lower loss and a greatly reduced temperature coefficient of inductance. The shunt-transformer k is not
affected by the material type and will be the same as determined above.



43

Coupling factor of magnetic shunt transformer
Core is Amidon BN-43-202, AL (nominal)= 2.89 yH/turm”2. =107 radians/sec

N Lp/uH X/Q Rp/Q Rs/Q Xs/Q Ls/uH /uH  Alb k

Central pillar 3 28 280 1050 69.71 261.41 26.14 AlLa+AlLc 2.90 0.297 0.170

Outer, L1 3 16.8 168 650 40.70 157.48 15.75 AlLa+Alb 1.75

Outer, L2 3 16.9 169 620 42.88 157.31 15.73 AlLc+AlLb 1.75

Aiding, L1+L2+2M 39 390 1550 92.29 366.78 36.68

Opposition, L1+L2-2M 28 280 1060 69.14 261.74 26.17 M 2.63 0.167
Difference /% 1.624

19. Half turns

It is sometimes stated that when a wire is passed through only one of the holes of a two-hole
transformer core, a "half-turn" is obtained. It is also commented,

coil on the central pillar and another on one of the wings. By - ---*---- Tt
considering this topology, we can say that the out-of-core leakage

inductance for L, will be greater than that for L, because the sum ab c
of the path inductance-factors for L, will be less than that for L, and so the relative magnetic
conductance of the external medium will be somewhat greater. This however, will be a minor effect
if the permeability of the core material is large in comparison to that that of air and copper, which is
usually the case. Hence L, is 'intimate' with the core in any reasonable sense (provided that its turns
are wound fairly tightly), and the major reason for its excess leakage inductance is that it can
produce a flux on the peripheral magnetic path labelled ' b'. What we can also infer by inspection
is that, for a coil wound on the central pillar ("full turns"), alongside or covering L, there will be
tight coupling between it and L, and minimal leakage inductance either-way. For a coil such as L,
however, assuming negligible induction in the external medium, we can write the relationship
between it and L, as follows:

by those who go so far as to make measurements, that the leakage  I1 :'""“":-'1—1"-':
inductances for 'half turns' can be large; and it has been suggested ' _-C.... Y
that this is because such turns are somehow "less intimately Vi : L1 1 % : \2
associated with the core" than full turns. E N 15
In the diagram on the right, a two-hole core is depicted having a E E
. -F_ ,

Mutual inductance: M =N; N, A
L; Coupled inductance: ki L =N* Arc
L, Leakage inductance: (1-k;) L; =N;*> A,
L, Coupled inductance: ki, L, =N,* Arc
L, Leakage inductance: (1-k;) L, =N,? Ay
Voltage shortfall L1—>L2 . k1 = ‘st / V1p‘ = ALc / (ALa+ALc )
Voltage shortfall L,—L;: ky=|Vis/ Vap| = Are / (AptALe )
Coupling coefficient: k=V(ki ky) = Are N[ (AatAve ) (AstAre ) ]

where the notation: |V, / Vi, | means: 'the voltage magnitude ratio when coil 2 is used as secondary
and coil 1 is used as primary', etc.. (and it is also the equal to |V |/|Vi, |, 1.€., the magnitude of a
ratio is the same as the ratio of the magnitudes)

Now observe that typical transformer cores are fairly symmetric, in which case Ap. = Ay, and
k, = . This means that, if we take (say) a standard mains transformer and wind some secondary
turns around one of the wing pillars, it will require twice as many turns for a given off-load output
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voltage in comparison to a coil wound on the central pillar. Also this output will droop rather badly
on load due to the extra series inductance N.*Ayy .

That then is what is meant by "half turns", but note that it is not a rigorous mathematical
construct. It can only be applied in the specific context of 'turns ratio in relation to voltage ratio' for
transformers with a primary on the central pillar and secondary windings on the wings. Any
attempt to generalise the idea by modifying the effective numbers of turns in the coils will fail
because the transformers in question are asymmetric and so do not exhibit voltage reciprocity (k; is
not the same as k,).

In section 17 it was demonstrated that when a conductor is wound around a magnetic path, the
number of turns obtained for analytical purposes (neglecting any linkage inefficiency) is the same
as the actual number of turns. That is why it is necessary to be circumspect about (i.e., avoid)
referring to turns passing through only one hole of a two-hole core as 'half turns'. This poses a
conundrum however; which, using the path designations given in the diagram below, can be voiced
as follows: If a current loop passes through one hole, it makes a complete turn around (say) paths a
and b. If it then passes back through the other hole, it makes a complete turn around paths b and c.
Why is it that these two turns in series add up to a single turn around paths a and ¢, and no turns at
all around path b?

It takes a generalisation of the rule for placing phasing dots on
transformer windings to solve this problem. It is easy to work out
where to put the dots when the core has only one hole, but the
solution is far less obvious when separate wires pass through
different holes. The rule is this: Designate one end of a wire going
into one of the holes as the 'start' of that winding, and place a dot
against it. Now, using the corkscrew rule, and assuming a current
from a generator flowing towards the dot; determine the direction of
rotation of the flux on the path which will be shared with a wire passing through the other hole. In
the diagram, the shared path is b, and the flux direction for the turn L, is clockwise. Now,
considering a wire passing through the other hole (L,); place a dot against one end of it such that, if
a current from a generator were to flow towards that dot, it would produce a flux on the shared path
of the same rotation sense as before. In other words; if the two turns were to be connected in series,
dotted end to un-dotted end, then the communal fluxes would add.

Having applied the rule, we can now see that when a turn around the middle pillar is considered
as a pair of turns around the outer pillars connected in series, then the two inductances are
connected in series opposition. Hence the total inductance is:

L=L +L,-2M

where:

Li=AatAw , Lo=Aw+AL and M=Ay,

Hence:

L = ALa + ALc

A turn around paths a and b, p/us a turn around paths b and ¢, minus two turns around path b, is a
turn around paths a and c.

This strange logic is, of course, applied unconsciously when we wind coils on the middle pillar
of a two-hole core. It does however raise a point regarding the elimination of a path by flux
cancellation. It was observed in the previous discussion of shunt transformers that, when fluxes on
separate paths produce cancellation in a shared channel, those two fluxes are nevertheless
operational and must be included in the analysis. Here however, we discover two opposing fluxes
which can be ignored. The difference is that the cancellation in this case occurs throughout the
path, the two fluxes do not give rise to any inductance, and so there is no need to include them in
the resulting expressions for inductance.
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The foregoing considerations also give us a rule for minimising leakage inductance when
constructing tightly-coupled transformers. If a coil is wound on the central pillar of a two-hole core
such that, as we look through the holes, the start is (say) on the near side and the finish is on the far
side; it is tempting to assume that the coil has a half-integer number of turns. A proper examination
however shows that it does not.

Referring again to the diagram above; let us say that we have a coil which passes 10 times
through the left-hand hole, but only 9 times through the right-hand hole. This does not constitute a
coil of 9% turns around paths a and c, but rather; a coil of 9 turns around a and ¢ , and one turn
around a and b. Alternatively; it can be regarded as 10 turns around path a , 9 turns around ¢ , and
one turn around b . This rather complicates the analysis, but there is an even greater downside if the
coil is part of a transformer.

If the coil is one of a pair on the central pillar, then the coupling is via paths a and ¢ . Failing to
complete the turns of one of the coils allows that coil to produce a net flux on path b, and so gives
rise to leakage inductance. This is not particularly important for coils having thousands of turns,
such as mains-transformer primaries; but it will degrade the loading characteristics of low-voltage
windings, and it will be particularly serious for RF transformers which have few turns.

It will be noted, of course, that it is perfectly sensible to construct transformers so that different
coils have their terminals on opposite sides of the core. This is good practice, because it separates
the electrically-isolated parts of the external circuitry; and for each coil, all of the turns make passes
through both holes and so the leakage inductance is minimised.

20: Experimental verification
What has been put forward in the preceding sections is a method for sketching-out the unique
magnetic paths associated with a system of coupled inductors and using that information to obtain
the complete set of coupling parameters. That does not imply that the topological approach can tell
us everything that there is to know about transformers; but it is fair to say that refinements to
account for losses, non-linearity, winding capacitance, etc., can later be included without challenge
to the basic theory. What is also intended is that the analysis (not to be confused with the problem
of estimating the parameters) should be carried out by inspection; i.e., it is a simple procedure,
comparable to applying Ohm's law, and should not require constant reference to a list of formulae.
In order to verify the ideas outlined so far and gain familiarity with them; those interested might
be amused to carry-out something on the lines of the following practical demonstration. It requires
a means for measuring impedance (such as a universal AC bridge), a signal generator, an
oscilloscope (or a high-impedance AC voltmeter), a two-hole transformer core and some wire. Here
we work at 107 radians/sec (1.5915MHz) and use a ferrite core; thereby taking advantage of the fact
that radio transformers have few turns and so are easy to construct. The experiment however, can
just as well be redesigned to work at audio or power-line frequencies, using (say) a small laminated
iron-alloy core.
The procedure is as follows: Wind three coils on the core as shown a b C
in the diagram, and take careful note of the number of turns in each
coil. For the wing coils L, and Ls, the turns are counted as single
passes through the associated hole. For the middle coil L,, turns are
counted as passes through either of the holes, with the proviso that the L2
number of passes is the same for both holes; in which case, as looking
at the diagram, the wires will both come out either on the near side or
on the far side. This latter precaution ensures that, by measuring the
three inductances individually and solving three simple simultaneous
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equations, it is possible extract the A values for the magnetic paths a , b , and c (this has already
been demonstrated in section 18).

From the path A values and the turns numbers (neglecting linkage inefficiency and out-of-core
leakage inductance), all of the device's small-signal inductive parameters can be calculated. These
include the mutual inductance and coupling coefticient for any chosen pair of coils, and the voltage-
shortfall factors for when a pair of coils is used as a transformer.

A sensible notation is to refer to the three mutual inductances as Ma, My and M. There is only
one mutual inductance per pair of coils, and so it is sufficient to to use a subscript which refers to
the shared path; i.e., M, is the mutual inductance for coils 1 and 2, etc.. The calculated mutual
inductances can be verified by measuring the inductance of the corresponding pair of coils in series
aiding and series opposition and dividing the difference by 4 (see section 15). This is a fair test of
theories which derive transformer properties from the partitioning of flux between different
magnetic paths, but it is not completely convincing because the method of measurement is deduced
from a precursor to the overall theory.

The calculated voltage-shortfall factors can be verified by measuring the the voltage-magnitude
ratios. This is easily done using an oscilloscope with a high-impedance (x10) probe. One of the
windings is elected primary and connected to the output of a sine-wave signal generator. It may
also be helpful to terminate the generator in its preferred load resistance (in parallel with the
primary) in some instances, since some oscillators do not take kindly to reactive loads. The 'scope
probe is connected across the primary, and the Y-gain and shift controls are adjusted until the
waveform just touches the top and bottom rulings of the graticule. The probe and its ground clip
are then moved to each of the secondaries in turn, and the new height on the graticule is recorded.
Only the ratio of the two voltages is needed (and the ratio of peak-to-peak voltages is the same as
the ratio of RMS voltages). The input voltage is not important provided that it is sufficient to give a
good clean 'scope trace and not so great as to provoke non-linear behaviour (say, between 200mV
and 2V RMS). This method is, incidentally, not particularly precise; but it is a very rigorous test of
theory because it is free from assumptions in relation to the behaviour of the device.

From the three initial inductance measurements we obtain:

AL tAL=L/N’ |, AnutAw=LJ/N? , AwtAL=Li/N;y

Thus:

ALb = [ (Lz/ sz) + (L3/ N32) - (L1/N12) ] /2

ALa = (LQ/ sz) - ALb and ALc = (L3/ N32) - ALb

For a symmetric core, Ar. and Arp will be the same within the experimental uncertainty. ApatAre
should also be reasonably close to the manufacturer's published A, value for the core (if known).
The determined Ay, values allow calculation of the complete set of coupling parameters for the
three possible pairs of coils. The relationships are deduced by inspection of the diagram above and
are listed in the table below. The theory which leads to these expressions is given in section 16.

Transformer A (L;:L,) Transformer B (L,:L;) Transformer C (L,:L5)

M, =N N, Apa M, =N2 N3 Ay M. =N; N; A,

kia=[Vas/Vip| = ALa/(ALatArLe) | Kab=|V3s/Vap| = Ap /(ALatAry) | Kie=|Vias/Vip| = ALc/(ALatALe)
K2a=[Vis/Vap| = Ara/(AatAw)  kav=[Vas/Vap| = An/(As+ALe) | Kse= [Vis /Vap| = ALc/(Av+ALe)
ka = V(kia kza) ki = V(kap kap ) ke = V(kie kae)

|V2s/V1p| means 'the voltage magnitude ratio when coil 1 is used as primary and coil 2 is used as
secondary', etc.. The voltage-shortfall factor (kia, etc.) is expected to agree with this ratio in the
limit that linkage-inefficiency and out-of-core leakage-inductance are negligible, and on the
assumption that the secondary is off load (hence the use of a high-impedance voltmeter).
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The spreadsheet analysis given below relates to

measurements made on the transformer shown on the right.

This i1s wound on an Amidon BN-43-202 core, the details of

which have already been given in section 18. Impedances

were measured in parallel form (£2.5%) and converted into

inductances using the parallel-to-series transformation (also \

described in section 18). In the spreadsheet; 'obs' means | ’

'observed by measurement not related to the theory under

test'; and 'calc' means 'calculated from the path A, values'.
The uncertainty in the voltage ratio measurements is determined as follows. Relative voltages

are recorded in units of centimetres on the oscilloscope graticule. It was estimated that the height

setting and reading operations were reproducible to within 0.2cm. Hence the two voltage readings

used to determine a ratio each have an uncertainty of +0.2cm; and those errors were assumed to be

random and uncorrelated. Now, if we have:

y = Vi/Vy

and the uncertainties in the two voltages are o and 6, ; then, for uncorrelated errors, the overall

standard deviation is given by adding the squares of the uncertainty contributions and taking the

square root; i.e.:

oy = [ (8, 0y/dV, ) + (8, 0y/OV, )’ ]

where

0y/OV, =-V,/V,> and  0y/0V,=1/V,

hence:

oy = V[ (8 Vi/Vyt Y +(8:/V,) ]

In the spreadsheet, this formula gives uncertainties of about +0.03 for the ratio measurements. Note

that this implies a large proportionate (i.e., percentage) uncertainty when the ratio is small, which

means that the experiment is most convincing when the three coils have similar numbers of turns.

Three winding transformer
Amidon BN-43-202, AL (nominal)= 2.89 pH/turn”2. =107 radians/sec

Inductances N Lp/pH Xp/Q Rp/Q Rs/Q Xs/Q Ls/uyH /uH /uH
Middle L1 3 281 281.0 1060 69.60 2625 26.25 ALatAlLc 2917 Ala 1.456
Outer, L2 3 16.9 169.0 620 42.88 157.3 15.73 AlLatAlLb 1.748 AlLb 0.292
Outer, L3 3 17 170.0 610 43.96 157.7 15.77 AlLc+AlLb 1.753 Alc 1.461
Series pairs Lp/uH Xp/Q Rp/Q Rs/Q Xs/Q Ls/pH obs calc em%
L1+L2+2Ma 725 7250 3000 165.54 6850 68.50 Ma/uyH 13.123 13.106 0.133
L1+L2-2Ma 17.2 172.0 630 43.70 160.1 16.01 ka 0.646 0.645 0.133
L1+L3+2Mc 73 730.0 3000 167.70 689.2 68.92 Mc/uH 13.207 13.149 0.440
L1+L3-2Mc 17.4 174.0 610 45.90 160.9 16.09 kc 0.649 0.646 0.440
L2+L3+2Mb 39 390.0 1540 9281 366.5 36.65 Mb/uH 2.626 2.626 0.006
L2+L3-2Mb 28.5 285.0 950 78.44 2615 26.15 kb 0.167 0.167 0.006
Voltage ratios ~ Vp/cm Vs/cm * obs * calc err/%

V2s/V1p = k1a 8.0 4.0 0.2 050 0.03 0.499 0.17

V1s/V2p = k2a 8.0 6.7 02 0.84 0.03 0.833 0.53

V3s/V1p = k1c 8.0 4.0 02 050 0.03 0.501 -0.17

V1s/V3p = k3c 8.0 6.8 02 0.8 0.03 0.834 1.97

V3s/V2p = k2b 8.0 1.3 02 0.16 0.03 0.167 -2.64

V2s/V3p = k3b 8.0 1.3 0.2 0.16 0.03 0.166 -2.37
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The results agree, within experimental error, with the theory outlined in the preceding sections.
They are however, strongly in disagreement with the assumption that voltage-shortfall reciprocity is
an inherent property of transformers.

21. Transimpedance

In the discussion up to this point; the object of the exercise has been to infer the electrical properties
of systems of coupled inductors from consideration of the associated magnetic fields. That
constitutes the mapping from physical fundamentals to circuit theory; but it is now necessary to
convert that information into an electrical model. The issue is that a transformer is not a basic
circuit element; but rather, it is a 'black box' with ports. The final step in the translation is to
represent what lies inside the box as a network of resistances, inductances, capacitances and
generators, and to define those elements according to the various physical parameters. In other
words; we need to determine the transfer functions which describe the relationships between the
ports, and we need to express that information using phasors.

When a transformer is wired conventionally, a port is defined as a pair of terminals leading to
one of the coils inside the device. The fundamental circuit element which lies behind each port is
therefore, in that particular case (neglecting losses and self capacitance), an inductance. Thus we
can start with the concept of a null-transformer, which is simply two inductors in the same box,
with no coupling whatsoever between them. This is not a particularly useful construct however;
and so we will evoke an arcane process ' M '; which cannot be explained using Kirchhoft's laws, but
which is such that, if a generator is connected to one of the ports, then the observable behaviour
gives the impression that generators have come into existence behind the other ports. What
precious little we can deduce from that, concerning what lies within the box, is shown in the
diagram below.

Notice that the generator which has appeared in
the secondary network is connected in series with the
inductance. This might seem peculiar at first, since
we have previously noted that induction causes a
voltage to appear across the ends of an inductance;
but the arrangement is dictated by the fact that the
basic generator-element used in circuit-analysis is a short-circuit when its output is zero. It is
obvious that when the external generator is disconnected from the primary port, then the virtual
generator in the secondary network gives no output. Thus, if the generator of the induced-voltage
were to be connected across L,, then the output-port would be a short-circuit when the primary is
disconnected. We know, of course, that when the primary is open-circuit, what we will see looking
into the secondary port is the inductance L,, and so the arrangement shown is the correct one. It is
also consistent with the physics of the transformer because, as we will see when we come to discuss
the origin of the winding capacitance; magnetic disturbances cause electromagnetic waves to
propagate along the wire of a coil, which means that the coil itself is in series with whatever is
causing the disturbance. Furthermore, when the secondary is open-circuit, there is no voltage-drop
across L,, and so the arrangement creates the illusion that the voltage is induced directly across the
port if (and only if) there is no secondary current.

The next step in building the model is to find a phasor expression for the induced voltage V.
This requires Faraday's Law, and so threatens to embroil us in the business of mapping time-
differential equations onto complex numbers (as discussed at the end of section 8). It transpires
however, that we have already done the necessary groundwork in section 11, where it was
determined that the ratio of the secondary induced voltage to the primary voltage is given by the
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expression (cf. equation 11.1):

Vz] /V] = M / L]

The two voltages given here are instantaneous voltages rather than phasors, but the fixed
relationship implies that they are in phase. It is also the case that when two phasors are in phase,
their ratio can be treated as a scalar'®. This means that we can convert the expression above directly
into phasor form by applying the converse principle; i.e., a ratio of two instantaneous voltages or
magnitudes can be expressed as a ratio of two phasors of equal phase. Hence:

Vz] /V] = M / L]

Thus we dispense with differential equations; but we do not yet have V,, in the form required for
general transformer analysis. The issue here is that the transformer exploits the phenomenon of
electromagnetic induction in order to convert a magnetic field into an electric field. In other words,
it converts MMF into EMF, and so it is fundamentally a module which gives a voltage output for a
current input. Hence its principal transfer-function is a voltage divided by a current. Such a ratio
has units of Ohms (impedance), and so can be described as a 'transfer-impedance' or
transimpedance. Thus the transformer is by nature a transimpedance device, and is therefore best
analysed by making use of that property. The phasor substitution which can be used to eliminate
the input voltage is (by inspection of the diagram above, using Ohm's Law):

V.= jXLl I

Thus:

Vz] /I] :jXLl M/L]

but Xy = 2afL, , hence:

‘Vzl /Li=2nftM = jXm [Ohms] Intrinsic transimpedance

where Xy might reasonably be called the 'mutual reactance'. Notice that jXy is referred to here as
the intrinsic transimpedance. This is because transformers, being natural current-to-voltage
converters (with DC isolation) are excellent for making AC and RF ammeters. An ammeter circuit
has an overall transimpedance, which is the scale-factor (Volts per Amp) for the voltmeter which
displays the result. This is not the same as the intrinsic transimpedance, which governs the
fundamental behaviour of the transformer, and so it is necessary to make the distinction.

The basic transimpedance rule given above, incidentally, works for any combination of
subscripts, including those which imply self-inductance; i.e., the mutual inductance between a coil
and itself is the inductance of the coil. Thus if Vy; is the voltage induced in coil 1 due to a current in
coil 1, then:

V]] /I] :j 27[le
The voltage induced in port network 2 due to a current in port network 1 is, of course:
Vo = _] Xm I

The sign convention for the relationship is that current is positive when if flows from outside the
transformer towards a dot, and voltage is positive when its circuit-analysis arrow points towards a
dot. Such induced voltages from any number of currents in any number of ports can simply be
added together.

14 AC Theory. D W Knight [available from www.g3ynh.info]. Theorem 24.8.
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22. Inductive energy transfer

The transimpedance rule can be used to determine the behaviour of any transformer in the lumped-
element limit (assuming that losses and parasitic capacitance are considered separately). There is
however, a certain subtlety in its application, due to the inherently bi-directional nature of the
transformer's ports. This issue is best introduced by considering the way in which energy-transfer
occurs in a conventional transformer-coupled system; i.e., in a circuit which has only one energy
source, so that one of the coils can be designated primary, and the rest are secondaries.

The diagram on the right represents a pair of inductively-
coupled loops with a resistance in the secondary circuit. The
primary current induces a voltage jXml; in the secondary
network, and so closing the circuit causes a current I, to
flow. Now note that the dot convention sets the polarity of
the voltage V,, as indicated by an arrow. Thus, since the
resistance is an energy sink; if the current L is to be ®
considered positive, it must be shown flowing away from the 2
dot. Every current is associated with a magnetic field, and so the secondary current is related to a
flux which tends to cancel some of the flux from the primary (i.e., a current flowing away from a
dot has the opposite effect of a current flowing towards a dot). Thus we see that the secondary
current, by bleeding away some of the energy stored in the field, has the effect of reducing the back-
voltage produced by the primary inductance. We can moreover, work out exactly the extent to
which the primary back-voltage is reduced by using the transimpedance rule, which enables us to
calculate the voltage induced in the primary as a result of the current in the secondary (we will do
that in the next section). Also observe, that if the generator connected to the primary is a constant-
voltage source; then drawing a current from the secondary will cause an increase in the current
flowing into the primary. This is, of course, exactly what happens in practice.

The above explanation however raises an issue of causality. It is tempting to think that the
secondary current produces a flux which signals back to the primary to request more current from
the generator. Physically, this makes no sense, because it implies that the energy arriving at the sink
communicates with the generator in order to request its own existence. This paradox arises because
circuit-analysis, albeit mathematically self-consistent, is nevertheless based on pre-Maxwellian
notions of electricity. It is the flux which produces the current, and not the other way around.
Hence, whatever pragmatic notions we might use in the process of building a circuit model; the flux
@, represents an electromagnetic wave propagating from the source to the sink.

23. Conventional transformer

A curious aspect of coupled-inductor theory is that transformers are described as belonging to
categories, such as 'conventional', 'hybrid' or 'transmission line'; and yet these different types are
fundamentally the same (at least, when considered in the lumped-element limit). The distinction
arises, not in the principle of operation, but in the various ways in which transformers can be used.
The reason for that is that an electrical device having multiple bi-directional ports offers a vast
range of possibilities; and apart from stating the transimpedance relation, there is little which can be
done by way of analysis unless some external circuit conditions are imposed. Subject to that
requirement, we will find that most of the ground rules can be established by investigating the
conventional transformer (provided that we do not limit our horizons by doing so).

Conventional transformers are, of course, important by virtue of their ubiquity. They are
transformers which have DC continuity between the terminals of each port, and which have only
one port connected to a generator. Note, incidentally, that autotransformers are included in this
category, the matter of electrical isolation making no difference to the underlying magnetic theory.

In a conventional transformer circuit, any net energy flow which occurs is unidirectional. This
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(if you'll excuse the inversion of causality) allows the voltage which is induced in the primary side,
as a result of a secondary current, to be represented as the voltage drop across a virtual impedance
(Z; in the diagram below). Thus, in a basic two-coil transformer, we have two separate electrical
networks; with energy from a generator flowing into any resistive component which might be
present in Z;,, and exactly the same amount of energy emerging from a virtual generator on the
secondary side. An implication of that last statement, incidentally, is that the resistive component of
Z.,, does not include primary-side losses. If loss processes are to be added to the model, it is best to
distinguish them from the magnetic coupling by placing separate resistances in series or parallel
with the ports.

I PR P

Now notice that there are two secondary currents marked on the diagram above (I, and -I,). For the
purpose of analysing what goes on in the load network Z, we need to know V, and I,. For the
purpose of working out induced voltages however, we need to define currents as flowing towards
the dots on the ports, and so the current which determines the primary induced voltage is -I,.
Hence:

Vo= jXM (-12)

but we can also define this as the voltage drop across the 'induced' impedance Z;,; i.e.:

Vio=1,7Z;

Hence:

le = —jXM Iz / Il ....... (23.1)

This statement must, of needs, appear in any physics-based discussion of transformer modelling,
and is sometimes accompanied by 'deep insights' into subject, often with bad effect. Thus some
readers may have encountered the assertion that, since I,/I; is dimensionless, and the phase is -j,
then Z,, represents a pure capacitive reactance. Firstly note that I, and I, are phasors and so the
overall phase is only exactly -j when the two currents are perfectly in phase. Secondly, those two
currents can only ever be brought exactly into phase by eliminating all resistances from the
secondary network (or by connecting an additional generator to cancel them out). Thirdly, even
when the currents are in phase, the frequency law of Z, is that of an inductance, complete with the
property that its reactance goes to zero when f—0. Hence the -jXw factor in Z;, represents a
negative inductance, -M , which we have previously interpreted physically as inductance
cancellation (not capacitance). What happens in reality is that that the generator pumps energy into
the magnetic field surrounding L, but the secondary network taps into that energy store, via M,
thereby modifying the impedance of the primary network. The actual phase of Z;, depends strongly
on the secondary leakage inductance in combination with the reactance of the secondary load
impedance; but if the leakage inductance is small, and Z is purely resistive, then Z;, cancels most
(but not all) of the reactance of L, and replaces it with resistance.

The impedance Z, is, of course, not fully defined as a network until we eliminate the current
ratio. That can be done by substituting for I,. Inspection of the secondary network, as represented
above, gives:

12 = V21 / (jXLz + Z)

but from the transimpedance rule:

Vo= jXM I,

Hence:

12 = JXM Il / (jXLz + Z) ....... (23.2)
substituting this into (23.1) gives:
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Z12 = -jXM jXMl1 / [ (jXLz + Z) ll ]

ie.;

Z12 = XM2 / (jXLz + Z) 23.3
This completes the definition of the equivalent network for the lossless, lumped-element
transformer. It also demonstrates a special property of transformer theory, which is that the
equivalent network depends on the external circuit component Z. This does not have particularly
profound implications in the case of the conventional transformer, but note that the expression
above remains valid when the resistive component of Z is negative. This gives us the basis for
dealing with transformers which have generators connected to more than one port, i.e., Z can be
allowed to represent an impedance and a generator connected in series. If Z is such an
impedance+generator hybrid, then so is Zi», and so is the 'impedance' looking into port 1. This is
the probable root of the term 'hybrid transformer'; the point being that when there are multiple
external energy sources, it becomes necessary to give the virtual 'impedances' in the equivalent
network the freedom to occupy the left-hand side of the Z-plane.

24. Loaded voltage ratio
The general expression for the voltage ratio of a transformer (neglecting the effect of losses) can
now be obtained. By inspection of the diagram of the preceding section we have:
2= Iz Z
Which, by substituting for I, using (23.2), gives:
Vz :jXMll Z / (jXLz + Z)
Also, by inspection:
Vi=L(jXu +Z)
Which, by substituting for Z,» using (23.3), gives:
Vi=L[jXu +Xp/ (X2 + Z) ]

Hence:

v, iXuZ iXuZ

;1 . (jXn+2Z) [ jXu+Xn/ (X2 + Z) ] . iXu (jX + Z) + Xy
Le.:

Vo/Vi=iXuZ /[ jXu Z + Xa - Xu Xis ] 240 |

The first thing to notice about this phasor ratio is that, when |Z|—o0 , the denominator is
overwhelmed by the term jX;,Z and the other terms can be neglected. Thus V./V, — Xw/Xy; ; i.e.:
When |Z|—>OO , V2/V1 — M/L1
We have seen this special limiting case before as equation (11.1). Neglecting the effect of self-
capacitance, the two voltages fall exactly into phase when the transformer is unloaded.

Now recall that, for an ideal transformer, M=\/(L1 L,). In that case;
Xm' = X1 X2
Substituting this into (24.1) gives:
Vz/ V1 = M / L1
but, for an ideal transformer, both coils have the same inductance factor. Thus: M=N,N, A, and
L1:N12AL . Hence:
Vz/ V1 = Nz / Nl
For an ideal transformer of the analytical variety, V, is always in phase with V,, and the voltage
ratio is given by the effective turns ratio.
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The general voltage ratio can also be expressed using the coupling coefficient k instead of M. This
alternative form can be obtained by using the substitution M = k\/(Ll L,) in equation (24.1). Notice
particularly the pair of terms Xw?-X,X12 in the denominator, where:

Xv' =k X1 X2

and so:

XM2 - X X = (kz-l) X1 X1z

Hence:

Vz / V1 = jXMZ/ [jXLl 7+ (kz-l) XLI XLz]

Forcibly factorising jXy, from the denominator gives:
Vz/Vl:(M/Ll)Z/[Z+(k2-1)XL2/J]

ie.:

Vz/V1:(M/L1)Z/[Z-j (kz-l)XL2]

Now recall from section 13 that:

M/L =k(L,/L;)

Thus, also noticing that (k*-1) = -(1-k%) :
Vo/Vi=k[W(Ly/L)]Z/[ Z+j(1-k*) X2 ] 24.2
This is a surprisingly compact expression, which obviously reverts to the ideal case when k—1.

25. Magnetising current

For a closely-coupled transformer, we expect the current ratio to be approximately the inverse of the
voltage ratio. The general expression for the current ratio is given by rearrangement of (23.2):

Iz / I] = jXM/ (jXLz + Z)

Inversion gives:

L/L=(Ls/M)-jZ/ Xu 250 |

Now recall that M =kV(L, L,) , and so:

L/L=[(1/KN(L/ L) ]-jZ/ Xn

For an ideal transformer, k—1 and because there are no leakage paths; V(L,/L;) — N,/ Nj.
Hence:

Whenk—1 , I/ 1, — [N,/ N ]-jZ/ Xum

This limit shows that, even when coupling between the windings is complete, the inverse current-
ratio is never exactly equal to the turns ratio. Equality can only be achieved when

|Z|—0 (the secondary is short circuit and there is no series loss resistance) or when Xy—o ; and
neither of those extremes is physically realisable. The reason for the discrepancy is that there is
always a primary current even when the secondary is disconnected. That standing current is known
as the magnetising current, and is given by the expression:

L,=V,/ (J XL])

Which is, of course, simply the current through L; when |Z,|]—0. Proof is as follows:
Rearrangement of equation (25.1) gives:

Il=12(L2/M)-j IzZ/XM

but I,Z=V,. Therefore:

Il=12 (Lz/M)-sz/XM

A substitution for V; is given by equation (24.1):

Vo=jViXuZ /[ jXu Z + Xn' - X1 X1z ]

Hence:

L=L(L/M)-j(1/Xu) jVi XuZ /[ jXu Z + Xm? - X1 X1z ]

ie.;

L=L L/ M)+ Vi Z /[ jXu Z+ Xoi - Xu1 Xo2 ] 252 |
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Now, to find the magnetising current, let |Z|—co . In that case, ,—0 and the denominator of the
second term is overtaken by the quantity jX,Z . Thus:

When ’Z|—><X3 , I] — V1 / (j XLl)

This shows, more than anything else, that the model 1s mathematically self-consistent.

Now recall that, for an ideal transformer, Xm*= X, X1» . Hence, in that case, equation (25.2)

reduces to:

L=L®L/N)+V,/(jXu) | 253 |

The primary current of an ideal transformer is given by the secondary current multiplied by the
turns ratio, plus the magnetising current.

The current ratio for a closely-coupled transformer will, of course, be approximately same as the
inverse turns-ratio in the limit that the magnitude of the working primary current is large relative to
the magnetising current. Taking this correspondence to be true is equivalent to the assuming that
the primary inductance (and hence the mutual inductance) is infinite. That follows from the
limiting relationship given above, since the magnetising current can only go to zero when the input
voltage is zero or when Xy ;—0 .

An ideal transformer having infinite inductance (and therefore no magnetising current) is known
as a perfect transformer. It has the property that:

Vo/Vi=1,/L=N,/N, Perfect transformer analytical relation

This (with N=N) is often used, in uncritical situations, as an approximation for actual transformer
behaviour; but bear in mind that such an approach has limited validity in RF applications. The
reason for the caveat is that, for RF circuit designs which depend on lumped-element behaviour, it
is necessary to ensure that the length of the wire used to make an inductor is substantially less than
one half-wavelength at the highest frequency of operation. Hence excessive inductance can be
problematic, which means that the finite nature of transformer inductance must usually be taken
into account (even if only to ensure that it is safe to neglect it). Including the inductance however,
is not difficult. Equation (25.3) implies that a perfect transformer can be converted into an ideal
transformer by connecting an inductance L, in parallel with port 1. In later discussion moreover, we
will see that exactly the same effect can be had by connecting an inductance L, across port 2. In
general; a perfect transformer becomes an ideal transformer when an inductance is connected across
any one of its ports.

Note incidentally, that some older texts use the term "ideal transformer" to refer to the perfect
transformer. Modern usage however seems to favour the convention that ideal transformers have
finite inductance.

Also note that, in this article, we have allowed that ideal transformers do not have to have perfect
flux-linkage; i.e., N can be less than N. It was observed in section 11, that for a physical realisation
of an ideal transformer (insofar as that is possible): N,/N, = N,/N,. This correspondence however
is not valid when an ideal transformer with separate leakage inductances is used for circuit analysis
purposes. In the analytical case, the effective turns ratio for the actual transformer becomes the true
ratio for the ideal transformer. This creates an auxiliary rule: leave the tildes on the Ns until sure
that they are not required. Generally, although we will use N here instead of N (where appropriate)
for the sake of mathematical consistency, the difference is only likely to be significant when dealing
with transformers which do not have low-reluctance cores. Bear in mind however, that when the
tildes are discarded, it is the approximation (not the analytical relation) which is intended; i.e.:

V,/Vi=1,/L=Ny/N; ‘ Perfect transformer approximation
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26. Perfect transformer as a circuit-element

This is a good point at which to examine the pros and cons of treating the transformer as a whole
versus treating it as an ideal transformer with separate leakage inductances. The latter approach
will, of course, be familiar to many as that which can be learned without recourse to
electromagnetic fundamentals; but it is perhaps worth demonstrating that avoidance of the
underlying concept (i.e., transimpedance) does not necessarily constitute the best line of attack. In
general, it is preferable to be aware of the relationship between the two models, and pick whichever
is best suited to the problem at hand.

In order to establish the mapping which relates the two approaches, it is necessary to partition
the inductances using the voltage shortfall factors (k; and k,). This operation puts us back in touch
with the turns numbers and the path inductance factors. The various relationships, established over
the course of the discussion from section 13 onwards, are summarised in the diagram below:

(1-k1)L+

M=N1NzALo

M=kvL1Lz

-

21z

The magnetic coupling can be represented analytically using an ideal transformer having turns N,
and N,. Furthermore, as discussed in the preceding section; the ideal transformer can be
represented as a perfect transformer with an inductance kL, in parallel with its primary port to
provide the magnetising current. The redefined network is shown below:

] Lx1 I L.

-

Some comments regarding symbols and notation might be of value at this point. Notice that the
leakage inductances are are given the subscript ' x ', which should be taken to stand for 'extra'. The
high-voltage overwind of a voltage-magnifier transformer is sometimes referred-to as the 'extra
coil', and the underlying concept is exactly the same as it is here. Also, using the letter ' 1" for
leakage has the problem that it is indistinguishable from the figure ' 1 '.

The symbol used here for the perfect transformer is not reserved for that purpose. Instead, it is a
general transformer symbol of the 'invented by draughtsmen for the convenience of draughtsmen'
school; but it has the advantage in this context that it gives not the slightest hint that the inter-
network coupling has anything to do with inductance. That is appropriate because all of the
inductance has been removed and placed in the attached networks.

The perfect transformer becomes a new quasi-fundamental circuit element. Just like the other
basic elements (resistance, capacitance, inductance); it cannot be realised in practice other than as
an approximation, but it can be made to describe the behaviour practical devices by the inclusion of



56

parasitics (i.e., the inductances shown in the diagram). Its defining properties, using the notation
given above, are:

N /N =V /Vi'=1'/L 26.1
When an inductance is connected across any one of the ports, the perfect transformer becomes an
ideal transformer. For this discussion, we have elected to connect an inductance L,' across port 1.
Thus we can also avail ourselves of the ideal transformer relationship:

No/Ny=+(L) /L) .. 26.2

Squaring that gives:

Lz‘ = L]' sz /N12

The inductance L' does not appear on the diagram. It is the image of L,' as seen, magnified by the
square of the turns ratio, when looking into port 2. This means, of course, that we could account for
the magnetising current by removing L;' and placing an inductance L,' across port 2 instead.

Recall that in section 24 we obtained the general voltage-transformation rule for the loaded
transformer in a few lines of algebra. We will now repeat the exercise using the perfect-transformer
approach.

Referring to the diagram above: by inspection of the secondary network; V, is obtained from V,'
via a potential divider comprising jXix. and Z. Thus:
Vo=WVZ/(jXiet+Z)
but (26.1) gives:
Vz' = V]' Nz / N1
Hence:
Vo=V (N,/N)Z/(jXin+Z)
V,'is obtained from V, via a potential divider comprising jXx and jXy.' in parallel with the
impedance looking into port 1. This gives:
Vi'=V, (JXu' /12y ) ] (jXia +jXu' /1 Z2y")
Thus the unsimplified voltage ratio is:
Vo/Vi=(No/ND)Z (X' /120 ) /[ (X + Z) (jXewa + jXua' /24" ]
This expression becomes more tractable when inverted, i.e.;
Vi/Vo=(N /N [(Xie+Z)/Z][ 1+ jXea /(X' /21 ]
Also 1/(a//b) = (1/a)+(1/b) . Therefore:
Vi/Vo=(N /N [( X2 +Z)/Z ][ 1+ j X/ JXu") + X / 20" ]
The impedance looking into port 1 is defined as:
Zl' = Vl' / Ilv
but (26.1) gives:
Vl' = Vz‘ Nl /Nz and Il' = 12 Nz / Nl
Hence:
Zl':(Nl/Nz)z‘]z'/Iz:(Nl /Nz)z(jXLx2+Z)
i.e., the impedance looking into port 1 is the impedance of the secondary network multiplied by the
square of the inverse turns ratio. Thus:
Vi/Vo=(N /N [ (jXe+Z)/Z][ 1+ (La/L")+ jXea (N2 /Ny P2/ (X +Z) ]
Using (26.2) to replace the turns ratios gives:
Vi/Va=[VL'" /L) [ (X +Z)/Z ][ 1+ (La /L) +jXea (L' / L)/ (jXe + Z) ]
Now notice that:
X L' =2af Ly L' = Ly X1
Therefore:
Vi/Va=[VL" /L[ (jXwe +Z)/Z][1+(La/L")+j(La /L") Xi2' / (jXie + Z) ]
ie.:
Vi/Va=[VL'" /L[ (jXwe +Z)/Z][ 1+ (La /L)1 + X /(jXie+2Z)} ]
Multiplying ( jXix + Z) into the right most square bracket gives:
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Vi/Va=[NL'"/ LA/ Z) [ Xue+ Z+ (La /L) jXe + Z + jX12') ]
and re-inversion gives the solution:

Vo/Vi=[NL' /L' Z/[Z+ X+ (La /L) Z+ jXie + jX2') ]
Also, we might note that Ly,+L,' = L,, and so alternatively:
Va/Vi= [ /L) Z/ [ Z+iXue + (La / L) Z + jXi2) | 263 |

The relationships which give the mapping from the perfect transformer analysis to the
transimpedance model are as follows:

‘ Lxlz(l-kl)Ll ‘ L]':kl L1 Lz':kz Lz szz(l-kz)Lz ‘ k:\/(kl kz) ‘
Using these in (26.3) gives:

Vo /Vi=[Nloly / kL) Z /[ Z+j(1-k) X + { (1-ki ) / ki 3 Z+ jXea) ]

but notice that:

k/k =Vk k/k?) =k /k)

Using this as a substitution gives:

Vo/Vi=k [N /L) Z/ [ ki Z + j(ki - ki ko) Xea + (1-ky )( Z + jX12) ]

Multiplying out the denominator and noting that k; k, =k* gives:

Vo/Vi=k [y /L) Z/ [k Z+jk Xy - KXz + Z+ jXi2- ki Z - jly Xo2 ]

ie.:

Vo/Vi=k[WL,/L)]Z/[Z+j(1-k>) X12]
This is the same as equation (24.2) and shows that the perfect-transformer-based analysis is exactly
equivalent to the transimpedance approach.

Transimpedance is essentially Faraday's Law in phasor form. It captures the fundamental simplicity
of transformer coupling; which is, after all, merely a reflection of the fact that inductors in
proximity have overlapping magnetic fields. The result is that the magnetic interaction between any
pair of coils can be completely specified for circuit-analysis purposes by using three easy-to-
measure parameters: {L;, L., M}; or alternatively: {L,, L,, k}.

The perfect transformer is a 'black-box' circuit element which, as we have just seen, can be
extracted from the underlying theory. It is governed by simple rules (26.1), which are easily learned
by those who do not have a field-based understanding of electricity; and so it provides a way of
sidestepping the conceptual difficulties associated with magnetic theory. That might provide an
explanation for its widespread adoption; but as can be seen from the laborious working up to
expression (26.3), it does not simplify the general analysis of transformer coupled networks, and
neither does it produce an elegant expression for the voltage transfer function. Instead, it
complicates matters by partitioning the inductances, and thereby increases the number of
parameters needed to specify a coupled system. The possible minimal parameter sets are as
established in the discussion above:

{Lxl 5 L/ 5 NZ/NI 5 sz} or {Lxl 5 szNl 5 L, 5 sz} or {Lxl 5 L/ s L, 5 sz}
from which it can also be seen that, except perhaps for the turns ratio (and then only when N=N);
the chosen parameters are equal to quantities which are difficult to estimate.

The intention here however, is not to denigrate the perfect transformer as a circuit-analysis
construct, but merely to counter the idea that it is the culmination of all of the foregoing theory. It is
a valuable addition to the analytical tool-kit, well suited to problems involving nearly-ideal
transformer behaviour; but it is not the only available approach, and it can be cumbersome when
inappropriately applied.
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27. Impedance transformation and referral

One of the major uses of the transformer, particularly in RF power-transmission and signal-
processing applications, is that of impedance transformation. This is a very large subject area, and
no attempt will be made to do justice to it here; but we must at least establish the basic principles.

A significant practical issue is that, in the process of connecting the output of one electrical network
to the input of another; it is often found that the preferred load impedance of the driving stage is not
the same as the input impedance of the driven stage. A conventional transformer, with its ability to
step voltage up and step current down (or vice versa), is therefore a good candidate for all or part of
an intervening impedance-matching network.

The generalised circuit-analysis problem is illustrated below. An impedance Z is connected to
the secondary network; an impedance Z, is seen looking into the primary port; and we want to
know how the relationship between Z, and Z is determined by the transformer parameters.

From the diagram we have:

Z,=jXut+Zp L1 M=k~ LiLz L2

The transferred impedance Z,, was given 2 M

earlier as equation (23.3): — N1 N2

Zor— Xo | (X0 + 2) Zi Ziz| [=—= (IV21 Z

o

Hence:

Z,=jXu+Xv'/ (X2 + Z)
which, using the substitution M=kV(L; L, ) becomes:
Z,=jXu+ kK XX / (jX+ Z)

Putting both terms onto a common denominator gives:

X (X2 + Z) + k* Xp Xio X Z +k* X Xia - X Xiz
Z] = =
X2 tZ X2 tZ
i.e.:
jXLl 7+ (kz'l) XLI XL2
Z1 =

X2 +Z

This is about as simple as the general expression can be; but note that some textbooks try to

simplify it further by multiplying numerator and denominator by (Z-jXyi.). The problem with that

is that, because Z is complex, (Z-jX1.) is not the same as the complex conjugate (Z+jX;2)*. Hence

the operation does not have the effect of making the denominator real and so misses the point.
The practical simplification comes when the transformer is tightly coupled. In that case, k—1

and we have:

Z] = jXL1 Z / (jXLz + Z)

This is very nearly an expression for two impedances in parallel, and will become so if we can

represent Xy, as a factor of Xy,. The relationship which does that, in the ideal transformer

approximation is, of course:

L] = Lz N]z/sz

Hence:

Z] = (N]z/sz) jXL2 Z / (jXLz + Z)

i.e.. When k—1 , Z1 — (le/sz) (jXLz 4 )

Also, we can represent X, as a factor of Xy, using:

Lz = L1 N22/N12

Hence:

Z1 = jXLl Z/ [ (sz/le) jXLl + Z]

This rearranges to:
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Z1 = jXLl (N12/N22) Z/ [jXLl + (N12/N22) Z]

1e, Z1 = jXLl // (N]z/sz) Z

Thus, we have two equivalent expressions:

‘When k—1 , Z,=jXu // (NYN?) Z = (NPN2) (jXia // Z)

The meaning of the two alternatives is illustrated by the pair of equivalent perfect-transformer
networks shown below:

Zi—= | |4

N
1l
N
v

N

N1 N2 N1 N2

A closely-coupled transformer transforms an impedance according to the inverse-square of the
turns-ratio (assuming that the impedance is connected to port 2, and we define the turns ratio as
N2/N, ); but it always places its own inductance in parallel with the result. The transformation rule
also implies that it makes no difference to Z; whether the inductance is represented as L, across port
2 or as L, across port 1. An important corollary is that any parallel impedance component can be
transferred from one side of an ideal transformer to the other by multiplying it by the square of the
inverse turns ratio (2—1) or the square of the turns ratio (1—2) as appropriate.

It was mentioned earlier that it is not a good idea to neglect transformer inductance when
designing RF circuits. There are however, various ways of ensuring that it has negligible effect.
For the inter-stage coupling and output transformers used in broadband radio systems, there is often
little recourse but to engineer it out. That cannot usually be done by using large numbers of turns
(because the winding wire must be kept short), and so the preferred method is to use cores of very
low reluctance (i.e., large Ay). For narrow-band systems however, it is possible to resonate the
inductance against a capacitance and so send the combined reactance to infinity. The principle is
illustrated below, where we see that there are also two possible placements for the tuning capacitor.

Zi— * 1 L1$::I R = Zi—» I::%Lz Cz,f R
— N1 Nz N1 N2

Here we have assumed, for the sake of argument, that the load impedance is a pure resistance. The
combined reactance then becomes open circuit when:

| XL1 // XCl |—>OO , or when: | XLz // Xcz |—>00

This, in either case, corresponds to the condition X;+Xc=0 , which occurs when f=1/2nV(LC) .
Now recall that L,=(N»/N;)*L; . It follows that Xc;= (N2/N;)* X¢1 . Capacitive reactance is
however inversely proportional to capacitance, and so:

Cz = (N]/N2)2 C1

Thus, if we have (say) N.>N,;, then we can tune out the inductance by using a small capacitance
across port 2 or a large capacitance across port 1. A corollary incidentally, is that the effect of a
tuning capacitor can be scaled or modified (say, for bandspreading) by coupling it to a resonator
coil either via a separate winding or via a tap connection. A thorough discussion of this technique,
for both loosely and tightly coupled transformers, is given by Bob Weaver".

=
-

15 http://electronbunker.ca/Bandspreading_3.html
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What we have so far established is that a parallel impedance component, whether wanted or
parasitic, can be referred from one side of an ideal transformer to the other by multiplying it by the
square of the turns ratio (or the inverse of that, depending on the definition). It is also possible to
separate the impedance loading a transformer into two or more series-connected elements and refer
any of those elements to the other side. The operation is illustrated below:

N
|
N
}
g
N

o N+ N2

In the left-hand case: Z, = jXLl / (Nl/Nz)z (sz + Z) = jXLl /l [ (Nl/Nz)z 7y + (Nl/Nz)z Z ]
In the right-hand case: Z, =jXu /[ Za + (N/N,)?* Z ]
Therefore: Zy = (N/N,)? Zs

A common reason for wanting to split an impedance into series-connected elements is, of course, to
separate the external network from the transformer parasitics. That being the case, it would be
convenient not only to shift the parasitics to the other side of the prefect-transformer element, but
also to shift them to the other side of the parallel inductance (L, in this representation, but it is to be
understood that the referral can go either way). That would permit aggregation of primary and
secondary leakage inductances and series losses into a single impedance, to be placed either on the
primary or secondary side. The required network transformation is generalised in the diagram
below, where Z, (which might represent the magnetising inductance L) must be replaced by a new
impedance Z, on the other side of Z,. The impedance Z' might represent the load impedance Z
(say) after it has been referred through a perfect transformer.

In the left-hand network:
7,=7,//(Zx+17)
In the right-hand network:
7,=7.+7,/ I
Hence:
2,/ =17,/l Zx+7) -1
and taking the reciprocal gives:

11 1 1
4= =
Z, 70 Z.//(Z+171)-Z, Z,(Z+17)
A
1,+7,+7

The denominator can be put on to a common denominator, which becomes the numerator:

11 2.+ 7+ 7 Z.+7Z,+ 7
7_}_7: =
Zi 7' Z.(Zy+Z) -(Za+ I+ Z') Zy 7oA 2T 7.7, -1 - 1L L

Moving 1/Z' to the right hand side then gives:
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1 2,+7,+7 1 (1. v +1)-7,. 7+ 2P+ 1.7

Z, 1.7 -71.,-7.7 VA (2.7 -7;°-2.7)7

Notice here that the numerator factorises, i.e.: Z>+2Z,Z' +Z* = (Z'+Zy)* . Therefore, on re-
inversion, we get:

7°7.-72>-7"17, 1°7.- 77, (Z' +Z,)
Z.= =
(Zv + Zx)z (Zv + Zx)z

Now observe that: Z' Z,/ (Z' + Zy) = Z.' /| Zyx . Therefore:

sz Za
7, ——— -71'/'Z
(Z) + Z,)*

It is obvious that, if Z, represents a pure inductance, then the impedance Z, which replaces it not a
pure inductance. The new parallel impedance will acquire some resistive character if Zy or Z!
contains resistance, and its reactance can become capacitive under some circumstances. The
importance of the expression however, lies not in its exact form, but in its limiting behaviour.
Firstly:

When |Z)| 50 |, Zy—Z.-Zy ;ie.. Lo+ Zy— 1,

This can be deduced directly by inspecting the diagram above. It implies that when a transformer is
lightly loaded, a parallel inductance can be referred to the other side of a series inductance and still
retain an approximately pure inductive character. The outcome of greatest utility hoverer is that:

‘When [Z >0, Zo— Z

If the series impedance elements are of relatively small magnitude, they can be referred unchanged
from one side of a parallel impedance to the other. This facility is the basis upon which the ideal
transformer, with relatively small leakage inductances and loss resistances, is converted into the
standard model for the closely-coupled transformer. It is also the basis on which a short length of
transmission line can be represented, in the lumped-element approximation, as a series inductance
and a parallel capacitance; a correspondence which will give us insight into the lesser phase-shifting
effect commonly known as 'winding capacitance'.

28. Capacitance and propagation delay
For the purposes of lumped-element circuit analysis; the reactance of an inductor is best expressed
not as that of a pure inductance, but as that of an inductance in parallel with a small capacitance. In
discussion of isolated coils, the negative reactive component is known as the 'self-capacitance’',
whereas in the context of transformers, it is often referred-to as the 'winding capacitance'. In either
case, the parallel capacitance allows for the fact that every coil has a fundamental self-resonance
frequency (SRF) at which the reactance goes to infinity. When modelling transformers moreover, it
will be found that parallel capacitances, judiciously placed, can help to account for a small phase
lag (relative to that of a purely inductive model) which occurs in the voltage output of actual
devices.

In coils and transformers having layered windings, a major proportion of the self-capacitance
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can be attributed to the overlap of the layers. This is simple static capacitance, albeit easier to
explain than to calculate; which can be fairly represented as a single capacitance placed across the
terminals of an inductor, or as capacitances across the ports and across the perfect-transformer
element of a transformer model. In RF practice however, it is normally desirable to minimise stray
capacitance and, since the required inductances are usually small, that can be done by winding each
coil in a single layer. For single-layer windings, with the obscuring effect of static capacitance
largely removed, a somewhat different explanation for the phase-lag arises from the experimental
data; and it is one which provides an unexpected corroboration of the theory advanced so far.

The self-resonance mechanism is discussed in detail in a separate article'®, but a brief summary
1s appropriate here. The SRF of an isolated coil is most easily measured by scattering radiation
from it. That can be done, for example, by using a grid-dip oscillator (GDO). If the coil-wire is
stiff enough to allow the structure to be self-supporting, then the measurement can be made in the
absence of dielectric materials other than air; in which case it will be found that the fundamental
SRF occurs when the wavelength of the incident radiation is twice the length of the electrical
conductor (i.e., the length of the wire when straightened-out). Thus, if the wire length is £, we
have:
fw =~ }Lo /2
where Ay = ¢/t is the free-space wavelength. The relationship is accurate to within a few % for
solenoid coils which have some space between the turns and are made of wire which is thin relative
to the overall coil diameter.

It follows that the SRF corresponds to a transmission-line resonance. When all of the parasitic
effects are taken away, the fundamental resonance occurs at the frequency at which an
electromagnetic wave, reflecting from the impedance-discontinuities which occur at the ends of the
wire, arrives back at its starting point in phase with itself. Furthermore, there is not just a single
resonance, but a series of overtones; with parallel (high-impedance) resonances occurring when the
wire-length is a half-integer number of electrical wavelengths, and series (low-impedance)
resonances occurring when the length is a whole-integer number of electrical wavelengths. This is
the behaviour of a short-circuited transmission line.

The impedance of a lossless transmission line is given by the expression:

Ry [ 7+ jR() Tan(2n tro/ >\,) ]
Zin= (28.1)
[Ro +jJZ Tan(2m £y / M) ]

where Z is the terminating impedance, R, is the characteristic resistance, ¢, is the line length, and
A=v/f is the electrical wavelength (v is the phase velocity). If the line is short-circuited by putting
Z=0 we have:

Zin = jRo Tan(Zn fTL / 7\,)

Parallel resonances occur when Tan(2nér/ A)—o , and the fundamental instance corresponds to
{r.=M4. Thus the SRF of a coil can be represented as the fundamental resonance frequency of a
short-circuited quarter-wave line. Notice, incidentally, that this resonance occurs when the length
of the winding wire is A/2 . This is not a paradox, the reason being that the total length of conductor
ina M4 lineis A/2 .

Further information about the transmission-line behaviour of coils can be had by making precise
phase measurements on transformers. In another article'’, a method is described whereby the phase
of the output voltage of a transformer, relative to the input current, can be measured with a precision
of a few milli-degrees. The outcome of experiments is that, after correction for static capacitance
and inductance, the graph of phase error vs. frequency is a near-perfect straight line of negative

16 Self-resonance and self-capacitance of solenoid coils. D W Knight. [available from www.g3ynh.info]
17 Evaluation and optimisation of current-transformer bridges. D W Knight. [www.g3ynh.info]
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gradient. A quantity measured in (say) degrees per MHz is a time. It needs only to be divided by
360 to convert it into a time in microseconds, and the minus sign indicates that it is a delay.
Furthermore, the delay-figure obtained per winding is close to the time it takes for light to
propagate a distance equal to half the length of the winding wire.

The foregoing gives us a clear picture of the way in which electromagnetic energy propagates
through transformers. To understand it, start by t

considering the effect of a magnetic disturbance o o
occurring exactly half-way along the wire of a Va
secondary winding (see diagram). The disturbance I

applies equal and opposite electromagnetic forces to | ¥ 1

the conductor in the upstream (towards the dot) and '
downstream directions, resulting in the launch of - ful 2 -
equal-and opposite waves which propagate towards the

terminals. The two waves combine at the terminals to produce a contribution to the output voltage,
because they produce equal and opposite displacements of the terminal potentials.

Now consider what happens when a magnetic disturbance occurs at an arbitrary point on the
wire. In that case, this distances travelled by the two waves are not equal, and so the potential
displacements at the terminals are not equal and opposite. The propagation process however (as
will be later inferred from the phase velocity) occurs mainly outside any transformer-core material
which may be present, and so takes place in an environment which is reasonably linear with regard
to electromagnetic stress. Hence there will be no mixing between components at different
frequencies, and we may analyse the behaviour of the system by considering only sine-waves. The
sum of two sine-waves is another sine-wave. Hence the displacements at the two terminals will
produce a resultant which is a sine-wave, and the phase of that will be the same as that of a wave
which has travelled the average of the two distances. Thus the resultant output for a disturbance
occurring at any point on the wire will be the same as that arising from a disturbance exactly halt-
way along the wire.

The consequences of this superposition process are twofold. Firstly; electromagnetic waves
emerging from a port of a conventional transformer will appear to have come from a point exactly
half-way along the winding wire. Secondly; waves resulting from an infinite number of
simultaneous disturbances occurring at points distributed over the length of the wire will add
together in phase. The latter corollary constitutes a dynamic (i.e., electromagnetic, rather than
purely magnetic) explanation for the phenomenon of flux-linkage; the reason being that the
divergence theorem (divB=0) implies that flux lines are always continuous and are therefore
contours of simultaneity. It also implies that the coupled inductance of the winding will be
cancelled from the point-of-view of electromagnetic energy propagating out of (or into) the
transformer; which is exactly what was established from circuit-theory considerations in section 23.

The inductance which is not cancelled is, of course, the leakage inductance. Hence a wave
propagating out of a transformer winding does so via a transmission line of total inductance equal to
the leakage inductance, and physical length equal to half the length of the wire. The view that the
leakage inductance has a definable physical length is, incidentally, corroborated by the path-analysis
discussion of section 17. There it was established that, from an analytical viewpoint, the leakage
inductance of a particular winding has the same number of turns as the total inductance. We have
tended to regard the turns number as a measure of flux linkage, but it is also a measure of wire
length. The leakage inductance is distributed along the winding, not isolated into a lump, and so it
retards waves progressively as they travel the wire.

The result of these deliberations is a modified transformer model as shown in the diagram below.
This may appear to be somewhat complicated on first appraisal, but we will later resolve it into
lumped elements using the impedance-referral techniques discussed in the previous section. Notice
first that some stray or static capacitances, Cy; and C,; have been placed across the ports. Such
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capacitances are inevitable in any device capable of sustaining a potential difference across its
terminals, which is another way of saying that capacitance results from the absence of a short
circuit. Also notice that the generator connected to the primary has been provided with a series
impedance Z,, the point being that the transformer input capacitance can have no effect on circuit
behaviour unless the generator has a finite output impedance. The major change however, is the
inclusion of two transmission lines, which give rise to time delays At; and At,.

(1-ki)L4/2 (1-k2)L2/2

- - /

«—At1—> «—Ate—>

As energy flows through a transformer, each winding causes a delay equal to the time it takes for an
electromagnetic wave to travel half the length of the conductor. Velocity is distance divided by
time, and so:
At=-(tw2) /v
The delay is given a minus sign because it gives rise to a phase lag in the transformer output
voltage. The quantity v is the phase velocity (or wave velocity), and is given by:
v =1(pe)
where | and ¢ are respectively the absolute permeability and permittivity of the transmission-line
environment. Note that p, written here without subscripts, is not the same as the transformer-core
permeability; the lack of adornment being purely to minimise clutter for the purposes of this
discussion. Absolute permeability and permittivity can be further separated into the free-space and
relative quantities, i.e.;
v =110 pr € &)
but 1/\(po &) is the speed of light, c. Hence:
v=c/ (i &)
The quantity V(p & ) is known as the refiactive index of the medium, and in an optical context is
usually given the symbol ' n'. The quantity 1/\(u &) or 1/n is known as the velocity factor, and
is simply the proportion by which the phase velocity differs from the speed of light. Hence:
v=c/n

When considering the transfer of energy via a transformer, it is tempting to imagine that it
involves the propagation of electromagnetic waves through the transformer core . Were that the
case however, we would expect to measure enormous retardation in any device having a
ferromagnetic core. This issue can be understood by estimating the refractive index of the core
material. For the time-delay study cited earlier (for example), the transformers were based on
Micrometals type 61 nickel-zinc ferrite, which has in initial permeability (i.e., relative permeability
at low flux densities) of 125 at frequencies of a few MHz. The relative permittivity (dielectric
constant) of ferromagnetic materials is more difficult to obtain, but data given by Snelling'® suggest
that it lies in the 10 to 100 range for NiZn ferrites. Thus, if we assume, for the sake of argument,
that the core has an &, of about 20, we might expect a refractive index in the region of
V(125 x 20) = 50, and a velocity factor of 1/50 = 0.02. In fact, for a single-layer winding of

18 Soft Ferrites: Properties and Applications. E C Snelling. 2nd ed. Butterworth. 1988. ISBN 0-408-02760-6.
Permittivity of ferrites: p127 - 129.
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enamelled-copper magnet-wire on a type 61 toroid, the time-delay corresponded to a refractive
index of about 1.2, i.e., a transmission-line velocity factor of about 0.83. From this we must
conclude that the major part of the propagation process takes place in an environment which has a
low relative permeability. This is consistent with the earlier observation; that the distributed
inductance of the line is inductance which has failed to participate in the magnetic coupling, i.e., it
is the leakage inductance. The leakage inductance is composed of internal inductance (flux loops
within the body of the conductor) and the inductance due to flux loops which fail to enter the
magnetic core. Hence, presuming that what lies outside the core (including the wire) is non-
ferromagnetic; the relative permeability for the transmission-line environment will be that which is
typical of non-ferromagnetic materials, i.e., it will be within a few parts-per-thousand of unity.

When making coils and transformers, it is necessary to use wire of high conductivity in order to
minimise resistive losses. Hence nearly all transformers are wound either with copper wire, or with
silver-plated copper wire. Both metals have p, close to 1, as do wire insulation materials such as
enamel or PTFE. It follows that we can usually assume p.=1 when estimating the transmission-line
phase velocity, and any deviation from c is almost entirely attributable to the average relative
permittivity (dielectric constant) of the environment in the vicinity of the wire surface. Thus we
have: n=\(1 x &) , which gives &=1.44 when n=1.2 . This is reasonable given that the E-field of a
travelling-wave in an RF transformer will exist mostly in the air around the wire, but also partly in
the wire insulation, and it may penetrate the magnetic core material to a small extent. An additional
refractive effect will be that of the coil itself, which scatters radiation in such a way as to make the
resultant wave follow a helical path, and must therefore make a contribution to the local
permittivity. The latter will be somewhat frequency-dependent (a coil is a dispersive transmission
line); and so it is to be expected that the propagation delay will not be exactly constant. This means
that there will be some temporal-spreading of pulse-type signals as they pass through the
transformer (i.e., different frequency components will have different phase velocities).

The presence of transmission lines leading into and out-of the transformer implies, of course,
that there will be impedance transformations in addition to that which is performed by the coupled
inductances. Those extra transformations can, in principle, be handled using equation (28.1); but in
practice it is a difficult problem due to lack of knowledge of the line characteristic-resistance (or
'surge resistance') Ry. The surge resistance of a lossless line is given by:

Ro = \/( Lo / Co )

where L, is the inductance per unit length, and C is the capacitance per unit length, of the line. The
total line inductance is, of course, the leakage inductance of the winding, and finding the length is
straightforward; which means that the average distributed inductance is experimentally
determinable. The distributed capacitance however, is difficult to separate from stray-capacitance,
and is therefore usually unknown. The issue is not completely intractable, but pragmatism dictates
that the most straightforward approach to RF transformer design is to keep the length of the
winding-wire sufficiently short that the spurious impedance transformation can be modelled using a
lumped series inductance and a lumped parallel capacitance. A rough rule-of-thumb for that
approximation is that the wire should be no longer than about A/10 at the highest frequency of
operation, but note that even that can sometimes prove to be excessive. Generally however, most
circuits are only required to conform to the model to within a few % , and in situations requiring
very high precision, it is usually possible to define a set of parameter adjustments which are capable
of absorbing model deficiencies.

What has been established is that the transmission-line impedance-transformation can be modelled
by placing empirically-determined shunt capacitances on the load-sides of the lumped leakage
inductances, provided that the length of the winding wire is substantially less than A/2 . The
textbook standard transformer model relies on this approach; even though most commentators do
not mention the length issue or identify what the network actually does. The reason for the neglect
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of transmission-line effects is that the model is inherited from the utility power-distribution
industry, where A¢/2 is about 3000Km for 5S0Hz, and 2500Km for 60Hz. Thus, for mains
transformers, it would be unusual to have a conductor-length approaching even A,/1000 ; and so the
lumped-element approach is very accurate. For RF transformers however, it is often difficult to
achieve £,<M10 (e.g., only Im of wire to make a transformer for 30MHz). This implies that model
validity is (or should be) an ever-present concern for the RF designer; but the lumped-parameter
representation can still give excellent results when judiciously applied. Thus, cautiously, we arrive
at the interim lossless network representation shown below.

(1-k+1)L1

The element sets { (1-k;)L;, Co: } and { (1-kz)L, , Cp, } are L-networks, which can be adjusted to
reproduce the transmission-line impedance transformations over a reasonably broad range of
frequencies provided that the winding conductor-lengths are electrically short. The capacitance Cy,
can moreover be referred to the other side of the perfect-transformer element (by dividing it by the
square of the turns-ratio), and if the secondary leakage inductance is small, it can then be
aggregated with the capacitances across the secondary port. Also, if the magnetising inductance
(kiL,) is relatively large, the primary leakage inductance can be moved to the secondary side (by
multiplying it by the square of the turns ratio). In this way, for transformers having only two
windings, the impedance transformations due to both lines can be modelled by a single L-network.
A further point worth noting here is the matter of parameter correlation. If the model parameters are
to be determined by (say) fitting them to frequency-response data; then it will not be possible to
distinguish between the effects of primary and secondary-side parasitics in a closely-coupled two-
coil transformer, and in that case it will be necessary to aggregate parameters in order to get the
fitting process to converge. Such parameter aggregation has the effect of divorcing the network
representation from the underlying physics, but the resulting empirical model still gives an accurate
account of the behaviour of actual devices.

The modelling error which results from representing a transmission line as an L-network is,
incidentally, usually small; but it can become significant in circuits (such as RF bridges) which
require very precise phase-frequency tracking . The issue is that the addition of a parallel
capacitance moves an impedance clockwise around a circle of constant conductance'®, whereas a
time-delay moves a V/I relationship clockwise around a circle centred on the origin of the Z-plane.
These two effects are experimentally indistinguishable when the phase-shift is small, but diverge
when the phase-shift becomes large. This is, of course, a reiteration of the point that it is desirable
to have £w<< V2.

On the subject of adding capacitances to the transformer model, there remains one final issue. This
is that the separate coils must be placed in close proximity; which means that, in the absence of
some kind of electrostatic shielding, there will be stray capacitance between the windings. Such
capacitance is known as inter-winding capacitance, and can cause pronounced effects in signal-
processing circuits. In bandpass filters, for example, it can give rise to poor out-of band signal
attenuation; and in RF bridge circuits, it gives rise to phase errors which require correction. Strictly,
inter-winding capacitance is distributed in the gap between the coils, but the effect is fairly well

19 Impedance matching. D W Knight. [available from www.g3ynh.info]
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approximated by adding capacitances as shown below:

Zs ('[ k1)]_1 l!.fal (1-kz)L2

[ Zencod k,iugggkgmu Lo 2

|wb

29. Faraday shielding

The standard solution to the inter-winding capacitance problem is to provide an electrostatic screen
(known as a Faraday shield). In mains transformers, this is done by placing a sheet of copper foil
between the primary and secondary windings (with insulating layers on both sides); the foil having
an insulated overlap, so that it eliminates any line-of-sight from one coil to the other but does not
form a shorted turn. When the shield is grounded (via a wire of low inductance) capacitive
coupling is almost completely eliminated. The effect of this arrangement depends on the fact that
power-line transformers are extremely lossy at high-audio and radio frequencies; and so the shield
prevents mains-borne noise from appearing on the power-rail, and it prevents high-frequency
signals from being injected into the house wiring.

In RF transformers, Faraday shielding is often effected by making one
of the windings from coaxial cable (see illustration). This makes the
transmission-line parameters of the shielded winding easier to estimate;
but note that it is imperative that the shield is only earthed at one end (it
constitutes a shorted winding if earthed at both ends), and it is therefore
not completely safe to assume that all of the leakage inductance is
confined within the cable (shield and centre-conductor currents are not
equal-and-opposite).

It is commonly assumed that the Faraday shield converts all inter-
winding capacitance into capacitance to ground. This however is not a
proper interpretation of the effect, as can be understood by considering the
coaxial-cable screening method. The inner and outer conductors of the cable make the same
number of turns around the transformer core, and there is a relatively large capacitance between
them. Hence the shield forms an additional transformer winding, with its free-end capacitively
coupled to to the other windings (particularly to the one it shields). This, depending on the external
circuit configuration, affects the phase-frequency response of the system; and it can also result in
extraneous coupling, such as the injection of power-supply noise into the signal chain.
Consequently, the shield-winding currents should be considered in the process of determining
where to connect the earth wire, or indeed, in deciding whether or not inter-winding capacitance
might be preferable.

>>> To be continued . ......
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Topics for discussion:

External reluctance:

Design and Calculation of Induction Heating Coils. R M Baker. Trans. AIEE, Vol. 76, Mar. 1957.
p31-40.

"A coil is electrically short when an appreciable portion of its ampere-turns is used to overcome the
reluctance of the external flux path".

neutralisation
current transformers

30. Transformer losses

Hysteresis

Eddy current losses

Residual loss

Wire resistance "Copper loss", skin and proximity effects
Dielectric loss

xX. Multi-port transformers.

Current transformers
Overall transimpedance. Sampling of current for bridges or ammeters. Quadrature transformer.

short-circuit secondary. Measuring leakage inductance.

Shorted turns and screening cans.

"The Effective Inductance and Resistance of Screened Coils", A G Bogle, JIEE, 1940, 87, p299-.
Reprinted: Wireless Section, Proc. IEE, Vol 15, iss 45, Sept. 1940, p221-238.

"The short circuited turn", Thomas Roddam, WW March 1957 p114-117

"The short circuited screen" (Letters to the editor), Thomas Roddam, WW June 1957, p274.
"Effect of a Conducting Shield on the Inductance of an Air-Core Solenoid." Ted L Simpson. IEEE
Trans. on Magnetics, Vol. 35, No.1, Jan 1999, p508-515.

Coupled resonators

Double-tuned bandpass (IF) transformer

coupled oscillators - a model for QM tunnelling, perturbation matrix
Hybrid transformers

Origin of the term. Compensation theorem. Impedance-generator hybrid
Trunk-line hybrid. Side-tone hybrid (why people shout into cellphones).

Neugebaur-Perrault neutralisation

Transmission-line transformers. Differential and common modes. Impedance transformation.



