
Investigation of E.B. Rosa’s Round Wire Mutual Inductance Correction Formula
By Robert Weaver, July 2008

Saskatoon, Canada

Rosa’s round wire correction factors for mutual inductance were tabulated in Rosa and Grover’s 1911 paper [1](Table
VIII, page 199), and in Grover’s 1946 Inductance Formula’s text [2](Table 39, page 150). The method used to determine
these factors is not well explained. The generating function appears at the top of Rosa and Grover’s Table VIII as:

n
2∑

n–1

1

m LnB =
m
Rm (1)

(Note that “B” is used in reference 1, and “H” is used in reference 2, for the same variable. I will use H in this discussion.)

Unfortunately, the meaning of this formula is not particular clear. The purpose of this investigation, was to determine the
details of the original method used to generate the tabulated data, so that it could then be used to produce higher precision
calculations than the original four decimal places, and also to gain a better understanding of the underlying science.

Although the above function is not well described, Grover provides a very brief discussion at the end of Chapter 2 which
helps shed some light on the subject. Paraphrasing: It is necessary to correct for the difference in mutual inductance between pairs of
round wires from mutual inductance between pairs of current sheet segments. This must be applied to each pair of turns in the coil. Each
pair of turns means each turn paired with each other turn in the coil, not just adjacent turns. Hence, while a two turn coil has
only one pair of turns, a three turn coil has three pairs of turns: turns 1 & 2 comprise one pair; turns 2 & 3 comprise a
second pair; and turns 1 & 3 comprise the third pair. It follows then that a 4 turn coil will have six pairs, a five turn coil will
have 10 pairs, and so on.

The correction for the difference between current sheet and round wire mutual inductance amounts to the ratio of the
Geometric Mean Distance (GMD) between round wire pairs, to the GMD between current sheet segment pairs.

From Grover, page 24, the GMD between circular cross-sections is simply the distance between their centres. When
expressed in terms of windings and winding pitch it is:

RRW = mp

where RRW is the GMD between round wires, m is the number of turns separating the two turns in question, and p is the
centre to centre winding pitch.

Taking the natural logarithm of the expression, puts it in a form which will be more convenient later:

Ln(RRW) = Ln(mp) (2)

From Grover, page 20, the GMD between current sheet segments is given by:

[]Ln(RCS) = Ln(mp) – 12m2

1
60m4

1
168m6

1
360m8

1
660m10

1
+ + + + + …

(3)

where RCS is the GMD between current sheet segments, m is the number of turns separating the current sheet segments,
and p is the winding pitch (and hence, the width of each current sheet segment). Referring back to Rosa’s original formula
(1), it appears that, inside the logarithm function, the numerator m accounts for the GMD of round wire pairs, and
denominator Rm is the GMD of current sheet pairs. It also appears that the function has been normalized to a unit pitch
factor, so that p disappears. Since m/Rm is inside a log function, and since the above GMD formulae are in logarithmic
form, it is simpler to subtract the log of the denominator from the log of the numerator, rather than take the log of the
ratio. Subtracting (3) from (2), the Ln(mp) portion neatly disappears and we are left with only the series portion of the

1

current sheet GMD formula which I will refer to as ∆GMD(m) in this discussion. (Admittedly, “∆LnGMD” would be a
more accurate term.)

The result is then:

∆GMD(m) = []12m2

1
60m4

1
168m6

1
360m8

1
660m10

1
+ + + + + … (4)

This must then be applied to each combination of pair of turns in the coil. And:
A 2 turn coil has its one pair spaced m=1 apart.
A 3 turn coil has two pairs spaced m=1 apart, and one pair spaced m=2 apart
A 4 turn coil has three pairs spaced m=1 apart, two pairs spaced m=2 apart, and one pair spaced m=3 apart, and so on.

In general then, an N turn coil will have:
N–1 pairs spaced m=1 apart;
N–2 pairs spaced m=2 apart;
N–3 pairs spaced m=3 apart;
…and so on, until finally:
1 pair spaced m=N–1 apart.

Using summation notation and combining the above, we get the correction factor H for a coil of N turns:

∑
N–1

m=1

(N-m) ∆GMD(m) H(N) =
(5)

Note that I have a coefficient of (N-m) while Rosa has only m. I decided to stay with (N-m), at least for the time being,
and I tested the function in a spreadsheet, to see how closely it matched the tabulated values, and to determine what other
factors may need to be included. It turned out that the values produced from this formula were off by a factor of 2/N.
Rosa’s formula shown at the top of Table VIII included a factor of 2/N. This factor is easily accounted for. The 2
accounts for the fact that we are counting each turn paired with each other turn as opposed to each pair of turns. Hence
the pair consisting of turn 1 and 2, while being a single pair, must be considered as turn 1 paired with turn 2, and then
subsequently turn 2 paired with turn one, so that the mutual inductance effect on every turn is accounted for. Hence the
number of terms is exactly doubled. The 1/N part of the factor is simply to account for the fact that Rosa’s overall
correction formula multiplies both the G and H terms by N, and therefore the H correction must initially scaled down by
that amount. Hence:

N
2∑

N–1

m=1

(N-m) ∆GMD(m) H(N) =
(6)

This formula now reproduces the tabular data accurately to the required four decimal places for N<30. However, the
error increases for values of N>30. This is understandable when considering that, in the calculation, the values of
∆GMD(m) for small values of m are multiplied by very large coefficients when N is large. It also appears to be related to
the limited accuracy in the spreadsheet program. The value of ∆GMD(1) is especially troublesome since it converges very
slowly, and Grover simply recommends that the value of 0.1137 be used, rather than attempt to calculate it with the series
formula. This is clearly insufficient accuracy for ∆GMD(1) if we want to calculate H(N) to four or more decimal places for
large values of N. So, we need more terms in the series.

Grover only gives the first five terms of the series formula which, except for m=1, is sufficiently convergent to calculate
the data. It is therefore necessary to refer to the original reference source [3] for the complete definition of the series
formula, or else deduce the subsequent coefficients in the series. Since I hadn’t been able to obtain a copy of reference 3, I

2

attempted to deduce the coefficients.

The pattern in the series: 12, 60, 168, 360, 660…, is not immediately evident. However, after looking at the factors of the
coefficients for some time, I noticed that if each coefficient is written as the product of 3 particular factors, arranged in a
particular way, then a pattern emerges:

 12 = 2 ˙ 2 ˙ 3
 60 = 3 ˙ 4 ˙ 5
168 = 4 ˙ 6 ˙ 7
360 = 5 ˙ 8 ˙ 9
660 = 6 ˙ 10 ˙ 11

From this, we can predict that the coefficient of the nth term is given by:
(n+1) ˙ (2n) ˙ (2n+1)

or
4n3+6n2+2n
Looking at it another way, doing a least squares polynomial fit would produce exactly the same function. The only way

we could come up with a different polynomial would be to find at least a fifth degree polynomial. Because it takes only a
third degree polynomial with simple integer coefficients to exactly fit the five points, we can be confident that this is the
correct function. Confidence increases further as we will find that this function correctly predicts the hundred series
coefficients that are required to calculate ∆GMD(1) to four decimal places.

This formula gives the first nine coefficients as: 12, 60, 168, 360, 660, 1092, 1680, 2448, 3420…

As mentioned above, the series converges very slowly for m=1. In fact, to calculate ∆GMD(1) to eight decimal places
requires thousands of terms. This is obviously a job for a computer, and that is how I proceeded. The value of ∆GMD(1)
then came out to 0.11370563873392 using 29240 terms. At this point, the value was changing by only 10-14 per term.
However, due to accumulated round off error when calculating this many terms, I estimated this value of ∆GMD(1) not to
be any more accurate than about ten decimal places. It is important that ∆GMD(1) be accurate, because it is used in every
subsequent calculation. Not happy with the calculated accuracy, I investigated the use of an acceleration technique, and
tried using Wynn’s Epsilon Algorithm to see if it would accelerate the convergence, but found that it was more accurate by
a factor of only about 100 for up to 6000 terms, and then beyond that, it became less accurate than the brute force
calculation, due to round off error again. At this point I decided to see if the value could be derived analytically. Ultimately,
I was able to determine the sum of this series analytically, and found that this value is simply Ln(1⁄4)+3⁄2, or
0.113705638880109. This derivation obviously deserves further explanation, but is somewhat involved. So, I have
relegated its complete analysis to Appendix C.

Reference [3] was later located, and it was found to be none other than a reprint of reference [1], containing exactly the
same information. However, on examination of the original reference to page 168, it was found to contain an alternative
non-series formula (130) for the GMD for current sheet segments. Substituting it for the series formula, the ∆GMD
formula becomes:

Ln(m–1) +∆GMD(m) = (m2+1) Ln(m) –
2

(m+1)2 Ln(m+1) –
2

(m–1)2
2
3

This produces exactly the same value of 0.113705638880109 for m=1, as was derived in Appendix C, but with far less
effort. Unfortunately, that appears to be the extent of its usefulness, because for large values of m, the subtraction of large
nearly equal terms results in more severe roundoff error than series formula (4).

Using the exact value of ∆GMD(1), and just the original five terms in the series formula for other m values, the calculated
values, rounded to four decimal places, now agree exactly with all of the original tabulated data.

3

Combining the ∆GMD function with the H(N) function, the complete mutual inductance correction formula becomes:

∑
N-1

(2i+1)(i+1)2im
2i

m=1

∑
∞

i=1

N-m

N
2

H(N) =
(7)

Because the inner summation converges very quickly for m>1, only the first few i-terms need be evaluated. For m=1, the
pre-calculated value of 0.113705638880109 should be used.

(For the sake of completeness, the formula was retested using a coefficient of m rather than (N-m) as per Rosa’s formula
(1), just in case I had overlooked something obvious. The results were incorrect, as expected, indicating that the meaning of
the terms in his formula are somewhat different, or there is simply a typographical error.)

Formula (7) has been implemented into a BASIC computer program which has been used to generate the table of 10 digit
H values shown in Appendix A. Program listings are included in Appendix B.

In addition, Wynn’s Epsilon Algorithm which had been previously coded into a BASIC program in an unsuccessful
attempt to determine the value of ∆GMD(1), was reused to estimate the limiting value of H(∞). The program listing for
Wynn’s algorithm is included in Appendix B. Only eight H(N) values were used, starting at N=3 and each one increasing
thereafter by a factor of 6:

 N H(N)
 ------ --------------
Input:
 3 0.2713724853
 18 0.3283537742
 108 0.3363266810
 648 0.3376196662
 3888 0.3378341940
 23328 0.3378699218
 139968 0.3378758757
 839808 0.3378768680
Result:
 ∞ 0.3378770664

As indicated, this algorithm produces a value H(∞)=0.3378770664. The fact that it arrived at this value using only eight
H(N) values, and rerunning it using additional values made no difference within ten decimal places, leads me to believe that
this is very close to the true value. Despite this, I would be more confident having an H(∞) value that was derived
analytically.

Fortunately, a later paper by Grover published in 1929 [4]), was discovered after the above derivations and calculations
were done. In it, Grover revisits Rosa’s mutual inductance corrections and elaborates on their calculation, as well as
providing a new non-series formula for their calculation. Grover discusses the difficulty of generating the H values for large
values of N (“large” meaning approximately N>30). He specifically comments, “Furthermore, in the calculation of a table
for different values of n, the fact that the calculation for a given value of n rests upon the calculation for smaller values of n,
although seemingly an advantage, works to the end that any error made with a smaller value of n is carried through into
the calculation for the larger values of n.”

The primary purpose of Grover’s 1929 paper was to compare two popular inductance calculation methods: the current
sheet method with Rosa’s corrections, and a direct summation method; and to show that they are in fact equivalent. At the
time, there were concerns by some individuals that the current sheet formula was not accurate. However, this was shown to
be a result of incorrectly determining the effective current sheet dimensions, a problem which apparently persists to this day.

Having shown that the two inductance calculation methods were equivalent, Grover went on to identify the terms in each
formula which corresponded to each other. He showed that the A1/n term of Koga’s formula was equivalent to Rosa’s
mutual inductance correction. Koga had previously derived a non-series version of the A1/n expression by applying Euler’s
summation formula to an asymptotic series expression. (It is important to note, that Euler’s summation formula is an

4

approximation, although the actual error is deterministic and can be made vanishingly small.) Grover refined Koga’s
expression slightly, and presented it as:

H(N)= [Ln(2π) –] – Ln(N) –
2
3

6N
1

N
0.330842

120N3
1–

504N5
1+ (8)

From this, it is obvious that the limiting value of H(∞) is simply Ln(2π)-3/2, or 0.3378770664 which agrees exactly with
the value produced by Wynn’s Epsilon algorithm. Interestingly, the limiting value of H(∞) had never been derived
analytically prior to the publication of Grover’s 1929 paper. Prior to that, the value had only been estimated.

Use of formula (8) eliminates any accumulated roundoff errors when calculating H(N) for large values of N. In comparing
it with the series calculation derived above, I have found that for large values of N, both formulae (7) and (8) agree to ten
decimal places. This is a good check to show that using double precision in the computer program calculations of formula
(7) is sufficient to ensure ten decimal place accuracy. However, Grover notes that the coefficient 0.330842 for the 1/N term
varies for different values of N, and the value given is “indicated as correct” for N>3. I have not investigated this any
further, but have noted that using this formula for small values of N, it is in agreement with formula (7) to about five
decimal places. For N=1, it is evident that the correction must be zero, while formula (8) produces a value of
0.0006858601, and for N=2, the correct value is Ln(1/4)+3/2, or 0.1137056389, while formula (8) produces a value of
0.1137141387. The agreement improves however, as N increases:

For N>5, the agreement is to 6 decimal places,
For N>10, the agreement is to 7 decimal places,
For N>100, the agreement is to 8 decimal places,
For N>500, the agreement is to 9 decimal places,
For N>5000, the agreement is to 10 decimal places.
For 5000<N<107, the values continue to agree to at least ten decimal places. The largest N that was calculated for this

investigation was 107. This confirms that the accumulated roundoff error in the series calculation does not cause any
problems with calculations to ten decimal places when using double precision operations. Formulae (7) and (8) complement
each other nicely, as (7) is accurate for N<5000, and (8) is accurate and faster for N>5000. Used together, they can
provide an accurate set of standard values to aid in producing a simpler fitting function.

In Grover’s 1929 paper, he also discusses the limitations to the accuracy Rosa’s corrections. Rosa’s corrections neglect
certain “curvature terms” [4](page 177), which in one example case of a 30 turn coil amounts to an error of 8x10-4 in the
correction, which in turn affects the overall inductance calculation by 1.4x10-6. From this, we may question the need to
calculate these mutual inductance corrections to ten decimal places. However, it seems worthwhile to use the best accuracy
readily available to minimize any other accumulated error that may later be compounded in the overall circuit design.
Double precision operations are readily available in most popular programming languages.

Conclusion
Different methods have been presented for the calculation of H(N) for both large and small values of N, including exact

values for the important cases of N=2 and N=∞. These independently derived formulae have provided a cross check to
verify the accuracy of the calculations, allowing one to select the best method of calculation for any value of N. The table
presented in Appendix A, and formula (7) used to calculate it, can be relied upon to give Rosa’s correction accurate to ten
decimal places for all values shown.

For maximum accuracy, when implementing the correction calculation in a computer program, the value 0 should be
used for N=1, the value Ln(1/4)+3/2 should be used for N=2. The series formula (7) should be used for N<5000, and for
speed and efficiency, formula (8) should be used for N>5000. And where required, the value Ln(2π)-3/2 should be used as
the limiting value for N=∞.

5

Appendix A

Using 18 i-terms in formula (7), the following data were generated from a BASIC program using double precision
operations:

 N H(N)
 ------ ------------
 1 0.0000000000
 2 0.1137056389
 3 0.1662612544
 4 0.1972758804
 5 0.2179946299
 6 0.2329272589
 7 0.2442585094
 8 0.2531838656
 9 0.2604160704
 10 0.2664081058
 11 0.2714624996
 12 0.2757894688
 13 0.2795399058
 14 0.2828250920
 15 0.2857290007
 16 0.2883162583
 17 0.2906374592
 18 0.2927328100
 19 0.2946346882
 20 0.2963694754
 21 0.2979588959
 22 0.2994210101
 23 0.3007709619
 24 0.3020215503
 25 0.3031836696
 26 0.3042666549
 27 0.3052785531
 28 0.3062263403
 29 0.3071160952
 30 0.3079531406

 N H(N)
 ------ ------------
 31 0.3087421581
 32 0.3094872828
 33 0.3101921816
 34 0.3108601179
 35 0.3114940064
 36 0.3120964588
 37 0.3126698225
 38 0.3132162133
 39 0.3137375440
 40 0.3142355480
 41 0.3147118000
 42 0.3151677343
 43 0.3156046599
 44 0.3160237741
 45 0.3164261742
 46 0.3168128680
 47 0.3171847829
 48 0.3175427732
 49 0.3178876282
 50 0.3182200773
 55 0.3197182681
 60 0.3209898104
 65 0.3220835976
 70 0.3230352589
 75 0.3238713981
 80 0.3246122994
 85 0.3252737097
 90 0.3258680487
 95 0.3264052486
 100 0.3268933516

 N H(N)
 ------ ------------
 110 0.3277474630
 120 0.3284707484
 130 0.3290916932
 140 0.3296309965
 150 0.3301040761
 160 0.3305226607
 170 0.3308958371
 180 0.3312307589
 190 0.3315331373
 200 0.3318075895
 220 0.3322871556
 240 0.3326925570
 260 0.3330400561
 280 0.3333414450
 300 0.3336054904
 350 0.3341423106
 400 0.3345535170
 450 0.3348791769
 500 0.3351438457
 550 0.3353634385
 600 0.3355487377
 650 0.3357073161
 700 0.3358446535
 750 0.3359648160
 800 0.3360708861
 850 0.3361652448
 900 0.3362497611
 950 0.3363259233
 1000 0.3363949316
 2000 0.3370782367

 N H(N)
------- ------------
 3000 0.3373219874
 4000 0.3374487704
 5000 0.3375269915
 10000 0.3376904765
 20000 0.3377779952
 30000 0.3378087664
 40000 0.3378246427
 50000 0.3378343836
 100000 0.3378545698
 200000 0.3378652405
 300000 0.3378689572
 400000 0.3378708646
 500000 0.3378720306
 750000 0.3378736191
1000000 0.3378744330
1500000 0.3378752657
2000000 0.3378756919
2500000 0.3378759520
3000000 0.3378761276
3500000 0.3378762543
4000000 0.3378763503
4500000 0.3378764255
5000000 0.3378764861
7500000 0.3378766705
8000000 0.3378766939
8500000 0.3378767146
9000000 0.3378767331
9500000 0.3378767497
 107 0.3378767647
 ∞ 0.3378770664

6

Appendix B

Following is the program code used to generate the table of H(N) in Appendix A.

 // Program 1
 // Calculate and print the values of H(N)
 Dim m,j,k,N,dN As integer
 Dim Hj,x, H(1,200) As Double
 j=0
 N=1
 dN=1
 //calculate 120 values
 while j<120
 H(0,j)=N //Array indices are zero based
 Hj=0.0
 for m=1 to N-1
 Hj=Hj+dGMD(m)*(n-m)
 next
 H(1,j)=Hj*2/N
 Print right(" "+str(N),6)+" "+format(H(1,j),"0.0000000000")
 j=j+1
 //Change the increment for larger values of N
 if N >= 50 then dN=5
 if N >= 100 then dN=10
 if N >= 200 then dN=20
 if N >= 300 then dN=50
 if N >= 1000 then dN=1000
 if N >= 5000 then dN=5000
 if N >= 10000 then dN=10000
 if N >= 50000 then dN=50000
 if N >= 100000 then dN=100000
 if N >= 500000 then dN=250000
 if N >= 1000000 then dN=500000
 N=N+dN
 wend
 // At completion of this program, array H contains pairs of [N, H(N)]
 // N values are included in the array, since the increment is not constant
 End

 // Function dGMD (used by Program 1 and Program 2)
 Function dGMD(j As Integer) As Double
 dim i,Nterms As Integer
 dim k,x,N,Ni,Y As Double
 //Nterms is Number of terms to use for series
 Nterms=18
 if j=1 then
 // Use the analytical expression for dGMD(1)
 return Log(1/4)+3/2
 else
 N=j+0.0
 N=N*N
 Ni=N
 Y=0
 for i=1 to Nterms
 x=i+0.0
 k=(x+1)*(x+x)*(x+x+1)*Ni
 //Skip out of loop if term becomes vanishingly small
 if k>1e100 then exit
 Y=Y+1/k
 Ni=Ni*N
 next
 return Y
 end if
 End

7

Following is the program code using Wynn’s Epsilon algorithm to estimate the limiting value of H(∞).

 //Program 2
 //Calculates the limiting value of H(∞) using Wynn's Epsilon Algorithm
 Dim i,m,j,k,N,dN,Nterms As Integer
 Dim Hj,x As Double
 dim S() As Double
 //Number of terms to use in epsilon algorithm:
 Nterms=8
 j=0
 N=3
 dN=10
 Window1.Refresh
 //calculate number of terms given by Nterms, but don't go higher than 900000
 while j<Nterms+1 and N<=900000
 if UserCancelled then exit
 H(0,j)=N
 Hj=0.0
 for m=1 to N-1
 x=dGMD(m)*(n-m)/n
 //skip out of loop if the next iteration is insignificant
 if x<1e-30 then exit
 if UserCancelled then exit
 Hj=Hj+x
 next
 H(1,j)=Hj*2
 //Print out the values of n and H(n)
 Print right(" "+str(N),9)+" "+format(H(1,j),"0.0000000000")
 j=j+1
 if (j mod 20 =0) or (N>10000) then WindRefresh(j)
 N=N*6
 wend
 //call Epsilon to find the limit of the series
 redim S(j)
 Nterms=j
 for i=0 to Nterms
 s(i)=h(1,i)
 next
 Hj=Epsilon(Nterms,S)
 Print right(" "+"∞",9)+" "+format(Hj,"0.0000000000")

8

 Function Epsilon(N As integer,S() As double) As Double
 //Epsilon algorithm used by Program 2
 //Finds the limit of a series when only the first N+1 terms are known
 //This version has been ported to BASIC from a Fortran subroutine written by
 //Todor Mishonov & Evgeni Penev
 //and which appeared in an appendix to their technical paper:
 //Thermodynamics of Gaussian fluctuations and paraconductivity in layered superconductors
 //Int. J. Mod. Phys. B 14(32):3831--3879.
 //
 dim i,j,k As integer
 dim rLimit,A_max As Double
 dim i_Pade As integer,k_Pade As integer, err As double
 dim A() As Double
 // Check for invalid data
 if N>UBound(s) or N<2 then return 0.0
 Redim A(N) //Auxiliary row of e-table
 rLimit=S(N) //S is sequential row of e-table
 err=abs(s(N)-S(N-1)) //error value
 i_Pade=N
 k_Pade=0
 for i=0 to N //zero array
 A(i)=0
 next
 A_max=0
 k=1
 Do
 if (n-2*k+1)<0 then exit
 //Update auxiliary row of e-table by applying "cross rule"
 for i=0 to N-2*k+1
 if s(i+1)<>S(i) then
 A(i)=A(i+1)+1/(s(i+1)-S(i))
 else
 A(i)=A(i+1)
 end if
 next
 if n-2*k<0 then exit
 //Update sequential row of e-table by applying "cross rule"
 for i=0 to n-2*k
 if A(i+1)<>A(i) then
 S(i)=S(i+1)+1/(A(i+1)-A(i))
 else
 S(i)=S(i+1)
 end if
 //Check for convergence based on A_max
 If abs(A(i))>A_max then
 A_max=abs(A(i))
 rLimit=S(i)
 k_Pade=k
 i_Pade=i+k_Pade
 err=1/A_max
 E_err=err
 if S(i+1)=S(i) then return rLimit
 end if
 next
 k=k+1 //increment row index
 loop
 return rLimit

9

Appendix C

Derivation of the Sum of the Series: 1/12 + 1/60 + 1/168 + 1/360 + 1/660 + ...
To sum an infinite series, one approach is to determine an expression for the partial sums sn of the series, and then take
the limit as n→∞ to find the sum.

Given a series ∑ak, the partial sum sn(a) is defined as the sum of its first n terms or:

sn(a) = ∑ak
k=1

n

The letter in parentheses indicates which series we are summing. (There will be more than one, presently.)
If the series is convergent, then the sum s(a) is given by:

lim
n→∞ sn(a) =s(a) = ∑ak

lim
n→∞

k=1

n

The problem then, is to find an expression for sn(a).
In the subject series the terms are given by:

(2k)(k+1)(2k+1)ak =
1

Using the method of partial fractions, this expression can be broken into three terms:

2kak =
1

2(k+1) 2k+1+ –1 2

and then the series written as the sum of three new sub-series:
∑ak= ∑bk + ∑ck + ∑dk
where
∑bk = ∑

2k
1 +2

1 +4
1 +6

1 + ...8
1= ()

∑ck = ∑
k+1

1 = (+2
1 +3

1 +4
1 + ...5

1)
2
1

2
1

∑dk = –2∑
2k+1

1 = –2 (+3
1 +5

1 +7
1 + ...9

1)
Note that all three sub-series bear similarities to the harmonic series which is:

1 + +2
1 +3

1 +4
1 + ...5

1

The first sub-series, ∑bk, is composed of the terms of the harmonic series divided by 2. The second sub-series, ∑ck,
(ignoring the constant 1/2) is the harmonic series with the first term omitted. The last sub-series, ∑dk, (ignoring the
constant –2) is composed of the odd terms (omitting the first) of the harmonic series. (It is interesting to note that while the
original series ∑ak converges, the three sub-series diverge individually, and the harmonic series also diverges.) We can
define the partial sums of these sub-series in terms of partial sums of the harmonic series. The partial sums of the
harmonic series are given by the harmonic numbers H

n
 [5] where:

H
n
=∑ = Ln(n)+ +γ

nk
1

n
1

k=1

n

where γn is the nth partial sum of the series which converges to Euler’s constant γ as n→∞ (not to be confused with Euler’s
number e which is the base of natural logarithms).
Therefore, in terms of harmonic numbers, we can express sn(b), sn(c) and sn(d) as:
sn(b) = 1/2 H

n

sn(c) = 1/2 (H
n+1
–1)

sn(d) = –2 (H
2(n+1)

–H
n+1
–1)

10

Then, the partial sum of the original series ∑ak is:
sn(a) = sn(b) + sn(c) + sn(d) = 1/2 H

n
 + 1/2 (H

n+1
–1) – 2 (H

2(n+1)
–H

n+1
–1)

 = 1/2 H
n
 + 3/2 H

n+1
 – 2 H

2(n+1)
 + 3/2

Replacing the harmonic numbers with their logarithmic form:
 sn(a) = 1/2 (Ln(n)+1/n+γn) + 3/2 (Ln(n+1)+1/(n+1)+γn+1) – 2 (Ln(2n+2)+1/(2n+2)+γ2n+2) + 3/2

Collecting terms:
 sn(a) = [1/2 Ln(n) + 3/2 Ln(n+1) – 2 Ln(2n+2)] + [1/n + 1/(2n+2)] + [γn + γn+1 – 2γ2n+2]+ 3/2

Finally, the sum of the series s(a) is the limit as n→∞ of sn(a). Hence:
lim
n→∞

lim
n→∞ 2

3s(a)= sn(a) = [Ln(n) + Ln(n+1) – 2 Ln(2n+2)] + [+] + [γn + γn+1 – 2γ2n+2] +2
1

n
1

2n+2
1

2
3

Dealing with the easy parts first, at the limit, the 1/n terms inside the second set of brackets reduce to zeros. The gamma
terms inside the third set of brackets converge to Euler’s constant, and cancel each other out. This leaves only the log
terms inside the first set of brackets plus the constant term:

lim
n→∞ 2

3s(a) = [Ln(n) + Ln(n+1) – 2 Ln(2n+2)] +2
1

2
3

Combining the log terms inside a single log function:
lim
n→∞ 2

3 √n (n+1) √n+1
(2n+2)2[]s(a) = Ln +

s(a) = Ln + 2
3lim

n→∞
 √n (n+1) √n+1

(2n+2)2[]

Taking out common factors:

s(a) = Ln + 2
3lim

n→∞
 √n (n+1) √n+1

4(n+1)2[]
 √n √n+1lim

n→∞ 4(n+1)[] 2
3= Ln

lim
n→∞

 √n
4√n+1

[] 2
3+= Ln

= Ln lim
n→∞

 1

4√1+ 2
3+

n
1[]

= Ln
 1

4√ 1
[] 2

3+

and finally:

s(a) = Ln + 2
3[]4

1

11

Appendix D

References
1 Rosa, E.B. & Grover, F.W., Formulas and Tables for the Calculation of Mutual and Self Inductance, Bulletin of the Bureau of

Standards, Vol. 8, No. 1, (1911)
2 Grover, F.W., Inductance Calculations, Working Formulas and Tables, D. Van Nostrand Company, Inc. (1946)
3 Bureau of Standards, Scientific Paper, 169, p. 166-170 (1912).
4 Grover, F.W., A Comparison of the Formulas for the Calculation of the Inductance of Coils and Spirals Wound with Wire of Large Cross

Section, Paper No. 90, Bureau of Standards Journal of Research, Vol. 3, p. 163-190 (1929)
5 Bonar, Daniel D. & Khoury, Michael, Real Infinite Series, The Mathematical Association of America, p. 72-73 (2006)

Note: It was later discovered that [3] is a reprint of [1], containing exactly the same information.

12

