
1

Rosa's mutual inductance correction for the round-wire solenoid.
By David Knight

Version 1.03, (minor update) 3rd August 2012.  
© D. W. Knight, 2006, 2009 - 2012.
1st pdf version with machine-optimised empirical formula (version 1.00): 3rd April 2010.
Prior HTML article with optimised version of Grover's semi-empirical formula: 11th April 2009.  
Please check the author's website to ensure that you have the most recent version: 
http://www.g3ynh.info/ .

Abstract
Rosa's mutual inductance correction, used for obtaining round-wire solenoid inductance from the 
corresponding current-sheet inductance, is difficult to calculate and is traditionally given in tabular 
form.  This article describes accurate approximation formulae which have been fitted to the 
tabulated data and to a precise machine-calculation given by Robert Weaver.  A formula originally 
given in 2006, before the new calculations became available, is found to fulfil its original accuracy 
claims but is improved by further parameter adjustment.  A truncated series formula given by 
Grover in 1929 is accurate for large N, but inaccurate for small N.  Restoration of the N=1 boundary 
condition and extension of the series provides a one-line formula which is accurate to within 
±0.000 000 013.

Introduction
The inductance of a helical coil is most readily calculated by using the hypothetical current-sheet 
solenoid as a basis, and by applying corrections for the difference between realistic wire and a 
conducting sheet of infinitesimal thickness.  This approach was developed by Edward B Rosa of the 
American National Bureau of Standards (NBS)1 in 1906 and remains applicable in situations in 
which it is sufficient to calculate low-frequency inductance to an accuracy of better than about 1 
parts in 1000 (i.e., almost universally).  Rosa's expression for the inductance of a round-wire 
solenoid, written in the SI form (i.e., rationalised mks with permeability  μ  shown explicitly) 
becomes:

L = Ls - μ r N ( ks + km )      [Henrys]

where  Ls  is the inductance of the corresponding current-sheet,  r  is the solenoid radius,  N  is the 
number of turns, and  ks  and  km  are Rosa's correction coefficients.  Note however, that the symbols 
used here differ from those used in the references cited.  Specifically,  ks  is elsewhere given the 
symbol  A  or  G , and  km  is given the symbol  B  or  H  (the notation has been changed, because A, 
B, G and H now have fixed meanings in an electrical context).  Notice also that  ks  and  km  are 
dimensionless.  They are converted into Henrys by the factor  μr  outside the bracket.
     ks  (A, G) is a correction for the difference between the self-inductance of a round-wire loop and 
that of a single-turn current-sheet.  It can be obtained, to a good first-order approximation, using 
relatively simple formulae.  Rosa's expression for the low-frequency case (including internal 

1 Formulas and Tables for the Calculation of Mutual and Self Induction. E B Rosa & F W Grover, 3rd edition 
1916, with 1948 corrections. Bureau of Standards Scientific Paper No. 169 [BS Sci.169]. p122. [available from 
http://g3ynh.info/zdocs/magnetics/ ]. 

http://www.g3ynh.info/
http://electronbunker.ca/
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inductance) is:

ks(dc) = (5/4) - ln(2p/d)

where  p  is the winding pitch distance and  d  is the wire diameter (and  ln  means  loge ).  
Correction of this formula for high frequencies is discussed in another article2.
     km  (B, H) is a correction for the difference between the mutual inductance of pairs of round-wire 
loops and the mutual inductance of pairs of current-sheet loops, and depends only on the number of 
turns  N .  In contrast to the self-inductance term however; the calculation of  km  is complicated, 
because the coefficient is the sum of incremental contributions obtained by considering every pair 
of turns in a coil (i.e., adjacent and non-adjacent).  In the days before electronic computers, such 
calculations were laborious; and so the NBS issued a table, and corrected it from time to time.  An 
early version (4 decimal places) is given in BS Science Paper 169 3.  A re-calculation using 
improved techniques (to 5 places) was given in by Grover in 1929 4, and proves to be accurate to 
within one count in the last place.  The most widely known version however is given in Grover's 
1946 monograph5, and appears to have been obtained by rounding the 1929 table to 4 places.  In 
some cases, the rounding in Grover's 1946 table has gone the wrong way (because it requires at 
least 6 digits to produce data rounded to 4 digits without bias).  Hence Grover inadvertently 
produced a table with errors of  1 count in the 4th place.  More recently (2008) the calculation 
procedure has been re-investigated by Robert Weaver6, leading to a set of tabulated values precise to 
10 decimal places.  The latter study is the reason why we now know the accuracies of the other 
tables.
     The information provided by Bob Weaver includes example algorithms, an Open Office Basic 
macro function, and a description of the geometric-mean-distance (GMD) method.  This might 
encourage programmers and spreadsheet users to calculate  km  for themselves (i.e., it renders the 
practice of interpolating Grover's table obsolete), but a warning about execution speed is in order.  
When  running code using a  program interpreter, the calculation time for coils with many 
thousands of turns can range from minutes to hours using a fast modern computer.  Hence 
reproduction of Bob's full table, using (say) a spreadsheet, is not a task to be undertaken lightly.
     In view of the computationally intensive nature of the GMD method, and the fact that  km 
represents only a small correction to the overall inductance of a coil, there is an obvious need for a 
fast and simple calculation method.  A one-line empirical formula, capable of reproducing the 
values in Grover's 1946 table within one count in the 4th place, was made available by this author 
(DWK) in 2006 and is known to have been used in some programs and calculations.  This study 
shows that the original accuracy claims were correct, and that there is consequently no need for 
remedial action (although further optimisation is possible).  That formula however, is now 
superseded due to a re-investigation of a series formula given in Grover's 1929 paper.
     Bob Weaver, incidentally, has also found an analytical expression for the  N=2  case7.  This may 
be of theoretical interest, or as an alternative to the tabulated value:

When  N = 2 ,  km = ln(1/4) + 3/2  =  0.113 705 6389

2 Solenoid inductance and impedance calculation, D W Knight. section 7.  http://g3ynh.info/zdocs/magnetics/
3 BS Sci. 169  (already cited),  p199. 
4 Comparison of Formulas for the Calculation of Inductance of Coils and Spirals Wound with Wire of Large 

Cross-Section. F W Grover, JBS Vol 3. 1929. [RP90]. p190. [available from g3ynh.info/zdocs/magnetics/ ]
5 Inductance Calculations: Working Formulas and Tables,   F W Grover, 1946 and 1973. Dover Phoenix Edition 

2004. ISBN: 0 486 49577 9. [Grover 1946] p150, table 39.
6 Investigation of E.B. Rosa’s Round Wire Mutual Inductance Correction Formula. Robert Weaver, July 2008. 

[Weaver 2008] [available from g3ynh.info/zdocs/magnetics/ ]
7 Weaver 2008, Appendix C.
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Fit to the tabulated data
A formula for calculating  km  was first produced by this author (DWK) in 2006, before Bob 
Weaver's study was carried out.  Grover's 1929 paper (RP90) was also not known to this author at 
the time.  The generating function for the tabulated data is moreover not well described in the 1946 
monograph or the 1916 paper, and Bob's later reconstruction of it is a commendable piece of 
detective work.  The approach adopted therefore, was to obtain a curve corresponding to the 
available data.  The values in the 1916 and 1946 tables (given to 4 decimal places in both instances) 
were found to differ by as much as 0.0011; but the later document was assumed to be authoritative.

A graph of the data in Grover's 1946 table is shown on 
the right.  The actual numbers are given in the 
accompanying Open-Document spreadsheet 
Rosa_km.ods (sheet 3)  The curve tends to a limit of 
0.3379  for very large  N , but if we regard the asymptotic 
value as a matter of normalisation, it appears that the 
overall shape is that of a relatively simple function. 
Various candidates were tried, and it was found that the 
best crude fit was given by a function having the (un-
normalised) form:

f0(N) = 1 - 1/N

This expression gives half of its maximum value when 
N=2 , whereas the value in the table for  N=2  is about 
34%  of the maximum, and so the gradient of the function is obviously incorrect for small  N.  The 
gradient is however changing rapidly around  N=1 ; and so a correction can be obtained by 
including an offset, i.e., by sliding the starting point along the candidate curve until a suitable 
gradient is found (analogous to the process of using a French-curve to join-up the points on a hand-
drawn graph).  Hence:

f1(N) = 1 - 1/(N+k)

This new function goes to  1-1/(1+k)  when  N=1 , whereas a function which goes to zero is 
required, and so the zero-crossing point must be restored by subtracting the value of the function at 
N=1 , i.e.;

f2(N) = [1 - 1/(N+k) ] - [1 - 1/(1+k) ]

which simplifies to:

f2(N) = [1/(1+k) ] - [1/(N+k) ]

This function goes to  1/(1+k)  as  N→∞ , but it can be normalised to vary between 0 and 1 by 
multiplying it by  1+k , i.e.;

f3(N) = 1 - (1+k)/(N+k)

Multiplying by  km∞ = 0.3379  (the  N→∞  value in the table) then gives a first candidate for a fitting 
function:
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km' = km∞ [1-(1+k)/(N+k) ]

With  k=1.07 , this function was found to fit the data within about 3%.  This is remarkable for an 
expression with a single adjustable parameter, but nowhere-near good enough to reproduce the 
table.  Further improvement requires additional parameters, and there a various options in this 
respect.  The approach chosen was to add a correcting function which is fixed to zero at the extreme 
ends of its range (i.e., when  N=1  and when  N→∞ ).  A suitable candidate is:

Δf(N) = [(k1/N) + (k2/N²) + (k3/N³) + ....] ln(N)

where the ln(N) multiplier forces the function to zero when  N=1 , and the terms in the series in 
square brackets all go to zero as  N→∞ . Hence:

km' = km∞ [1-(1+k)/(N+k)] + [(k1/N) + (k2/N²) + (k3/N³) + ....] ln(N)

With the  N²  and higher terms excluded by setting  k2=0 ,  k3=0 , etc.; by varying only  k  and  k1  , it 
was easily possible to fit the table with no residual (observed-calculated ) greater than 0.0002.  
Then, by allowing  k2  to deviate from zero, it was found that the data could be fitted with no 
residual greater than 0.00007.  Thus the formula acquired the form:

km = km∞ [1-(1+k)/(N+k)] + [(k1/N) + (k2/N²)] ln(N)

Finally it was allowed that the value of  km∞  could lie between  0.337850  and  0.337949 , since 
anything in this range will round to 0.3379 , and this small latitude was used to distribute the 
residuals evenly above and below the value calculated by the function. The resulting formula is 
shown below (the parameter  0.9754  is  1+k , where  k = -0.0246 ):

km = 0.337883[ 1 - 0.9754/(N-0.0246) ]  + [ (-0.16725/N)+(0.0033/N²) ] ln(N)

This reproduces the values in Grover's table 39 8 with a maximum difference of ±0.000 062.  Details 
of the fit are given in the spreadsheet file Rosa_km.ods (sheet 3) and the graph of residuals 
(tabulated-calculated) is shown below.

The difference consists entirely of noise, this being due to the rounding errors incurred by 
truncation of the data to 4 decimal places.  The bars at ±0.00005 mark the limits for perfect 

8 Grover 1946, p150.
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reproduction of the table; i.e., any residual which falls outside this range corresponds to a 
discrepancy of 1 in the last place when the value returned by the function is rounded to 4 places.  As 
can be seen, there are 5 such discrepancies.  It was argued at the time that, since the fitting function 
is smooth and of low order (i.e., it cannot change direction suddenly); then its effect will have been 
to average the noise.  Thus it was deduced that there must be some errors of 1 digit in the last place 
of the data, which means that that the fitting function is at least as reliable as the table.  With no 
means of arbitration (and bearing in mind that such esoteric issues have negligible effect on actual 
inductance calculations), the 2006 work came to its natural conclusion.

When Bob Weaver's calculations and Grover's 1929 paper became available, it was discovered that 
the three discrepancies for N of 75, 110 and 900 were due to errors in the data, and the 
discrepancies at 21 and 34 were due to the function. Bearing in mind that the fitting criterion is that 
of minimum runout, rather than least-squares, the error at 75 had led to an adjustment which caused 
the residuals at 21 and 34 to creep above the limit.  Interestingly, the  km∞  value of 0.337883 , 
averaged from the data, is remarkably close to the analytical result9 :

km∞ = ln(2π) - 3/2 = 0.3378770664

By using the analytical value for km∞  and adding an extra term, the formula can be improved.  The 
version shown below has been fitted to data produced by the exact GMD calculation method, and 
has a maximum absolute error of ±0.000 0011 for integer N (see spreadsheet: Rosa_km.ods, 
sheet 2).

km = [ln(2π)-3/2]
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The formula is given below as a function, written in Open Office Basic.  Note that  N  is 
dimensioned as double-precision because there is no requirement that it should be an integer.  

Function Kmeo (Byval N as double) as double
'Rosa's round-wire solenoid mutual inductance correction. D W Knight, April 2010.
'Optimised empirical formula. Max error is +/-0.000 0011 
if N<1 then
  Kmeo=0
else
  Kmeo=(log(2*pi)-1.5)*(1-0.982889/(N-0.017111))    _
  +(-0.16641/N +0.00479/N^2 +0.001772/N^3)*log(N)
endif
end function

9 RP90,  p176.
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Optimisation of Grover's 1929 Series formula
In RP90, Grover gives a series formula for  km  which may be written as follows10:

km = [ln(2π)-3/2] -
ln(N)

6N
-

0.330842

N
-

1

120N³
+

1

504N5

(notice that the coefficient of  ln(N)/N is -1/6 =-0.16667 , which is very close to the value obtained 
from the fitting procedure).  This formula is extremely accurate for large N (it converges with the 
10-place GMD calculations), but it is inaccurate for  N < 4  and does not return zero for  N=1 .  
Given the simplicity of the expression, the grounds for using it are compelling; with perhaps a 
reversion to tabulated values for smaller  N .  Piecewise and spot solutions are unsatisfactory 
however; particularly because there is no reason why the number of turns on a solenoid should have 
to be an integer, and the function above is valid for any positive non-integer argument.  It is 
preferable therefore to optimise the function, and this turns out to be remarkably straightforward. 
Firstly; note the general form, which is:

km = [ln(2π)-3/2] -
ln(N)

6N
+

k1

N
+

k3

N³
+

k5

N5
 + . . . . . .

It is clear that terms of  N-7,  N-9  and so on can be added, and since such terms will vanish rapidly 
with increasing  N , they will only affect the expression in its region of greatest inaccuracy.  Also, 
by fitting the 10-place calculated data for  N=1  to  4  or so to a simple smooth curve and comparing 
this against the formula; it can be shown that the series, as truncated, oscillates for non-integer 
values of  N  in this region.  This, without revisiting the underlying theory, is evidence to the effect 
that the formula can be made accurate to an arbitrary degree by including extra terms.  We do not 
know the theoretical values for the coefficients of these new terms; but then again, for the purpose 
of obtaining a convenient expression, we would not necessarily want to use them.  Instead, we can 
allow one or more adjustable coefficients with a view to truncating the series once an acceptable 
degree of accuracy has been obtained.

Now observe what happens when we put  N=1  into the formula. We get:

km1 = [ln(2π)-3/2] + k1 + k3 + k5 + . . . . 

This should add up to zero, but for the original formula it does not.  This boundary error can be 
eliminated by ending the series with a closing term; i.e., we first extend the series up to some order 
p  (say). Thus:

km1 = ln(2π)-3/2 + k1 + k3 + k5 + . . . . + kp

We then define  km1 = 0 , so that:

kp = -[ ln(2π)-3/2 + k1 + k3 + k5 + . . . . ]

Adjustable terms between  5  and  p  can now be inserted until the required accuracy is achieved.

10 RP90, P176
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Using the strategy just outlined; it was found that the inclusion of just one variable term, and an 
adjustment of  k1  from  0.330842  to  0.33084236 , brought the maximum absolute error to within 
±0.000 000 013 .  The resulting formula is given below, and the comparison between it and the 
10-place data is given in the spreadsheet file: Rosa_km.ods (sheet 1).  The stated accuracy is only 
guaranteed for integer  N , because there is still some residual oscillation on the interval between 
N=1  and  N=5 ; but the error is unlikely to extend into the sixth decimal place for non-integer N, 
and since accuracy to 4 places is generally considered adequate, any further extension of the series 
appears unwarranted.  Thus we have an expression which is both simple enough for direct 
spreadsheet entry, and good enough to be acceptable in general-purpose computer programs.

Formula for Rosa's mutual inductance correction parameter:
Maximum error: ±0.000 000 013 for integer N.

km = ln(2π) -3/2 -ln(N)/(6N) -0.33084236/N 
                                          -1/(120N³) + 1/(504N5) -0.0011925/N7 + 0.000507/N9

Where:
0.000507000 = -[ln(2π) -3/2 -0.33084236 -1/120 + 1/504 -0.0011925]

A Basic implementation is as follows:

Function KMGO (Byval N as double) as double
'Rosa's round-wire solenoid mutual inductance correction. D W Knight, April 2010
'Optimised version of Grover's 1929 formula. Max error is +/-0.000 000 013
if N<1 then
  KMGO=0
else
  KMGO=log(2*pi)-1.5 -log(N)/(6*N) -0.33084236/N -1/(120*N^3) +1/(504*N^5) _
   -0.0011925/N^7 +0.000507/N^9
endif
end function

*          *          *

The Basic functions shown can be copied from the accompanying spreadsheet: Rosa_km.ods.  To 
open the macro editor (assuming the use of Open Office version 3), use the  'Tools > Macros > 
Organise Macros > OOo Basic' menu and navigate to the folder ' L_funcs ' .
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