
Practical Considerations in
The Calculation of Kelvin Functions

Ber(x), Bei(x), Ber'(x) and Bei'(x)
And Complete Elliptic Integrals K and E

Robert S. Weaver
October 26, 2009

Part I - Kelvin Functions
To implement the Kelvin functions in Basic, an excellent starting reference is
H. B. Dwight's Tables of Integrals and Other Mathematical Data (4th Edition,
MacMillan, 1961). He gives series formulae for these functions as follows:

 (820.3)

 (820.4)

 (820.5)

 (820.6)

(For this discussion the terms in these series will be numbered starting at zero.)

The pattern in the terms is readily apparent. The exponent in the numerator increases
by 4 for each successive term. The patterns in the denominators are slightly different for
each function, but again, are readily apparent. One can implement a loop in Basic to
calculate each term and then sum them, skipping out of the loop when the terms become
vanishingly small. However, one must be careful in the way that the terms are
calculated. There is a natural tendency to want to evaluate the numerator fully, then the
denominator, and then divide the former by the latter. Unfortunately, for values of x>1,
the value of the terms of the numerator get very large very quickly and can cause
overflows. Likewise, the squared factorials in the denominator will get very large even
faster than the numerator. So, even though the value of the term itself may be small, the
numerator and denominator calculations may fail due to overflow.

- 1 -

A better method is to calculate them incrementally. For example, term 2 of Ber(x),
expanded is:

We can evaluate it like this:

or like this:

Using the first method, the numerator and denominator get unwieldy very quickly.
Using the second method, the values of the individual fractions remain relatively
manageable.

This also presents an opportunity to make the calculation computationally more
efficient by developing a recurrence relation for the terms. That is, we can define term n
as a function of term n-1.

Expanding the first three terms of Ber(x), simplifying the fractions, and ignoring the
sign for the time being, we get:

It is apparent that term 2 can be calculated by starting with term 1 and multiplying it by:

And in general, each new term n can be calculated by starting with the previous term
and multiplying it by a factor which we will call termi, which will be:

In this way, we don't have to calculate each new term in its entirety, only the
incremental part consisting of the four sub-factors shown. The savings in computation
become significant when the number of terms to be calculated becomes large.

- 2 -

The general algorithm then, for calculating Ber(x) will be as follows:
1. Explicitly calculate term0 as the starting term.
2. Set an initial value for the sign (+1 or -1), which will alternate for each term

calculated.
3. Set the initial sum of the series equal to term0×sign.
4. Using a For-Next loop, perform the remaining calculations:
5. Set sign=-sign
6. Calculate incremental termi and multiply the previous value of term by this value to

get the new term.
7. Set sum=sum+sign×term
8. Exit the loop when the term becomes vanishingly small.
This algorithm is implemented in Open Office Basic as follows:

Function Ber(ByVal x as double) as double
 ' Calculates Ber(x) function
 ' Uses recurrence relation based on H.B. Dwight's
 ' series expansion formula 820.3
 ' Basic code by Robert Weaver 2009-10-26
 Dim i,sign As integer
 Dim sum,termi,term As Double
 if x=0 then
 Ber()= 1
 else
 term=1
 sign=1
 sum=term*sign
 '300 iterations is enough to calculate any
 'value within the range of double precision
 for i = 1 to 300
 sign=-sign
 termi=((x/(4*i)) * (x/(4*i-2)))^2
 term=term*termi
 sum=sum+sign*term
 'Skip out of loop if current term < 1e-12 of sum
 if abs(term/sum)<1e-12 then exit for
 next
 Ber()= sum
 end if
end Function

The only item that needs further comment is the first IF statement which checks for the
case of x=0. In this situation the function simply returns the correct value of 1 rather
than executing the For-Next loop. This is not strictly necessary for the Ber(x) function,
but for the remaining three functions it prevents a divide by zero error in the
convergence test at the end of the loop.

By pasting this code into the Open Office Macro Editor, the function may then be used
in a spreadsheet formula in the same way as a built-in function.

- 3 -

The remaining functions are calculated in exactly the same way. The only lines of code
which are different are for the initial value of term, the sign value, the formula for the
recurrence relation, termi, and the value returned for the case of x=0. The code for
Bei(x), Ber'(x) and Bei'(x) follows:

Function Ber_(ByVal x as double) as double
 ' Calculates Ber'(x) function -- d/dx Ber(x)
 ' Uses recurrence relation based on H.B. Dwight's
 ' series expansion formula 820.5
 ' Basic code by Robert Weaver 2009-10-26
 Dim i,sign As integer
 Dim sum,termi,term As Double
 if x=0 then
 Ber_()= 0
 else
 term=(x/2)^3/2
 sign=-1
 sum=term*sign
 '300 iterations is enough to calculate any
 'value within the range of double precision
 for i = 1 to 300
 sign=-sign
 termi=(x/(4*i)) * (x/(4*i+2))^2 * (x/(4*i+4))
 term=term*termi
 sum=sum+sign*term
 'Skip out of loop if current term < 1e-12 of sum
 if abs(term/sum)<1e-12 then exit for
 next
 Ber_()= sum
 end if
end Function

- 4 -

Function Bei(ByVal x as double) as double
 Dim i,sign As integer
 Dim sum,termi,term As Double
 ' Calculates Bei(x) function
 ' Uses recurrence relation based on H.B. Dwight's
 ' series expansion formula 820.4
 ' Basic code by Robert Weaver 2009-10-26
 if x=0 then
 Bei()= 0
 else
 term=x*x/4
 sign=1
 sum=term*sign
 '300 iterations is enough to calculate any
 'value within the range of double precision
 for i = 1 to 300
 sign=-sign
 termi=((x/(4*i)) * (x/(4*i+2)))^2
 term=term*termi
 sum=sum+sign*term
 'Skip out of loop if current term < 1e-12 of sum
 if abs(term/sum)<1e-12 then exit for
 next
 Bei()= sum
 end if
end Function

Function Bei_(ByVal x as double) as double
 Dim i,sign As integer
 Dim sum,termi,term As Double
 ' Calculates Bei'(x) function -- d/dx Bei(x)
 ' Uses recurrence relation based on H.B. Dwight's
 ' series expansion formula 820.6
 ' Basic code by Robert Weaver 2009-10-26
 if x=0 then
 Bei_()= 0
 else
 term=x/2
 sign=1
 sum=term*sign
 '300 iterations is enough to calculate any
 'value within the range of double precision
 for i = 1 to 300
 sign=-sign
 termi=(x/(4*i-2)) * (x/(4*i))^2 * (x/(4*i+2))
 term=term*termi
 sum=sum+sign*term
 'Skip out of loop if current term < 1e-12 of sum e
 if abs(term/sum)<1e-12 then exit for
 next
 Bei_()= sum
 end if
end Function

- 5 -

Part II - Complete Elliptic Integrals of the First and Second Kind
Again, we refer to H. B. Dwight's Tables of Integrals and Other Mathematical Data. He
gives series formulae for these functions as will be shown in the following sections.

It should be pointed out that depending on where these functions are encountered,
and how they are implemented, the input argument may be in one of three different
forms: k, k2, or θ, where θ=sin-1k. The input argument for the formulae presented here
will be k, which is known as the modulus of the integral.

1. Complete Elliptic Integral of the First Kind
Dwight gives a series formula for this function as:

 (773.2)

where

This formula converges quickly for k<0.91, but more slowly for higher input values.
Dwight gives a second formula which complements the first one, as it converges quickly
for large k, and more slowly for small k:

 (773.3)

The approach will be to use both formulae, selecting the one appropriate for the input
argument.

Again we will number the terms starting at zero. The pattern is again readily apparent.
Dealing with (773.2) first, it can be seen that term n is equal to term n-1 multiplied by:

All that remains to be done, is explicitly calculate the starting parameters, iterate the
terms and then multiply the final sum by π(1+m)/2.

- 6 -

Formula (773.3) consists of a series of terms, each of which is comprised of a series of
sub-terms. The coefficients outside of the brackets can be calculated from the preceding
coefficients; coefficient n is equal to coefficient n-1 multiplied by:

Inside the brackets, subterm n is equal to subterm n-1 minus:

One final point worth noting is that n never appears without a coefficient of 2 in front of
it in either formula. Therefore, we can optimize things a bit further by starting the loop
counter at two, and incrementing by two, then do away with the coefficient. The
function converges in fewer than 13 iterations.

- 7 -

The Open Office Basic code for the complete elliptic integral of the first kind follows:

Function EllipticK (ByVal k As Double) As Double
 ' Calculate the complete elliptic integral of the
 ' first kind with modulus k
 ' Uses series expansion
 ' Based on Dwight's formulas 773.2 & 773.3
 ' Basic code by Robert Weaver, 2009-10-26
 dim n As Integer
 dim sum,term,termi,kp,kp2,m,m2,coeff As Double
 kp2=1-k*k
 kp=sqr(kp2) 'complementary modulus
 if k<=.91 then
 ' if k <= .91 use formula 773.2
 m=(1-kp)/(1+kp)
 m2=m*m
 term=1.0 'the zeroth term is 1.0
 sum=term
 for n=2 to 100 step 2
 'calc nth coefficient
 termi=((n-1)/(n))^2*m2
 term=term*termi
 sum=sum+term
 if (term/sum)<1e-12 then exit for
 next
 EllipticK() = pi()*sum/2*(m+1)
 else
 ' if k > .91 use formula 773.3
 term=log(4/kp)
 coeff=1.0
 sum=term
 for n=2 to 100 step 2
 coeff=coeff*((n-1)/n)^2*kp2
 termi=2/((n-1)*n)
 term=term-termi
 sum=sum+coeff*term
 if (coeff*term/sum)<1e-12 then exit for
 next
 EllipticK() = sum
 end if
End Function

- 8 -

2. Complete Elliptic Integral of the Second Kind
Dwight gives a series formula for this function as:

 (774.2)

where

This formula converges quickly for k<0.92, but more slowly for higher input values.
Dwight gives a second formula which complements the first one, as it converges quickly
for large k, and more slowly for small k:

 (774.3)

The approach, as before, will be to use both formulae, selecting the one appropriate for
the input argument.

For formula (774.2), it can be seen that term n is equal to term n-1 multiplied by:

As a point of interest, for the case n=1, the part inside the brackets is negative, but
squaring the result yields the proper positive value.

Next, we examine formula (774.3). It's interesting to compare it to formula (773.3).
They are very similar, but have a few subtle differences which introduce complications
to their implementation. In the coefficient outside of the brackets, the rightmost factors
in the numerator and denominator are not squared, and the last term inside the
brackets has a numerator of one rather than two.

The coefficients outside of the brackets can be calculated from the preceding
coefficients; coefficient n is equal to coefficient n-1 multiplied by:

- 9 -

Note that this fails in the case n=1 due to a zero denominator. There are a couple of ways
to resolve the problem. We can explicitly calculate both coefficients 0 and 1, as well as
terms 0 and 1, and then begin the loop at n=2. Alternatively, we can save the
incremental part of the coefficient from one iteration, to be used in the following
iteration, giving it an initial value of one. This second approach will be used as it will
result in fewer mathematical operations. In this case we define ci as the incremental part
of the coefficient:

for n>0

and then

Next, we look at what's inside the brackets. Inside, term n is equal to term n-1 minus:

We see that this also fails for the case n=1 due to a zero denominator. It will be resolved
in the same way as before. The incremental part of the term is defined as ti:

for n>0

and then

As before, the variable n never appears without a coefficient of 2 in front of it. Therefore
we initialize the loop at two, and increment by two, and remove the coefficient. The
function converges in fewer than 13 iterations.

- 10 -

The Open Office Basic code for the complete elliptic integral of the second kind follows:

Function EllipticE (ByVal k As Double) As Double
 ' Calculate the complete elliptic integral of the
 ' second kind with modulus k
 ' Uses series expansion
 ' Based on H. B. Dwight's formulae 774.2 & 774.3
 ' Basic code by Robert Weaver, 2009-10-26
 dim n As Integer
 dim sum,term,termi,kp,kp2,m,m2,coeff,cio,cin,tio,tin As Double
 kp2=1-k*k
 kp=sqr(kp2) 'complementary modulus
 m=(1-kp)/(1+kp)
 if k=1 then
 'This prevents a divide by zero problem
 EllipticE() = 1
 elseif k<.93 then
 'formula 774.2
 term=1.0 'the zeroth term is 1.0
 sum=term
 coeff=1.0 'the zeroth coefficient is 1
 for n=2 to 100 step 2
 termi=m*(n-3)/n
 term=term*termi*termi
 sum=sum+term
 if (term/sum)<1e-12 then exit for
 next
 EllipticE() = pi()*sum/(2*m+2)
 else
 'formula 774.3
 tio=0
 cio=1
 coeff=1
 term=log(4/kp)
 sum=1
 for n=2 to 100 step 2
 cin=(n-1)/n
 coeff=coeff*cio*cin*kp2
 cio=cin
 tin=1/((n-1)*n)
 term=term-tio-tin
 tio=tin
 sum=sum+term*coeff
 if (term*coeff/sum)<1e-12 then exit for
 next
 EllipticE() = sum
 end if
End Function

- 11 -

