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*          *          *

Overview 
Information on the subject of solenoid inductance calculation is somewhat scattered in the literature 
and fraught with difficulties caused by differences of approach, inconsistencies of notation, errors, 
forgotten approximations, and the frequent need to translate between cgs and rationalised mks (SI) 
units.  There are also issues of possible inaccuracy (and sometimes straightforward error) that result 
from applying of a body of information developed in the age of  AC electrification to systems 
operating at radio frequencies.  
     In this article, the relevant information is collected, translated into SI units, reviewed and, where 
necessary, augmented.  We start by setting-out the often neglected  difficulties in solenoid parameter
definition and showing how to make a rigorous separation between internal and external inductance.
This allows us to view the traditional static magnetic model for what it is: an approximation for the 
principal component of the solenoid partial inductance.  This model is, of course, suitable for 
correction to work at radio frequencies below the principal self-resonance; and we examine the 
various requirements in that respect.
     For basic inductance calculation, three methods are compared.  The first two are the Rosa-
Nagaoka method of the American National Bureau of Standards (NBS) and the Kirchhoff 
summation method based on Maxwell's mutual inductance formulae.  These give accurate results 
for coils with closely-spaced turns, but underestimate generally because they assume that current 
can only flow in the radial direction (i.e., exactly perpendicular to the coil axis).  In other words, 
they lack helicity and so fail to include the inductance due to the axial component of current in the 
coil.  The third method includes helicity.  It was developed by Chester Snow of the NBS between 
1926 and 1932, but has recently been revisited by Robert Weaver.  By using a numerical integration 
method, Bob Weaver has succeeded in eliminating approximations that Snow (working without 
electronic computers) was forced to make for practical reasons.  The result is a program that works 
for coils of any pitch; to the point that it calculates the straight-wire partial inductance when the 
pitch angle reaches 90º.  The program is however computationally-intensive and thus unsuitable for 
general use.  We therefore use its output as a source of data for the purpose of devising additional 
corrections for the summation and Rosa-Nagaoka methods.

1 Ottery St Mary, Devon, England.  http://g3ynh.info/
© D. W. Knight 2012, 2013, 2015, 2016. 
David Knight asserts the right to be recognised as the author of this work.
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Preface 
This document is a much expanded version of an earlier HTML article called 'Solenoids', which was
first made publicly available in 2007.  Its intention is to address a number of common 
misconceptions relating to the physics of inductive devices and to present accurate methods for 
calculating the inductance and other impedance-related parameters of a solenoid coil.  
     The original work was triggered by some encounters with misleading and incorrect information; 
and by the observation that, of a number of solenoid inductance calculators that were offered via the
Internet at the time, there were none of any merit.  Indeed, most programs were (and many still are) 
based on Wheeler's 1925 long-coil formula that, although widely assumed to be the  formula for 
solenoid inductance, provides only an approximation to within a few % for coils of ℓ/D ≥ 0.4 .
     The original article was written as a supplement to information on the subject of impedance 
matching and measurement.  Its subsequent revision and improvement involved going through a 
number of old books and papers, relating primarily to the early 20th Century work of Edward B 
Rosa and Frederick W Grover of the American National Bureau of Standards (NBS), and then 
devising or searching the literature for convenient ways of calculating the various infinite-series-
form inductance functions and correction parameters.  I have also translated everything into 
rationalised mks (i.e., SI) units, adopted what is (to my mind) an easy-to-remember notation (D for 
diameter, r for radius, ℓ  for length, etc.),  and made a few additional contributions in areas that I felt
to be inadequately covered.  This dry and dusty subject was not expected to arouse much interest; 
but somewhat surprisingly, it has attracted a steady stream of correspondence.  It transpires that I 
was not the only one frustrated by the choice between methods that offer minimal physical insight 
and require the payment of software licence fees beyond the reach of private individuals2, and the 
traditional semi-analytical methods that, although excellent,  have needed to be updated for the age 
of the electronic computer.
     There was interest moreover, not only in using the methods discussed, but developing them and 
checking their accuracy.  In this respect I would particularly like to thank Bob Weaver for numerous
helpful discussions and for writing and making available the various inductance-related functions 
and algorithms that are discussed and used in this and related documents.  In many areas, Bob's 
efforts have surpassed mine, and although I try to summarise his findings here, I must also 
recommend the original material3.  I would also like to thank Rodger Rosenbaum, who provided 
both Bob and me with a large part of the NBS archive on DVD before it became available online4, 
and who spent much time checking and analysing not only our work, but also that of  Grover5 and 
others.  Finally, I would like to thank Mark Kennedy6  for critical review and for supplying some 
hard-to-find reference materials.

DWK, July 2012, Sept. 2012.

Note
Important references cited on multiple occasions are given an alias at the first occurrence, as 
indicated in [square brackets].

2 I refer, of course to finite-element analysis techniques.  Such methods are extremely valuable, and convenient for 
corroborating the findings of less brutal analytical approaches; but not exactly what you want to have running in the 
background of a general-purpose circuit simulation.  FE modelling is, incidentally, now available at zero cost thanks 
to Dr David Meeker.  See: http://www.femm.info/ 

3 http://electronbunker.ca/CalcMethods.html
4 http://nistdigitalarchives.contentdm.oclc.org/
5 Grover's 'Inductance calculations'. Supplementary information & errata.  D W Knight and R Rosenbaum 

2009.  [Grover errata]  Available from http://g3ynh.info/zdocs/magnetics/
6 http://www.metallurgy.no/

http://www.metallurgy.no/
http://nistdigitalarchives.contentdm.oclc.org/
http://electronbunker.ca/CalcMethods.html
http://www.femm.info/
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Introduction 
When modelling and using inductive devices, it is important to be aware that the concept of lumped 
inductance is only strictly applicable at low frequencies.  The construction of an inductor involves 
cramming a large amount of wire into a small volume, and at radio frequencies, this means that the 
wavelength is likely to be comparable to the length of the wire.  In such circumstances, it cannot be 
said that any given point within the device is in instantaneous communication with every other part 
of the device; in which case, the lumped component theory cannot provide an accurate description.  
This does not necessarily preclude the use of simple approaches to circuit design; but it does mean 
that lumped element analysis should be applied with caution. 
     What particularly undermines the validity of the lumped approach is the propensity for inductors
to exhibit dispersive behaviour.  The term 'dispersion' comes from the field of optics, where a 
'dispersion region' is a range of frequencies over which the refractive index of a medium changes; 
this being the the reason why a prism disperses white light into its component colours.  The 
refractive index is the geometric mean of the relative permeability and permittivity; i.e.,

n = √( μr εr )

and so, in an electrical context, where a dispersion region is a frequency range over which 
permeability or permittivity is changing, the meaning is exactly the same.  Coils with magnetic 
cores are inevitably dispersive, due to the complicated behaviour of ferromagnetic materials.  What 
is less well recognised however, is that simple coils of wire are dispersive also. 
     The term 'refractive index' is not much used in electrical engineering; but many will be familiar 
with 'velocity factor', which is its reciprocal.  This begs the question; "what has velocity got to do 
with inductance?" to which the answer is; "rather a lot".  The traditional understanding of coils 
depends on the idea that they are effectively electromagnets, and that they have reactance because 
energy is stored in the surrounding magnetic field.  This picture is mostly wrong, even though it 
suffices at low frequencies.  If we may take the liberty of using the word 'light' to mean 
electromagnetic radiation of any frequency; what a coil really does is to modify the refractive index 
of space in its vicinity in such a way as to bend light and force it to follow the electrical conductor.  
All electrical circuits do that of course, but in inductors, the path is deliberately made long.  Hence a
coil is a waveguide or transmission line, which stores energy by trapping and detaining 'light' that 
would otherwise have made a much shorter journey.
     The static magnetic conception of inductance works at low frequencies because the length of the 
wire used to make the coil is much shorter than the wavelength.  This means that a wave entering 
the coil at one terminal will emerge from the other terminal with almost exactly the same phase.  
Thus an instantaneous view of the magnetic field surrounding the coil will be almost identical to the
field produced by a direct current; in which case, the energy stored ( 1

2 L I2 ) will be the same as in 
the DC case and the inductance can be calculated accordingly.  From an electrical point of view 
therefore, a coil operating at low frequencies looks like a lumped inductance in series with the DC 
resistance of the wire. 
     The first dispersion-related impedance variation (assuming that there are no ferromagnetic 
materials or lossy dielectrics to complicate matters) occurs at the onset of the skin effect; i.e., when 
the current ceases to be distributed uniformly throughout the wire cross-section and starts to 
concentrate at the surface.  The frequency at which this change occurs depends on the diameter, 
resistivity and permeability of the wire, but it is usually somewhere between the audio and low 
short-wave radio regions.  We can go part of the way towards understanding what happens by 
separating the total inductance into external and internal parts: where external inductance is that 
due to energy stored in the magnetic field that permeates the surrounding medium; and internal 
inductance is that associated with the field within the body of the wire itself.  Inductance in 
electrical circuits is associated with current, and where there is no current there is no inductance.  
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Hence, as the current within the bulk of the conductor diminishes with increasing frequency, so too 
does the internal inductance.  There is a little more to it than that however, because the 
redistribution of current is also affected by the magnetic fields produced by adjacent turns.  This 
leads to a substantial second-order effect, known as the proximity effect; which gives rise to a 
reduction in the effective area enclosed by each turn of wire, and hence a reduction in the external 
inductance. 
     Thus the onset of the skin effect gives rise to a distinct transition from low-frequency to high-
frequency behaviour; after which both the inductance and the resistance become frequency 
dependent.  This does not necessarily preclude the use of the lumped component model however; 
because most of the decline in inductance occurs in the first two decades of frequency above the 
onset.  Once out of the dispersion region, the inductance (now, strictly; the equivalent lumped 
inductance) settles down for a few octaves, and becomes reasonably (but never quite) constant. 
     In the high-frequency region, it is no longer possible to treat the coil as though its reactance is 
purely inductive; the reason being that a wave emerging from the coil is now significantly delayed, 
and therefore has a phase that differs from its phase on entry.  One observable outcome is that the 
impedance at the coil terminals looks the same as that of an inductance (with series loss resistance) 
in parallel with a capacitance.  This capacitance is known as the 'self-capacitance' (or sometimes, 
misleadingly, as the 'distributed capacitance') of the coil.  Presuming that the measured impedance 
has been corrected for strays, and that the coil is not extremely short in comparison to its diameter 
and is wound in a single layer (i.e., there are no overlapping turns), then the principal component of 
self capacitance is not of electrostatic origin.  It is hypothetical (a way of expressing time delay), 
evoked in order to repair the lumped component model, and should be accorded no existence 
beyond that.  It remains reasonably constant over several octaves however, it can be predicted, and 
it is therefore a perfectly valid parameter for the purpose of circuit analysis and simulation.
     Unfortunately, the electrical literature abounds with articles that claim that the self-capacitance 
of a coil is due to the capacitance between adjacent turns.  This hypothesis is easily refuted, because
it makes the wholly incorrect prediction; that coils with closely-spaced turns will have much greater
self-capacitance than those that do not.  Unless the coil is short relative to its diameter (in which 
case the curvature of the field at the ends gives rise to an end-to-end capacitance), the static 
component of self capacitance is small in single-layer coils.  The component due to inter-turn 
capacitance moreover is barely measurable.  This is because a wave travelling along the wire does 
so with its electric vector nearly perpendicular to the coil axis, i.e., the electric field component 
parallel to the axis is negligible in comparison to the radial component.  Nevertheless, the inter-turn 
capacitance idea appears to be so compelling, that there are at least two examples, in the peer-
reviewed literature, where researchers have been motivated to fabricate or selectively report 
experimental evidence in order to support it. 
     The inclusion of self-capacitance into the lumped-component model gives rise to the prediction 
that a coil will still exhibit parallel resonance in the absence of an external circuit.  This is indeed 
correct; except that, unless the coil is short relative to its diameter, the actual self-resonance 
frequency (SRF) is considerably greater than predicted.  This failure of the lumped-component 
theory is mainly due to the onset of another dispersion-related effect; this time in which the 
apparent inductance declines (presuming that we adopt the view that the self-capacitance is 
constant) in such a manner that the SRF occurs at a frequency at which the wire in the coil is 
approximately one half-wavelength long (at least in the case of coil geometries suitable for making 
high-Q radio inductors). 
     This time, there is no reprieve for the lumped-element theory.  The SRF occurs at the electrical 
half-wavelength point because that is the frequency at which a wave, trapped in the coil by 
reflection from the impedance discontinuities that occur at the terminals, arrives back at its starting 
point in phase with itself.  We can partially explain the decline in inductance that leads to this co-
incidence by noting that a disconnected coil cannot have a uniform current distribution along its 
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conductor (there must be current nodes associated with the ends of the wire).  This view is 
consistent with the fact that short coils have less of an apparent inductance decline than longer ones,
the reason being arguably that the end-to-end capacitance helps to maintain the current.  
Explanations based purely on LC parallel resonance however  can give no insight into what is 
obviously a dimensional resonance.
     The self resonance occurs at the frequency at which the physical length of the winding wire is 
approximately one half-wavelength in coils for which the length and diameter are similar.  This 
however is not true for short coils, because the SRF is reduced as a result of end-to end capacitance 
and so tends to approach the value predicted by the lumped-equivalent self-capacitance.  In very 
long coils moreover, the SRF occurs at a higher frequency than might be expected from the wire 
length, a peculiar phenomenon that can be referred to as the 'slow-wave effect'.
     The slow-wave effect can be understood by considering the overall field pattern as the 
superposition (vector addition) of two waves, one travelling along the coil axis and the other 
following the helix.  In short coils, the coupling between the two modes is weak, and so the coil 
properties are dominated by by helical propagation, with the result that the SRF is close to the 
principal resonance frequency of a half-wave wire antenna of the same conductor length.  In longer 
coils however, excitation of helical propagation excites axial propagation, and since the two waves 
must remain in lock-step, the phase-velocity (i.e., the apparent velocity) of one must go up while 
that of the other goes down.  What happens is that the helical phase-velocity increases to reach a 
limiting value somewhere in the vicinity of twice the velocity of light in very long coils, while the 
axial phase-velocity goes down; so that the ratio of velocities is the same as the ratio of the wire-
length per turn to the inter turn distance (i.e., the winding pitch).  Thus, while the helical wave has a
phase-velocity greater than c, the axial wave, the slow wave, has a phase-velocity much less than c. 
     The ability of a long solenoid to produce an axial slow-wave is exploited in the travelling-wave 
tube (TWT) amplifier, where coupling between the the slow-wave and an axial electron beam is 
used to produce gain in signals injected at one end of the helix and extracted at the other.  The slow 
wave effect  however is of little significance in the behaviour of typical inductance coils, because 
long coils of large pitch often have less inductance than a straight wire, and to get a good ratio of 
inductive reactance to loss resistance (i.e., high Q) it is necessary to keep the coil relatively short 
and use plenty of turns.  
     The lumped-element theory has another limitation of course, in that it assumes that the behaviour
of a coil is undefined once the SRF has been reached.  In reality, the coil will exhibit a sequence of 
alternating parallel and series resonances, which occur whenever the electrical length of the wire 
corresponds to a half-integer multiple of wavelengths.  These overtone resonances incidentally, are 
not in exact harmonic sequence, because the phase velocity for helical propagation varies with 
frequency (the helix is a dispersive transmission line).  From the lowest parallel resonance (which 
we must now refer to as the 'fundamental' SRF) to the first series resonance, the reactance is 
capacitive.  It then switches back to being inductive until the next parallel resonance; and so on, 
almost ad infinitum, except that the length of a single turn will eventually become comparable to 
the wavelength and further complexities will arise.  It follows, that coils have interesting properties 
at frequencies around and above the fundamental SRF, but lumped component theory is of no help 
in understanding or exploiting the resulting phenomena.
     That coils are best regarded as transmission lines has long been known, but the behaviour of 
helical conductors is much more complicated than that of parallel wires, and the art of deducing 
their properties from first principles is hampered by the difficulty in solving Maxwell's equations 
for practical coils of arbitrary geometry.  The problem is not completely intractable however; and 
can be usefully addressed by treating the coil as a surface waveguide constrained to conduct only in 
the helical direction.  This model is known as the Ollendorff  sheath-helix.  An overview of this 
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subject is given by the Corum Brothers7, and additional information is given by Ramo et al.8 and 
elsewhere9 10 11.  The sheath-helix model points to a unification of the static magnetic and the 
transmission-line approaches, it accounts for the general variation of phase-velocity with frequency 
(overtone resonances not in exact harmonic sequence), and it also explains a useful but widely 
unrecognised phenomenon; which is that the resonant voltage magnification of a coil with minimal 
external capacitance is much greater than the lumped component theory predicts. 
     The downside of the sheath helix approach is that it involves simplifying assumptions and lacks 
certain important corrections.  This limits its utility as an impedance calculation method.  Also, it 
has to be said that traditional modelling methods, when properly applied, are very accurate at 
frequencies well below the SRF.  Consequently, in the discussion to follow, we will adopt the view 
that a modified static-magnetic approach to coil modelling (albeit without the misconceptions) is 
adequate in the majority of situations, and that transmission-line concepts are best used to extend 
rather than replace what is well established.

7 RF Coils, Helical Resonators and Voltage Magnification by Coherent Spatial Modes, K L and J F Corum, 
Microwave Review, Sept 2001 p36-45. http://www.ttr.com/TELSIKS2001-MASTER-1.pdf 

      Class Notes: Tesla Coils and the Failure of Lumped-Element Circuit Theory, Kenneth and James Corum. 
http://www.ttr.com/corum/

      Multiple Resonances in RF Coils and the Failure of Lumped Inductance Models. K L Corum, P V Pesavento, J 
F Corum. 6th International Tesla Symposium 2006. http://www.nedyn.com/TeslaIntlSymp2006.pdf .

8 Fields and Waves in Communication Electronics  , Simon Ramo, John R.Whinnery, Theodore Van Duzer, 3rd 
edition. Publ. John Wiley & Sons Inc. 1994. ISBN 0-471-58551-3.  [Ramo et al. 1994] Section 9.8: The idealised 
helix and other slow-wave structures.

9 Theory of the Beam-Type Travelling-Wave Tube. J R Pierce. Proc. IRE. Feb. 1947. p111-123. See Appendix B, 
p121-123, "Propagation of a wave along a helix", which gives Schelkunoff's derivation of propagation parameters 
for the Ollendorff sheath-helix. 

10 Coaxial Line with Helical Inner Conductor. W Sichak. Proc. IRE. Aug. 1954. p1315-1319. Correction Feb. 1955, 
p148. 

11 The self-resonance and self-capacitance of solenoid coils.  David W Knight.  g3ynh.info/zdocs/magnetics/

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471585513.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471585513.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471585513.html
http://www.nedyn.com/TeslaIntlSymp2006.pdf
http://www.ttr.com/corum/
http://www.ttr.com/TELSIKS2001-MASTER-1.pdf
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1.  The current-sheet solenoid 
In the design of high Q inductors for radio-frequency applications, the physical configuration most 
commonly adopted is the single-layer solenoid.  The word 'solen' is an old-fashioned term meaning 
'drainage channel', which eventually came to acquire the additional meaning 'drain-pipe'.  The word 
'cylinder' comes from the same root.  Hence a solenoid is a pipe-like coil, usually wound with the 
aid of an actual pipe known as the coil-former.  Winding the wire in a single layer produces an 
inductor with minimal parasitic capacitance, and hence gives the highest possible self-resonant 
frequency (SRF).  Striving to obtain a high SRF and low losses is the key to producing coils that 
have radio-frequency properties bearing some useful resemblance to pure inductance.
     A convenient basis for the calculation of the properties of practical coils is the inductance of a 
theoretical solenoid constructed using infinitely thin conducting tape wound, in a single layer, with 
zero spacing (but no electrical connection) between turns.  This model is mathematically 
straightforward (at least, relatively so), because the infinitesimal radial thickness permits precise 
definition of the diameter, and the infinitesimal inter-turn gap eliminates small-scale field non-
uniformities. Such a coil is known as a current-sheet inductor.  
     A very long current-sheet inductor (operating at low frequencies) has the property that the the 
magnetic field along its length is uniform, in which case its inductance is given by a very simple 
expression:

Ls =μ
A
ℓ

N 2
        [Henrys]    1.1

Where the constant of proportionality μ (in Henrys/metre) is the
magnetic permeability of the environment outside the conductor 
(μ=μ0 μr) and can be replaced with the permeability of free-space, μ0 ("mu nought") in the absence 
of ferromagnetic material.  A is the cross-sectional area of the cylinder, N is the number of turns, 
and ℓ is the cylinder length.
     Recall that the inductance of a coil can be expressed as an inductance factor AL , defined by the 
relationship:

L = AL N²

For the long current-sheet therefore:

AL =μ
A
ℓ

   [Henrys/turn²]

Since turns are dimensionless and can be omitted from the units, this is analogous to the expression 
for the capacitance of a capacitor:

C = ϵ
A
h

 [Farads]  

Note that permeability, like permittivity, is strictly complex; but for the sake of simplicity we can 
consider it to be real when not taking magnetic losses into account.  Hence we should use the 
symbol μ (in bold) when including losses in the permeability factor, and the symbol μ when not.  
Notice also that the factor  A/ℓ  has units of  [ length² / length ] = [ length ] , and since AL is an 
inductance, it is this that dictates that the units of μ are Henrys/metre.
     Equation (1.1) tells us that inductance is proportional to the cross-sectional area of a coil 
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(strictly, the area enclosed by the current loop).  The optimal cross-sectional shape is that which 
gives the maximum amount of inductance using the minimum length of wire (maximum ratio of 
reactance / resistance), i.e., a former of circular cross-section is best.  For a cylindrical coil, where 
A = π r² ,  r being the coil radius, the long-current-sheet formula can be written:

Ls =
μπ r2 N2

ℓ
     [Henrys] 1.2

We can also write this expression using the coil diameter D
instead of the radius; noting that, since D=2r , the appropriate
substitution is  r² = D² / 4  ,  i.e.: 

Ls =
μπD2 N2

4 ℓ
     [Henrys] 1.2a

Although the long current-sheet provides a starting-point for the calculation of inductance from 
physical dimensions, the equations given above require considerable modification if we are to 
obtain expressions accurate for practical coils.  This entails the inclusion of various correction terms
and factors, as will be explained in the discussion to follow.  At least five distinct types of correction
are required in principle; although the self-inductance corrections in particular are best split into 
sub-classes (wire-shape, axial current, curvature,  and internal).  The main corrections are listed 
below with the parameters that will be introduced in order to apply them.  Some corrections can, of 
course, be neglected under appropriate circumstances; but the point is to understand what those 
circumstances are.

'Frequency independent'
kL field non-uniformity correction for short coils.

km mutual inductance correction for round wire.

ks self-inductance correction for round wire.

axial inductance for wide-spaced coils 

conductor curvature correction for thick-wire coils 

Frequency dependent
Li internal inductance of the wire.

D or r effective loop diameter (or radius).

CL self-capacitance (i.e., phase-delay modelled as a negative parallel reactance).

Note that the 'frequency independent' corrections are only so in the sense that the errors inherent in 
failing to include frequency dependence are reasonably small (or controlled by yet more 
corrections).  Also bear in mind that inductance is only defined for complete current loops with their
terminals coincident in space (i.e., in practice, close together).  Since a solenoid has a finite 
separation between its terminals, its inductance is strictly a partial inductance.  It is necessary to 
apply corrections for the connecting wires in order to obtain the total (measurable) inductance.
     Notice also that the quantities listed above relate only to the problem of reactance calculation.  
The impedance of a coil must also include a resistive element to account for losses.
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2.  Equivalent current-sheet length 
In the extensive literature on the subject of inductance calculation, one recurrent omission is that of 
an unambiguous definition for the coil length.  The length required is that of the equivalent current-
sheet from which the major part of the inductance will be calculated; but the problem is that a 
current-sheet inductor, being a hypothetical structure, can be defined without considering the 
method of connection.  The correct definition is given by Grover12, but requires interpretation.

     The equivalent current-sheet length ℓ is obtained by
considering each turn of the coil to lie at the centre of a
corresponding turn of the current sheet.  This means that
if the length of the coil is measured on the side where the
connecting wires are brought out (assuming a whole-
number of turns) then the distance required is that from
centre to centre of the emerging wires, i.e., it is the length
of the coil measured from the outside of the winding less
the diameter of the wire.  This length is equal to  N × p  ,
where  N  is the number of turns and  p  is the winding
pitch-distance.
     Rosa and Grover13 appear to give a different
definition, but an ambiguity arises because the electrical
termination is not considered.  The instruction given is
effectively; that the length can be obtained by measuring to the outside of the winding, then 
subtracting the wire diameter and adding the pitch.  This length is stated to be equal to  N p  as 
above, but it is only so if the measurement is made on the side of the coil opposite to the side where 
the connecting wires are brought out. 
     Note incidentally, that all of the expressions for solenoid inductance so far given (and to be 
given) contain a factor 1/ℓ .  This factor goes to infinity as the length of the coil goes to zero, 
whereas the field non-uniformity correction ( kL  , to be introduced shortly) goes to zero at this point.
Hence the inductance of a zero length coil tends to 0/0 and is undefined.  This condition does not 
happen in practice, because the length of the equivalent current sheet can never be less than the 
diameter of the wire.  The ambiguity arises because winding pitch (and hence solenoid length) is 
not strictly defined unless a coil has more than one turn.  The inductance of a single turn coil is best 
obtained using a loop inductance formula (see section 10b).

12 Inductance Calculations: Working Formulas and Tables.  Frederick W Grover, 1946, 1973. [Grover 1946]
Dover Phoenix Edition 2004. ISBN: 0 486 49577 9.  p149.

13 Formulas and Tables for the Calculation of Mutual and Self-Inductance.  E B Rosa, F W Grover.  Bureau of 
Standards Scientific Paper No. 169 [BS Sci. 169]. 1916 with 1948 corrections. p119.  
[g3ynh.info/zdocs/magnetics/ ]
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3.  Effective current-sheet diameter (LF) 
When a coil is wound with a thin flat conductor (broadside to the coil
former), its radius ( r = D/2 ) is well defined.  When a coil is wound
with round (i.e., cylindrical) wire, the equivalent current sheet radius
will obviously be obtained by measuring from the solenoid axis to some
point that lies within the body of the wire, but it is by no means obvious
where that point should be.  Referring to the diagram: If the radius of
the wire (excluding any insulation) is rw , and the average radius of the
helix (measured from the solenoid axis to the wire axis) is ra ; then there
is a radial conduction zone that extends from  r = ra - rw  to  r = ra + rw .
The effective current sheet radius must lie within that range.
     It is traditional to assume that the effective radius is the same as the
average radius  ra  (at least at low frequencies), and that is the basis for most inductance 
calculations.  It should be noted however, that the conduction path on the outside of the coil (at  r = 
ra + rw ) is longer than the path on the inside (at  r = ra - rw ).  This means that the current-density in 
the wire will be biased towards the inside of the coil; and the equivalent current sheet radius will be 
consequently less than ra .  To that observation, we can also add, that the act of winding the wire 
around a cylindrical former causes the metal on the outside of the coil to become stretched relative 
to the metal on the inside.  When metal wire is stretched (particularly in the case of soft copper), it 
does not so much shrink in diameter as increase in resistivity; i.e., the microcrystals within the 
material tend to rearrange and become less densely packed (until the yield point is reached).  Hence 
the solenoid develops a radial resistivity gradient, the bulk resistivity being greatest at  r = ra + rw  
and something close to the native value at  r = ra - rw .  The effect, once again, is to bias the current 
distribution towards the inside, with consequent reduction in the effective radius. 
     This issue is investigated in a separate article14 in which the effective radius is assumed to lie at a
distance from the coil axis chosen so that the total current outside that distance is equal to the total 
current inside it15.  The low-frequency difference between the average radius and the effective 
radius, as calculated using that definition, is fairly large; being about +1% when  ra = 8 rw  , and only 
falling to about +0.1%  (the point at which the difference might reasonably be neglected) when  
ra =25 rw  .  Thus we can expect a systematic error in the generally adopted approach to inductance 
calculation when the coil is wound with relatively thick wire.  The article gives methods for 
calculating the effective radius according to the adopted model, but there is no closed-form 
analytical solution for the round-wire problem, and so a numerical approach is used.  A program 
routine accurate to within 0.01% is given as an Open Office Basic macro, which is used in the 
example inductance calculation spreadsheet ( Lcalcs.ods ) accompanying this article. 
     If a computationally straightforward approximation is required however, note that, for most 
coils, the strain of the wire is fairly small.  In that case, the change in effective radius for a round-
wire coil is not greatly different from that for a coil wound with wire of rectangular cross-section. 
An analytical solution exists for the rectangular wire case when the pitch of the winding is small 
relative to the circumference.  This can be applied to the round wire case by defining  rw = d/2  as 
half the radial wire thickness.  The formula is: 

r 0 = r a[1−( rw

r a )
2

]  
Equivalent current-sheet radius at low frequencies.

Strained rectangular wire. ra / rw > 4 ,  2π ra >> p
3.1

14 LF effective radius of a single-layer solenoid.  D W Knight.  g3ynh.info/zdocs/magnetics/ .
15 A better definition has been suggested by Mark Kennedy (private e-mail communications 31st Aug. and 5th Sept. 

2012):  The equivalent current sheet diameter defines as area that, if occupied homogeneously by the average 
solenoid magnetic flux density, would yield the true total flux.
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This can also be stated in terms of coil and wire diameters:

D0 = Da[1−( d
Da )

2

] Equivalent current-sheet diameter at low freq.
Strained rectangular wire. Da / d > 4 ,  π Da >> p

3.1a

 By inspecting the formula, it is apparent that when the average coil diameter  Da  is much greater 
than the wire diameter  d , then  D0 ≈ Da  .  High Q coils however, tend to be wound with relatively 
thick wire; in which case, inductance calculations that use  Da  instead of  D0  will exhibit a 
systematic error.  Such error, although usually small, is exacerbated by the fact that inductance is 
proportional to  D² .  Note however, the use of the rectangular wire formula will slightly 
underestimate  D0  .
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4.  Effective current-sheet diameter (HF) 
In an isolated straight wire, at low frequencies, any current is distributed uniformly throughout the 
material.  At high frequencies however, due to the inability of a good conductor to support an 
electric field within its bulk, the current is confined to a thin layer close to the surface.  This is the 
well-known skin effect. 
     In coiled-wire inductors, the skin effect is perturbed (i.e., modified); not only by the conductivity
gradient discussed in the previous section, but by an interaction with the external magnetic field 
known as the proximity effect.  Presuming that the number of turns is reasonably large; the currents 
in adjacent turns are very nearly in phase, even at frequencies approaching the SRF.  Under such 
conditions, there is a repulsion between adjacent current streams and a further interaction with the 
overall magnetic field.  The result is that the current, in turns close to the middle of the coil at least, 
tends to crowd towards the coil axis16 17.  This means, of course, that there will be a further 
reduction in the effective current sheet radius at high frequencies.
     It is important to be aware that dispersive phenomena have both real and imaginary parts.  In the 
case of the proximity effect; the real part is that which causes the AC resistance of the wire to be 
greater than that predicted from the skin effect alone.  The imaginary part is that which reduces the 
internal inductance of the wire (section 6) and reduces the effective current-sheet radius.  It follows 
that the skin and proximity effects are not strictly separable.  When the transition from low 
frequency to high frequency behaviour occurs (usually somewhere in the high audio to low radio 
frequency range); it is the proximity of other conductors, and the phases of the currents in them, that
dictates how the current is distributed over the surface of the wire once it can no longer penetrate 
significantly into the body.
     From its name, it should be obvious that the proximity effect is greatest in coils with closely-
spaced turns.  That part of it associated with a reduction in effective current sheet radius is also 
greatest when the wire diameter is significant in comparison to the coil radius.  In high Q coils; 
which require the use of relatively thick wire to keep the AC resistance down and have plenty of 
turns to maximise the inductance obtained in a given volume; variation between the actual and the 
effective diameter can cause a difference of several percent between the low-frequency and the 
high-frequency inductance.
     Due to the complexity of the underlying physics, the effective coil radius at high frequencies is 
difficult to predict from first principles.  Fraga et al.18 (for example) approximate the situation by 
treating the coil as a modified current sheet with finite conductor thickness and resistivity.  This 
approach has considerable merit, but is not completely realistic.  It has also been suggested that, for 
modelling purposes, the wire can be considered to shrink towards the inner radius ( ra - rw ) as the 
frequency increases; but this is unconvincing.  For those who are interested in this problem, it is 
important to understand that current still flows all over the surface of the wire when the proximity 
effect is present.  Shrinkage of the wire implies a conduction layer that sinks below the surface, 
which is highly unrealistic.  Thus it is a matter of current redistribution, rather than of parts of the 
wire ceasing to conduct.  A more accurate determination of the effective radius might therefore 
involve finding an expression that defines the current density at any point in the wire cross section, 
and then setting the integral of the current density from the inner radius ( ra - rw ) to the effective 
radius to be the same as the integral from the effective radius to the outer radius ( ra + rw ).
     Since the effective solenoid diameter at high-frequencies is difficult to determine, and since the 
difference between the average diameter ( Da ) and the low frequency effective diameter ( D0 ) is not
generally appreciated; inductance calculations are usually based on the average diameter.  We can 

16 Grover 1946.  See Ch. 24.
17 H. F. Resistance and Self-Capacitance of Single-Layer Solenoids. R G Medhurst . Wireless Engineer, Feb. 1947 

p35-43, Mar. 1947 p80-92. Corresp. June 1947 p185, Sept. 1947 p281. [Medhurst 1947]
18 Practical Model and Calculation of AC resistance of Long Solenoids. E Fraga, C Prados, and D-X Chen. IEEE 

Transactions on Magnetics, Vol 34, No. 1. Jan 1998. 
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do a little better than that however; there being no great difficulty in determining limits within 
which the actual inductance must lie.  We start by noting that the current-sheet diameter D should 
be replaced by a mathematical function that depends on the winding-pitch to wire-diameter ratio 
( p/d ), and on the wire diameter to solenoid diameter ratio ( Da /d ), and varies between the low 
frequency value ( D0  ) and some high frequency limiting value, which we will call  D∞  .  We cannot 
easily determine  D∞  ; but we can at least say that, for turns in the middle of the winding, it can 
never be smaller than the inner diameter (i.e.,  Da-d ).  Furthermore, for the two turns at the ends of 
the coil, the current stream will be repelled from the next turn in, and so the effective diameter will 
remain close to  D0  .  Hence we can define an absolute minimum effective diameter as the average 
of  N-2  turns with a diameter of  Da-d  and  2  turns with a diameter of
D0  , i.e.;

Dmin =
[( N−2)(Da−d)+2D0 ]

N
 

This expression will always underestimate  D∞ , and it will continue to
do so if we use the approximation  D0 = Da  , i.e.; 

Dmin =
[( N−2)(Da−d)+2Da ]

N

which simplifies to:

Dmin = Da−d+
2d
N

4.1

It is a straightforward matter (with the aid of a computer) to perform two inductance calculations; 
one with D set to D0  , and one with  D  set to  Dmin  .  From this we will obtain two inductances,  L0  
and  Lmin  (say); the former being accurate at low frequencies and providing an upper uncertainty 
boundary for the high frequency inductance ( L∞ ), and the latter (presuming that the model is 
otherwise correct) giving the lower uncertainty boundary for  L∞  .
     It is, of course, tempting to try to define a semi-empirical formula for D∞  .  For that, it is useful 
to know that  D∞  is fairly close to  Dmin  when the  p/d  ratio is close to 1, and almost the same as  
D0  when  p/d > 10 .  It follows that the accuracy of the inductance prediction will always be 
improved by taking the weighted average of  D0  and  Dmin  in such a way that  Dmin  dominates 
when  p/d → 1  and progressively loses its influence as  p/d  increases.  Such a formula can be 
obtained by direct deduction, i.e;

D∞ =

D0+Dmin
a

[ (p/d )−1]

1+
a

[ (p /d)−1]

 
a = 2

d >> δi  (see section 6)
4.2

Note that in practical inductors,  ( p/d )-1  is always  > 0  because the angle between the pitch 
distance and the winding direction is < 90º ( forcing p always to be greater than d )  and because 
coils with closely spaced turns must be wound with insulated wire.  Hence using the reciprocal of  
( p/d )-1  in the weighting coefficient will not cause divide-by-zero errors.  The constant  a   is 
determined empirically, and setting it to 2 allows the HF inductance of typical radio coils to be 
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predicted to within a few parts per 1000 when the radius of the wire is greater than 3 times the skin 
depth.  Note however that the value for  a   given above is for estimating L∞  only.  A frequency 
dependent, method for estimating the effective diameter D by taking the weighted average of  D0  
and  D∞  is described later and requires a different value.
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5.  Conductor length and pitch angle 
The length of wire used in a inductor is required when determining its AC resistance, its internal 
inductance, and its SRF.  This length is commonly referred to as the 'line-length', but it is advisable 
to abandon that term.  The problem is that, at its SRF, a coil behaves as a  ¼-wave transmission-line
resonator, whereas the electrical length of the wire at that frequency is one half-wavelength.  This 
incidentally, is not a paradox.  A transmission line is a go-and-return circuit, and so any λ/4 line has 
λ/2 of conductor. 
     Consequently, if we refer to the line length, it is not clear whether we mean the length of the 
wire, or the length of the equivalent transmission-line (which is about one-half as great).  Hence the 
terms conductor-length and wire-length are strongly recommended as alternatives.

Shown below-left is a coil of diameter  D  and length  ℓ , with a winding pitch (axial turn spacing) 
of  p .

The length of the coil is equal to the number of turns multiplied by the pitch, i.e.;

p = ℓ / N

The length of wire in the coil ( ℓw ) is the length of a single turn ( ℓt ) multiplied by the number of 
turns, i.e.;

ℓt = ℓw / N

The middle diagram above represents a single turn unwrapped and laid flat.  The length of the turn 
is the diagonal of a rectangle having the circumference of the coil ( πD ) as one dimension, and the 
pitch as the other.  If this map is scaled-up by the number of turns (i.e., every dimension is 
multiplied by N ), then the diagonal becomes the wire length, and the dimensions of the rectangle 
are  NπD  and  ℓ . Hence, using Pythagoras's theorem:

ℓw  = √(πD N)2+ ℓ 2  =  √(2π r N)2+ℓ 2  5.1

we can also remove a factor ( 2π r N )²  from the square root bracket to obtain:

ℓw =2π r N√1+( ℓ
2 π r N )

2

 



17

but

ℓ
2π r N

= tanψ  

where ψ (psi) is known as the 'pitch-angle'.  Hence:

ℓw =2π r N√1+tan2 ψ

Now making use of the relations:  tan ψ=
sin ψ

cos ψ
   and      sin²ψ + cos²ψ = 1    ;    we get:

tan2
ψ+1 =

1

cos2
ψ

Hence:

ℓw =
2π r N
cos ψ

 = 
πD N
cos ψ

 5.2

If the pitch-angle is small (i.e., if the turns are closely spaced), then  cosψ → 1  and the wire length 
can be approximated as:

ℓw  ≈  2π r N  =  π D N

Note incidentally, that the factor  1/cosψ = secψ  will crop up frequently in helix-related problems.  
Therefore it is useful to have it in a convenient form.  Referring to the diagram above:

cos ψ =
2π r

√(2π r )2
+p2

 =  
1

√1+( p
2π r )

2  

Therefore:

1
cos ψ

= sec ψ  =  √1+( p
2π r )

2

  

The effective conductor-length of a coil will always be slightly less than the physical wire length, 
and it will vary with frequency.  This is due to the difference between the average coil diameter and 
the equivalent current-sheet diameter, as discussed in sections 3 - 4.  Hence, when using the 
conductor length to determine the RF properties of coils, it should be as calculated by using some 
sensible estimate of the effective solenoid diameter (see section 6c).  A possible exception to that 
rule is when using the approximation  ℓw = πDN  , in which case, the neglect of the 1/cosψ  factor in
equation (5.2) can be partly offset by using the average diameter Da , i.e.;

ℓw ≈ 2π ra N = π Da N
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  5a. Minimum possible pitch 
The minimum possible distance between two round wires lying side-by-side (assuming insulation 
of infinitesimal thickness) is the wire diameter  d .  The pitch distance of a coil however, is defined 
in a direction that lies parallel to the coil axis.  The winding direction of a helical coil is not 
perpendicular to the pitch direction, it is  tilted away from the perpendicular by an angle  ψ  (the 
pitch angle).  This causes the minimum pitch distance ( pmin ) to be slightly greater than the wire 
diameter.  Since  pmin  is a limiting value for solenoid optimisation problems, it is important to 
define it correctly.

The diagram below shows two turns from a coil, with zero spacing, which have been unwound and 
laid out flat.  The distance between the axes of the two wires is d , and the circumference of the coil 
is  π Da  , where  Da  is the coil diameter taken from wire centre to wire centre.  Since the two wires 
are as close as they can possibly be; as each turn is wound, the wire advances along the coil axis by 
a distance  pmin .  The length of wire in each turn is defined as  ℓt  , and we can immediately write a 
relationship between  pmin  and  ℓt  using Pythagoras's theorem: 

pmin
2

+(πDa)
2
= ℓ t

2  

We can also define  ℓt   as the sum of the lengths marked on
the diagram as  ℓa  and  ℓb .  Thus:

pmin
2

+(πDa)
2
=(ℓ a+ℓb)

2  

where, using Pythagoras again:

ℓ a
2
+d2

= Pmin
2  

i.e.;

ℓ a = √pmin
2

−d2  

and

ℓb
2
+d2

=(πDa)
2  

i.e.:

ℓ b = √(πDa)
2−d2  

Hence, combining expressions we get:

pmin
2

+(πDa)
2
= [√Pmin

2
−d2

+√(πDa)
2
−d2  ]

2
 

Multiplying-out the right-hand side gives:

pmin
2 +(πDa)

2 = pmin
2 −d2+(πDa)

2−d2+2√(pmin
2 −d2 ) [ (πDa )

2−d2 ]  

which after regrouping and squaring becomes:
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(pmin
2

−d2
) [ (π Da)

2
−d2

]=d 4  

This can be multiplied out again to give:

pmin
2

(πDa)
2
−pmin

2 d 2
−(πDa)

2 d2
+d 4

= d4  

i.e.:

pmin
2 [ (πDa )

2
−d2 ]=(π Da)

2 d2  

Thus, rearranging and taking the square root:

pmin =
πDa d

√(πDa)
2
−d2  . . . . . . . (5.3)

which simplifies to:

pmin =
d

√1−[ d
(πDa ) ]

2  5.4

Note that, as  Da → ∞  or  d → 0  ,  pmin → d  ; but for all finite coil and conductor dimensions,  
pmin > d  always.

Minimum pitch angle

When  p = pmin  ,   ψ = ψmin 

Referring to the diagram on the right:

sin ψmin =
d

πDa
 

Therefore:

ψmin = arcsin( d
πDa)  5.5
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  5b. Maximum number of turns for a given wire length 
Coils designed for radio frequency applications often have an upper limit on the allowed wire 
length (because that dictates the SRF).  Consequently, another important limiting value for inductor 
modelling problems is the maximum number of turns that can be wound in a single layer using a 
given length of wire on a given diameter of coil former.   

Recall that solenoid length is defined as:  ℓ = N p

Now observe that the maximum number of turns also corresponds to the case where the wire is 
most tightly packed (because each turn takes the shortest possible route around the former); in 
which case, the pitch will be at its minimum and the length of the solenoid will be at its minimum.  
Hence:

ℓmin = Nmax pmin

The relationship between coil diameter, wire length and solenoid length (5.1) can be written:

ℓw
2
=(NπDa )

2
+ℓ2  

and at minimum pitch:

ℓw
2
=(Nmaxπ Da)

2
+ℓ min

2  

Hence, substituting for ℓmin ,

ℓw
2 =  ( Nmax π Da )² + (Nmax pmin )2 

i.e.:

Nmax =
ℓw

√(π Da)
2
+pmin

2  

Substituting for  pmin  using (5.3) then gives:

Nmax =
ℓw

√(π Da )
2+

(π Da)
2 d2

(πDa)
2
−d2

 =  

ℓ w

πDa

√1+
d2

(πDa)
2
−d2

 =  

ℓw

πDa

√ (πDa)
2

(πDa)
2
−d2

  

i.e.; 

Nmax =
ℓw

πDa √1−
d2

(πDa)
2  5.6

Also note from (5.4) that:
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pmin

d
=

1

√1−( d
π Da )

2   

Hence

Nmax =
ℓw

πDa

 
d

pmin
5.7
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  5c. Diameter, length and turns as derived parameters
Equation (5.1) gave the coil conductor length as a derived parameter:

ℓw  = √(πD N)
2
+ ℓ2  =  √(2π r N)

2
+ℓ2

From this we can see that the major parameters defining coil inductance are D (or r), ℓ and N.  What
is also apparent however, is that there are four major parameters defined in such a way that 
specifying any three of them fixes the fourth.  It seems most natural, when modelling a coil, to 
measure the length, the diameter and the turns number, and then allow the conductor length to be 
determined as a consequence.  This however, is not necessarily the best way to do it, especially 
when making coils for RF experiments and applications.
     If an RF coil has a few metres of wire in it, then it is not difficult to measure the length of the 
wire to an accuracy of about ±1 mm.  This means that the wire length can often be determined to 
better than ±0.1%.  Likewise, the turns number N can be determined by counting; and by looking 
along the end of the coil and using a clear-plastic protractor, the angular difference between the start
and the end can be determined to within a few degrees. This gives the non-integer value of any 
incomplete turn to about 1%, and if there are more than 10 turns, this brings the error down to 
±0.1% or better.  The difficult dimensions are the solenoid length and the diameter, both of which 
require engineer's callipers for reasonable accuracy; and even then may not be particularly well 
defined due to the tendency of the coil to deform when handled, or due to unevenness and  non-
circularity of the cylinder, etc..  In general, in situations in which all four principal parameters are 
obtainable, a coil should be specified in terms of the three parameters that can be measured to the 
greater accuracy.
     So, from equation (5.1), in deriving D (usually the hardest to measure accurately), we have an 
average diameter:

Da =
√ ℓw

2
− ℓ2

πN
 5.8

The solenoid length can be obtained from:

ℓ=√ ℓw
2
−(πDa N)

2  5.9

and, from (5.8),  the number of turns is:

N =
√ ℓw

2
− ℓ2

πDa

 5.10
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6.  Internal inductance 
The 'external inductance' of a coil is the inductance due to the storage of energy in the magnetic 
field that permeates the surrounding medium.  The 'internal inductance' is due to the magnetic 
energy stored within the body of the conductor itself.  Internal inductance diminishes with 
frequency because it depends on the current distribution within the wire; i.e., its corresponding 
reactance is the imaginary counterpart of the skin effect.
     The conducting strip in the theoretical current-sheet is infinitely thin and therefore has no 
internal inductance.  Wire, on the other hand, does have internal inductance.  The internal 
contribution to overall inductance is generally small, and is therefore usually neglected in 
approximate calculations; but it can amount to several % of the total under certain circumstances.  
The following points may help when considering its importance:

● Internal inductance is proportional to the conductor-length, and therefore to the number of 
turns N ;  whereas external inductance, being enhanced by winding the wire into a helix, is 
proportional to N².  Hence, internal inductance is most likely to be significant in coils that 
have a low number of turns.

● External inductance is enhanced by the use of a magnetic core, whereas internal inductance 
is unaffected.  Hence internal inductance is not usually significant if the coil has a high-
permeability core.

● Internal inductance diminishes with frequency more rapidly in thick wire than it does in thin
wire;  i.e., thick wire coils have the skin effect dispersion at lower frequencies than thin wire
coils.  For coils made from wire of less than 1 mm diameter, internal inductance can still be 
significant at the low end of the HF radio region (see next section). 

The general problem of calculating internal impedance is discussed in detail in a separate article19.  
Here we will summarise only those sections relevant to the calculation of solenoid inductance.

The internal inductance of a round wire at DC is given by:

L i(dc) = ℓw

μ(i)

8π
[Henrys]

where ℓw is the length of the wire, and μ(i) is the permeability of the wire material (i.e., the internal 
permeability).  For non-ferromagnetic conductors, μ(i) can be taken to be the same as μ0 , i.e., 
4π×10-7 H/m, which means that the low-frequency internal inductance of any non-magnetic round 
wire is 50 nH/m.  Note that, for the construction of high Q inductors, only non-magnetic wire 
(preferably copper or silver) should be used.  Due to the generally high resistivity, and the fact that 
skin depth is a function of permeability, skin-effect losses are extremely high in wires made from 
ferromagnetic materials.

The internal inductance of a wire at high frequencies is given by:

L i(hf ) = ℓw(
μ( i)

2π)(
δi

d )  [Henrys]

where d is the diameter of the wire, and δi is the skin depth given by:

19 Practical continuous functions for the internal impedance of solid cylindrical conductors. D W Knight, 2010. 
g3ynh.info/zdocs/comps/ 
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δi = √
ρ

π f μ(i)
 

ρ being the resistivity of the wire.  Hence, at high frequencies, internal inductance becomes 
proportional to the reciprocal of the square root of the frequency.

A suitable internal inductance formula for solenoid modelling is the PACAML approximation20, 
which is accurate at all frequencies to within ±151 ppM.  Since the internal inductance contribution 
to the total inductance is typically ≈1%, the error in the PACAML approximation contributes less 
than 1 part in 105 to the overall error.  The formula uses the skin depth δi (as given above) and 
calculates an internal inductance factor Θ (Theta), which lies between 1 and 0.  This quantity is 
multiplied by the DC internal inductance to obtain the internal inductance at the specified 
frequency.

q=
d

δi √2
      ,  

Θ∞ =
4
q

1

√2 [1+
0.01209
(q+1)

−
0.63523

(q2
+1)

+
0.16476

(q3
+1) ]   ,    [polynomial]

Θda = Θ∞[1−exp (−Θ∞
−1.5819) ]

1
1.5819   ,                     [asymptote correction]

   z = 0.38691q      ,

y =
−0.198584

[1+0.25741(z1.2652
−z−0.39709

)
2 ]

2.62343    ,        [modified Lorentzian]

Θ= Θda (1−y)      ,

L i = ℓw

μ(i)

8π
Θ       [Henrys]

Li-PACAML
(6.1)

Basic macro code for the calculation is shown in the following box.  Θ  is calculated by a function 
'Flpml(q)' which is called by a front-end routine 'Lintern( )'.  Lintern requires the wire length and 
diameter, the frequency, the relative permeability of the wire (1 for Cu or Ag), and a quantity 'Kiacs'.  
Kiacs is the wire conductivity as a proportion of the International Annealed Copper Standard21 22.   
For electrical copper wire at 20ºC,  Kiacs = 1.  Note that at  20ºC, the resistivity ρ of IACS standard 
copper is  17.241 × 10-9 Ωm, whereas the resistivity of silver at this temperature is 15.87 × 10-9 Ωm. 
Therefore, for silver wire (bearing in mind that conductivity is the reciprocal of resistivity):

Kiacs = 17.241 / 15.87 = 1.086

20 Basic routines for internal impedance calculation are given in the macro library of the spreadsheet accompanying the
author's article.  The acronym 'PACAML' stands for 'polynomial asymptotically correct approximation with 
modified-Lorentzian correction'.

21  Copper wire tables.  Bureau of Standards Circular No. 31. 3rd edition. 1914. International Annealed Copper 
Standard.  pages 8 - 13.  Available from http://g3ynh.info/zdocs/comps/

22 Coppers for electrical purposes.  V A Callcut. Proc. IEEE, Vol. 133, Pt. A, No. 4. June 1986.
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i.e., at 20ºC, silver is 1.086 times more conductive than IACS copper.

Basic routine for internal inductance of a wire

Function Lintern(Byval lw as double, d as double, f as double, Kiacs as double, mur as double)
'Internal inductance of a round wire.  Version 1.00,  9th Jan 2016.
'Calls function Flpml(q) for inductance factor Theta.
' lw = length of wire / m
' d = wire diameter / m
' f = frequency / Hz
' Kiacs is proportionate conductivity relative to IACS. For electrical Cu at 20 deg. C, Kiacs = 1
' mur = relative permeability of the wire = 1 for non magnetic conductors
Dim rho as double, delta as double, q as double, Theta as double
  rho = 17.241E-9 / Kiacs 
  delta = sqr( rho / ( 4E-7*pi()*pi() * f * mur ) )
  q = d / ( delta * sqr(2) )
  Theta = Flpml(q)
  Lintern = lw * 0.5E-7 * mur * Theta
end function

Function Flpml(ByVal q as double) as double
'Calculates internal inductance factor within 151 ppM.
'see: Practical continuous funcs for int. Z of cylindrical conductors.
'D. W. Knight, version 1.01, 25th Jan 2016.
   Dim y as double, z as double, zz as double
   if q<0.0001 then
     Flpml=1
   else
     Flpml=(4/q)*(1/sqr(2))*(1+0.01209/(q+1)-0.63523/(q*q+1)+0.16476/(q*q*q+1))
     Flpml=Flpml*(1-exp(-1*Flpml^-1.5819))^0.63215121
     z=0.38691*q
     zz=Z^1.2652-Z^-0.39709
     y=-0.198584/(1+0.25741*ZZ*ZZ)^2.62343
     Flpml=Flpml*(1-y)
   end if
end function

The total inductance of a current loop is the sum of the internal and external inductances. For coils 
however, there will be an additional term (analogous to mutual inductance) due to the external 
fields of adjacent turns passing through the wire; i.e., a there will be a perturbation due to the 
proximity effect (as mentioned in the previous section).  The proximity of other current-carrying 
conductors has little effect at low frequencies, but reduces the internal inductance at high 
frequencies.  Fortunately, internal inductance makes a relatively small contribution to the overall 
inductance, and so the error in using an isolated wire model for internal inductance (i.e., ignoring 
the perturbation caused by the proximity effect) is usually small.
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  6a. LF-HF transition frequency 
When deciding whether to use a low or a high-frequency inductance formula, it is necessary to be 
able to locate the intervening dispersion region.  A simple rule for doing so can be obtained by 
examining the graph below, which shows the relationship between internal inductance and the ratio 
of wire radius to skin depth.  The calculation is for an isolated wire (see the accompanying Open 
Document spreadsheet23: Li_transition.ods, sheet 1), but while the proximity effect will steepen the
inductance decline, it will not greatly affect the frequency at which the change begins.

The graph confirms a rather obvious proposition, which is that the current distribution within the 
wire will be substantially uniform until the skin depth becomes less than the wire radius.  Hence we 
can define a transition frequency ( fs ) at which DC inductance formulae begin to break down.  Skin 
depth is given by:

δi = √
ρ

π f μ(i)
 

and, from the graph above, it is apparent that we need to start making high-frequency corrections 
when rw = δi .  Hence, to work out the wire diameter needed to achieve a particular fs (noting that 
d = 2 rw ):

d =2 √
ρ

π f s μ( i)
 (6.2)

And to work out fs for a particular wire diameter:

f s =
4 ρ

πμ(i)d
2 (6.3)

Where μ(i) = μ0 = 4π×10-7 H/m for non-ferromagnetic wire (to within a few parts per 1000).

23 Open Document spreadsheets can be opened and edited using Open Office, available from 
http://www.openoffice.org/. and Libre Office, available from: http://www.libreoffice.org/ .

http://www.libreoffice.org/
http://www.openoffice.org/
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The relationship between the dispersion onset frequency  fs  and wire diameter is shown below for 
IACS copper wire ( ρ = 17.241 nΩm at 20ºC,  μ(i) = μ0 ).  The calculation is given in the 
accompanying spreadsheet  Li_transition.ods , sheet 2.

With quick reference to the graph, and using equation (6.2) for accuracy, we find (for example) that 
a coil wound with 1 mm diameter copper wire will continue to exhibit DC behaviour up to 
17.5 kHz, whereas using 0.1 mm wire will push the limit up to 1.75 MHz (although it will be 
necessary to include self-capacitance in the model to calculate the correct reactance in that case).  
While this type of information might be useful for the purpose of designing low-frequency 
reference inductors however, it is not so good for deciding the frequency above the dispersion 
region at which the inductance can one again be considered to be constant.  A fair rule of thumb is 
to adopt the point at which  rw/δi =10 , which occurs two decades above  fs ; but if the objective is 
(say) to design an accurate high-frequency reference coil, it is better minimise the proximity effect 
by using a large p/d  ratio and include internal inductance in the model.



28

  6b. Using the internal inductance factor 
Although internal inductance is perturbed by the proximity effect, the frequency interval over which
the major part of the dispersion occurs is not greatly affected.  We can therefore use the internal 
inductance factor Θ  to determine whereabouts we are in the dispersion region.  Θ is easily obtained
by, for example, making a direct call to the Basic routine given earlier:

Θ = Flpml(q)     , where q=
d

δi √2
 

From the discussion at the beginning of this section, we have:

Li = Li(dc) Θ 

where, with a rearrangement to separate a factor of ¼ : 

L i(dc) = ℓw  
μ(i)

2π
 

1
4

  

At low frequencies, where rw > δi  ,  Θ = 1 ; and we can find the high frequency limiting value for Θ 
from the expression (as was given earlier):

L i(hf ) = ℓw(
μ( i)

2π)(
δi

d )    .   (  where δ i = √
ρ

π f μ(i )

  )  

Thus, comparing the high and low frequency limits, we have:

as  f → ∞  ,   Θ → 4
δi

d
 (6.4)

Notice here that  δi  is ever diminishing as frequency increases, so that the internal inductance 
becomes very small and effectively disappears.

Internal inductance of a solenoid
The wire length of a solenoid is given by (5.2):

ℓw =
2π r N
cos ψ

 

Hence, the internal inductance of a solenoid expressed using the internal inductance factor is:

L i =
2π r N
cos ψ

μ(i)

8π
Θ   

i.e.:

L i =
μ(i) r N

cos ψ
Θ
4

          [Henrys] 6.5
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  6c. Effective current sheet diameter linked to internal inductance 
The skin effect and proximity effect dispersions are interlinked and so occur on the same frequency 
interval.  Therefore, at least to a reasonable first-order approximation, we can use the internal 
inductance factor  Θ  to weight the change in effective diameter from  D0  to  D∞  .  This can be done 
as follows:

When  d/2  <  δi    ,   then  D → D0   , 

and when  d/2  >>  δi   ,  then  D → D∞   .  

Hence, to track the diameter change through the dispersion region:

D = D0 Θ + D∞ ( 1 - Θ  )

i.e.;

D = Θ ( D0 - D∞ ) + D∞ (6.6)

If  Da  is the average coil diameter and  Da >> d  , then  D0  , as was discussed in section 3, can be 
approximated as:

D0 = Da[1−( d
Da )

2

]  

D∞  is given by equation (4.2) as:

D∞ =

D0+Dmin
a

[ (p/d )−1]

1+
a

[ (p /d)−1]

       ,    ( a ≈ 100 ,  see text below ) (6.7)

Where:

Dmin =
[( N−2)(Da−d)+2 D0 ]

N

The empirical parameter a was given in section 4 as 2, for HF only calculations. Now, since we are 
removing the requirement that  d >> δi  when calculating the effective diameter, we need to bias  D∞

to be somewhat closer to  Dmin  .  This can be done by increasing a to give a good average match to 
the most accurate HF inductance measurements we can obtain.  It turns out, in practice, that for best
results,  D∞  needs to be biased very strongly towards  Dmin  .  A suitable value for  a  is around 100. 
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7.  Magnetic field non-uniformity ( Nagaoka's coefficient ) 
By far the greatest correction to the long-current-sheet formula is that which allows for the 
magnetic-field non-uniformity that appears when the length of the coil becomes comparable to its 
diameter (i.e., when the coil is short).  This modification is analogous to the Maxwell fringing-field 
correction for a parallel-plate capacitor, but is a gross rather than a minor effect.  It can be 
implemented by including a dimensionless factor (analogous to relative permeability), which we 
will here call  kL .  Thus, for coils of arbitrary length/diameter ratio ( ℓ/D ):

Ls =
μπ r2 N2 kL

ℓ
     [Henrys] 7.1

where the inductance  Ls  retains its subscript as a reminder that it is still a current-sheet inductance 
and should only be regarded as an approximation to the inductance of a practical coil.
     The subscript  L  in  kL  can be taken to stand for 'Lorenz'; because it was Ludwig Lorenz, in 
1879, who was the first to find an analytical expression for the inductance of current sheet solenoid 
of finite length24.  The factor  kL  however (usually given elsewhere without a subscript) is most 
commonly known as Nagaoka's coefficient, because it was Hantaro Nagaoka who, in 1909,  
introduced it and developed a practical method for calculating it25. 
 
At this point note that; when reading early papers on electromagnetism, the cgs system of units is 
used.  In that case inductance has units of length (cm ≡ nH).  In the rationalised mks system26, 
which is the basis of the SI, all inductance formulae are multiplied by  μ0 /4π  to put them into 
Henrys.  (Also be aware of Nagaoka's use of turns per unit length, i.e.,  n = N/ℓ  ).  Here, to avoid 
confusion, we will use only SI units; and so, bearing in mind that it will look different in its original
form, Lorenz's expression for the inductance of a current sheet  (assuming that  μ = μ0  ) becomes:

Ls =μ0 N 2 8 r3

3 ℓ 2 [ 2κ
2
−1

κ
3 E(κ)+

1−κ
2

κ
3 K(κ)−1]  [Henrys] (7.2)

where K(κ) and E(κ) are complete elliptic integrals of the first and second kind respectively27, and 
the argument  κ  (kappa), known as the 'modulus' of the integral, is given by:

κ = sinθ=
D

√D2
+ ℓ2  

(for the definition of θ , see the diagram on the right).

Unfortunately, although the formula (7.2) looks reasonably straightforward, the complete elliptic 
integrals have to be calculated from infinite series that do not converge particularly rapidly.  This 
meant that solenoid inductance calculation was impractical for the majority of engineers and 

24 BS Sci. 169, pages 117 - 118.
25 The Inductance Coefficients of Solenoids.  H Nagaoka, J. Coll. Sci. Tokyo, Vol 27 (6), 1909.  [Nagaoka 1909] 

[Available from University of Tokyo Repository and g3ynh.info/zdocs/magnetics/ ]
26 The mks or Giorgi system of units. L H A Carr. Proc. IEE,Part I: General), 97(107), 1950.  p235-240.  

The process of 'rationalisation' is that of moving the factor of 4π out of the unit electric and magnetic fluxes and into
the attached permittivity or permeability. 
See also: The position of 4π in electromagnetic units (discussion between Oliver Lodge and Oliver heaviside, 
1892). Heaviside, Electrical papers, Vol II. p575 - 578.  [available from Internet Archive. ]

27 See, for example: Tables of Integrals and Other Mathematical Data, H B Dwight. 4th edition, Macmillan 1961 
(10th printing 1969). LCCN 61-6419.  [Dwight 1961] Articles 773.1 - 774.2 and tables 1040 - 1041.

http://archive.org/details/electricalpapers02heavrich
http://en.wikipedia.org/wiki/Hantaro_Nagaoka
http://repository.dl.itc.u-tokyo.ac.jp/index_e.html
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scientists working in the first half of the 20th Century.  Nagaoka's solution to that problem begins 
with an observation equivalent to saying that (7.2) can be put into the form of (7.1).  Furthermore, 
note that, in the expression for  κ , we can factor  D  from the denominator to get:

κ =
1

√1+(ℓ /D)
2  

Alternatively, we can factor  ℓ   from the denominator and get:

κ =
(D / ℓ)

√(D / ℓ)2
+1

 

Hence, by comparison of the two expressions for current-sheet inductance, we can observe directly 
that the value of Nagaoka's coefficient  kL  in equation (7.1) depends only on a single dimensionless 
argument, which is usually chosen (by rearrangement of formulae) to be either  ℓ/D  (i.e., cotθ ) or  
D/ℓ   (i.e., tanθ ).  On that point, note that  D/ℓ  has the convenient property that it is zero for an 
infinitely long coil, and it can never become infinite because the finite thickness of the winding wire
prevents a coil from ever having zero length.  This means that the second choice helps in the 
avoidance of program errors.  The first choice is however more intuitive, so we will tend to plot 
graphs showing  ℓ/D  as the abscissa (horizontal axis), but perform the calculations using  D/ℓ  .
     Thus we find that  kL  depends only on the shape of the coil, and not on its absolute physical size 
(within the limitations of the Lorenz model, which will be discussed later; and provided, of course, 
that the static magnetic field approach is valid for the system under consideration; i.e., the length of 
the conductor must be small in comparison to wavelength). 

Putting the SI version of Lorenz's expression into the form of (7.1)  we get28:

Ls =μ0 N 2 π r2

ℓ
8r

3π ℓ [ 2 κ
2
−1

κ
3 E(κ)+

1−κ
2

κ
3 K(κ)−1]  [Henrys]

Thus, noting that 2r/ℓ = D/ℓ , we obtain a candidate for the evaluation of Nagaoka's coefficient:

k L =
4(D / ℓ)

3π [ 2κ
2
−1

κ
3 E(κ)+

1−κ
2

κ
3 K(κ)−1] . Lorenz form of Nagaoka's coefficient 

It is important to be aware however, that this expression has been variously transformed and non-
trivially rearranged by investigators over the years, the preferred form in any given case being 
chosen to facilitate some particular attack on the problem of how to calculate it or approximate it.  
Nagaoka's preference was29:

k L =
4

3π

1
κ ' [ κ'2

κ
2 [ K(κ)−E(κ) ]+E(κ)−κ]  . Nagaoka's form

where, as before:

28 Methods for the derivation and expansion of formulas for the mutual inductance of coaxial circles and the 
inductance of single-layer solenoids.  F W Grover, NBS J. Research. Vol 1, 1928, [BS RP16].
Page 503, Equation 72.

29 Nagaoka 1909. Equation 17. page 20.
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κ = sinθ=
D

√D2
+ ℓ2

 =  
(D / ℓ)

√(D / ℓ)2
+1

and

κ '= cosθ=
ℓ

√D2
+ℓ2

 =  √1−κ
2

 

At first glance, Nagaoka's rearrangement seems to give rise to a proliferation of complete elliptic 
integrals, but bear in mind that the point was to evaluate the expression using series expansions.  In 
that case, there are only two series; one for  E(κ)  and one for  K(κ) - E(κ) .  Somewhat glossing 
over the details, we will merely note here that the combination series (i.e., the series obtained by 
term-by-term subtraction) provides faster convergence and suppresses roundoff error in regions of 
the argument range where the two integrals are similar in value.

Nagaoka tabulated his coefficient to 6 decimal places in his 1909 paper (for its symbol, he uses a 
Gothic form of the letter z ).  His calculations have also been checked and reproduced by Rosa and 
Grover (who use the symbol  K  )30 31.  One Australian manufacturer even produced an engineer's 
slide rule with a scale for Nagaoka's coefficient32. 
 
Graphs of  kL  vs.  ℓ/D are shown below, first on a linear scale, and then on a logarithmic scale for 
0.1 ≤ ℓ/D ≤ 10 .

30 Grover 1946.  See Tables 36 and 37. p144 - 147.  Some minor corrections are also given in Grover errata.
31 BS Sci. 169, page 224.
32 REED Riddle solved, David G Rance. J. Oughtred Soc. Vol 17(1), April 2008.

http://www.sliderules.nl/mypapers/REED_Riddle_Solved_final_final.pdf
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Notice that  kL  varies between  0  and  1  as  ℓ/D  varies between  0  and  ∞ .  If we put both ℓ = 0 
and  kL = 0  into equation (7.1), we get  Ls → 0/0 .  Thus the long-coil formula modified by 
Nagaoka's coefficient correctly asserts that the inductance of a zero-length solenoid is undefined, 
whereas the unmodified formula (1.2) tells us that the inductance of a zero-length coil is infinitely 
large.  Nagaoka's coefficient therefore serves to impose a necessary limiting condition.

If a one-off current-sheet inductance calculation is to be performed, the use of Nagaoka tables is not
a bad idea.  For the general business of electromagnetic modelling however, we require efficient 
algorithms for the situations in which a programming environment is available, and reasonably 
compact and accurate formulae otherwise.  Since this is a long-standing problem, the methods 
available are many and varied; but the choice is often confused (and the use of computer programs 
of unknown provenance is fraught) by failure to distinguish between exact methods and 
approximations.  Here we will review some of the options, and evaluate and improve certain well 
known formulae.

For the exact calculation of current sheet inductance (where 'exact' means; 'according to the Lorenz 
model' and  'within the precision of computer floating-point arithmetic'), the most obvious approach
is to use Lorenz's formula or some rearrangement thereof.  To that end Bob Weaver33 has devised 
program routines based on Dwight's formulae for calculation of the the complete elliptic integrals34  
K(κ)  and  E(κ) .  These routines, which are also useful for loop inductance calculation and other 
magnetics problems, are given as Open Office Basic macro functions and can be copied from the 
accompanying spreadsheet file35.  An example Basic function for calculating Nagaoka's coefficient 
using the Lorenz form, which calls the separate  K(κ)  and  E(κ)  functions, is shown below.

33 Numerical mathods for inductance calculation, http://electronbunker.ca/CalcMethods.html .
34 Practical considerations in the calculations of Kelvin functions and complete elliptic integrals, Robert S 

Weaver, 2009.  http://electronbunker.ca/DLpublic/KelvinEllipticCalcs.pdf.  [also available from 
g3ynh.info/zdocs/magnetics/ ]

35 Inductance examples.  Bob Weaver 2009.  g3ynh.info/zdocs/magnetics/appendix/InductanceExamples.ods
To view and edit macros, use the Open Office top menu and navigate to: 
Tools/Macros/Organise Macros/OpenOffice.org Basic

http://electronbunker.ca/DLpublic/KelvinEllipticCalcs.pdf
http://electronbunker.ca/CalcMethods.html
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Function Lorenz(ByVal x as Double) As Double
' Nagaoka's coeff using Lorenz form.  x is solenoid Diam / length.
' Calls complete elliptic integral functions EllipticE and EllipticK.
If x = 0 then
  Lorenz = 1
else
Dim k as double, kk as double, kkk as double, c1 as double, c2 as double
  k = x/sqr(1+x*x)
  kk = x*x/(1+x*x)
  kkk = k*kk
  c1 = (2*kk-1)/kkk
  c2 = (1-kk)/kkk
  Lorenz=4*x*(c1*EllipticE(k) + c2*EllipticK(k) -1)/(3*pi)
end if
End Function

As mentioned earlier however, direct and separate use of  K(κ)  and  E(κ)  is not the most 
computationally efficient approach.  The importance of elliptic integrals in the wider scientific 
context has also led to considerable research into the properties of the numerous possible series 
expansions.  Bob Weaver36 goes on to draw our attention to the arithmetico-geometric-mean (AGM)
method37 38 39 40 for computing the complete elliptic integrals and linear combinations thereof.  
Using that approach, he gives an algorithm that calculates the AGM and the linear combination  
[ K(κ) - E(κ) ] / K(κ)  in a single program loop that requires no more than 9 iterations for  
ℓ/D > 0.001 .  The AGM is a simple multiple of  1/K(κ) , and so  E(κ)  and the combination  
K(κ) - E(κ)  are then extracted by trivial arithmetic and Nagaoka's coefficient is calculated using 
Nagaoka's preferred form.  Nagaoka's form, as mentioned earlier, gives less roundoff error than the 
approach using separately-evaluated complete elliptic integrals.
     Bob reports that his AGM calculations (in double precision arithmetic) differ from Nagaoka;'s 
table by a maximum of  9  in the  6th  decimal place at   ℓ/D = 0.1  (this is the shortest coil form for 
which Nagaoka gives data).  Comparison of the AGM method with Lundin's short coil formula 
(discussed in the next section) however shows agreement to at least 6 decimal places in that region. 
Since Lundin's formula is asymptotically-correct for short coils, it appears that the discrepancy is 
due either to an error in the table or to the limited precision of the 1909 calculation.  In fact, in the 
limits where Lundin's formulae tend towards the analytical values, deviation from the AGM result is
less than 1 part in 108.  
     In view of the forgoing, and since the code is available as an Open Office Basic macro, we will 
here use Bob Weaver's AGM algorithm as the standard method for calculating Nagaoka's coefficient
and as a benchmark against which to evaluate the accuracy of other formulae.

36 http://electronbunker.ca/CalcMethods1a.html
37 On some new formulae for the numerical calculation of the mutual induction of coaxial circles. Louis V King. 

Proc. Roy. Soc.. Series A, Vol .100 (702), 1921, p60-66.
38  BS RP16, 1928. p496.
39 Inductance formula for a single-layer coil, H Craig Miller, Proc. IEEE, Vol 75 (2), 1987, Letters, p256-257.
40 Mutual inductance calculations by Maxwell's Method. Antonio Carlos M de Querioz, 2003, 2005.

http://www.coe.ufrj.br/~acmq/tesla/maxwell.pdf

http://electronbunker.ca/CalcMethods1a.html
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8.  Approximate methods for calculating Nagaoka's coefficient 
Given that it is nowadays possible to calculate Nagaoka's coefficient extremely accurately with 
minimal effort, it might seem that there is no longer any need for approximate formulae.  
Approximations however can still be useful in a variety of ways.  Approximate expressions that are 
precise (i.e, functions that produce smooth curves) can, for example, be used to check the 
performance of algorithms that are accurate but noisy (i.e., subject to roundoff error or abrupt 
truncation).  Asymptotically-correct approximations can also be used to create simple analytical 
expressions applicable in special cases (i.e., for very short or very long coils).  Some people also 
want to perform calculations using only built-in spreadsheet functions or hand calculators, and so it 
is useful to have formulae that are relatively simple.  

  8a. Lundin's handbook formula 
An extremely accurate approximation formula for Nagaoka's coefficient is due to Richard Lundin41. 
This is known as 'Lundin's Handbook Formula', and is in the form of two expressions, one for  
ℓ/D ≤ 1  (short coils), and one for  ℓ/D > 1  (long coils).  Both expressions can be used to calculate  
kL  for ℓ/D = 1 , but the short coil expression gives a value that agrees with the AGM result to 6 
decimal places at this point ( kL= 0.688423 ).  Lundin's formula agrees with the Lorenz model to 
better than 3 parts-per-million ( ±0.0003% ), this being generally superior to the accuracy with 
which a coil can be made or measured, and less than the error due to dimensional variation with 
temperature.  The two expressions are given in the boxes below:

Lundin's formula for short coils  (D ≥ ℓ ).  Max. error: < 2 ppM (0.0002%).

kLS =
2
π ( ℓ /D)[ [ ln(4 D / ℓ)−½ ] [1+0.383901(ℓ /D)

2
+0.017108( ℓ /D)

4
]

[1+0.258952( ℓ /D)
2
]

                          +0.093842( ℓ /D)
2
+0.002029(ℓ /D)

4
−0.000801( ℓ /D)

6 ]
  

Lundin's formula for long coils  (ℓ > D).  Max. error: < 3 ppM (0.0003%).

k LL =
[1+0.383901(D / ℓ)2

+0.017108(D / ℓ)4
]

[1+0.258952(D /ℓ )
2
]

−
4(D / ℓ)

3π
 

41 A Handbook Formula for the Inductance of a Single-Layer Circular Coil, Richard Lundin, Proc. IEEE, Vol. 73 
(9),  p 1428-1429, Sept. 1985.
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A graph comparing Lundin's formula against the AGM calculation is given below (the calculation 
can be inspected by downloading the accompanying spreadsheet: L_formulae.ods.  See sheet 1).  A
Basic macro function for calculating Nagaoka's coefficient using Lundin's formula can be copied 
using the spreadsheet macro editor and is shown below the graph.  Note that the calling argument 
used by the function is  D/ℓ .

Function Lundin(byVal x as double) as double
' Calculates Nagaoka's coeff. using Lundin's handbook formula.  x = solenoid diam. / length
Dim num as double, den as double, kk as double, xx as double, xxxx as double
xx = x*x
xxxx = xx*xx
if x = 0 then
  Lundin=1
elseif x<1 then
  num = 1 + 0.383901*xx +0.017108*xxxx
  den = 1 + 0.258952*xx
  Lundin = num/den -4*x/(3*pi)
else
  num = (log(4*x)-0.5)*(1 +0.383901/xx + 0.017108/xxxx)
  den = 1 + 0.258952/xx
  kk = 0.093842/xx +0.002029/xxxx -0.000801/(xx*xxxx)
  Lundin = 2*( num/den + kk )/(pi*x)
end if
End function
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  8b. Analytic asymptotic approximations for Nagaoka's coefficient 
Shown below and on the following page are some analytical restricted-range approximations for  
kL .  These are truncated versions of infinite series representations involving no empirical constants. 
They are also singly asymptotically-correct; i.e., they converge with Nagaoka's coefficient in the 
limit of a very long or a very short coil, but are not exact for coils of intermediate length.  They can 
provide a useful check on the coding or transcription of other formulae, since agreement within the 
stated limits between two different expressions is a very good test of correctness.  They can also be 
truncated and otherwise modified to produce compact formulae for special applications.  Note that, 
in each case, we show not the original formula, but an approximation for kL taken from it.

Shown with the formulae are short Basic routines that can be copied from the macro library in the 
the spreadsheet L_formulae.ods.  These have been verified against the elliptic integral calculation 
and so are typographically more authoritative than the given formulae.

Rayleigh-Niven formula42 for short coils of zero radial conductor thickness. 
Coincident with Nagaoka's coefficient as  ℓ/D → 0  ,  +0.08%  when  ℓ/D = 0.5  , 
                                                                                                                    +0.28%  when   ℓ/D = 0.7

k RN = 2
π (ℓ / D)[ ln(4 D / ℓ)− 1

2
+1

8
(ℓ /D)2 [ ln(4 D / ℓ )+1

4
] ]  

Function Rayleigh(byVal x as double) as double
' Calculates Nagaoka's coeff. using Rayleigh-Niven short coil formula. x = Diam. / length
Dim lg as double, s as double
lg = log(4*x)
s = lg -0.5 + (lg +0.25)/(8*x*x)
Rayleigh = (2/pi)*s/x
end function

42 On the determination of the Ohm in absolute measure. Rayleigh Scientific Papers, Vol II 1881-1887, Cambridge 
UP 1900, p15 formula (12), for coils of zero radial thickness.  Also BS Sci. 169,  p116
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Coffin's Formula43 for short current-sheet coils. 
Extended version of the Rayleigh-Niven formula.
Coincident with Nagaoka's coefficient as  ℓ/D → 0  ,  -0.21%  when  ℓ/D=1

kCF =
2
π (ℓ /D)[ ln(4D / ℓ)−1

2
+

1
8
( ℓ /D)

2
[ ln(4D / ℓ)+ 1

4
]−

1
64

(ℓ /D)
4
[ln (4 D / ℓ)− 2

3
]

                                + 5
1024

( ℓ /D)
6
[ln (4 D /ℓ )−

109
120

]−
35

16384
( ℓ / D)

8
[ ln(4D / ℓ )−

431
420

] ]
 

Function Coffin(byVal x as double) as double
' Calculates Nagaoka's coeff. using Coffin's short-coil formula.  x = Diam. / length
Dim lg as double, xx as double, xxxx as double, s as double
lg = log(4*x)
xx=x*x
xxxx=xx*xx
s = lg -0.5 +(lg+0.25)/(8*xx) -(lg-2/3)/(64*xxxx) +(lg-109/120)*5/(1024*xx*xxxx) _
                                                                                               -(lg-431/420)*35/(16384*xxxx*xxxx)
Coffin = (2/pi)*s/x
end function

Webster-Havelock formula44 for long current-sheet coils.
Coincident with Nagaoka's coefficient as ℓ/D→∞ , +0.06% when ℓ/D=1

k WH =1−( 4
3π )(D / ℓ)+1

8
(D/ ℓ )

2
− 1

64
(D / ℓ)4

+ 5
1024

(D / ℓ)6
− 35

16384
(D / ℓ )

8
+ 147

131072
(D / ℓ)10

 

Function Webster(byVal x as double) as double
' Calculates Nagaoka's coeff. using Webster-Havelock long-coil formula.  x = Diam. / length
Dim xx as double, x4 as double, x6 as double, x8 as double, x10 as double
xx = x*x
x4 = xx*xx
x6 = xx*x4
x8 = x4*x4
x10 = x8*xx
Webster = 1 -4*x/(3*pi) +xx/8 -x4/64 +5*x6/1024 -35*x8/16384 +147*x10/131072
end function

43 BS Sci. 169,  p117. A truncated version of Coffin's formula is also given in Grover 1948, page 143, formula 119, 
but there is a typographical error in that case: see Grover errata.

44 BS Sci. 169,  p121
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The ways in which various restricted-range approximations deviate from the exact calculation is 
shown in the graph below (see the spreadsheet: L_formulae.ods, sheet 2).  

The curve marked 'Rayleigh-Niven truncated' is obtained by using only the first term of the 
Rayleigh-Niven-derived formula, i.e.;

k RNT =
2
π (ℓ /D)[ ln (4D / ℓ)−1

2 ]   

(we refer to it as a single term because it is the first element of a power series in ℓ/D ).  This simple 
short-coil formula is accurate to within 0.16% up to  ℓ/D = 0.1.

The curve marked 'Wheeler 25a' is also due to a remarkably simple formula, which is discussed in 
the next section.
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  8c. Wheeler's long-coil (1925) formula 
What is probably the best-known formula for single-layer solenoid inductance was published in 
1928 by Harold A Wheeler45.  This is widely known as 'Wheeler's formula', but since there are 
numerous candidates  for that title we will refer to it here as 'Wheeler's long coil formula', or 
'Wheeler's 1925 formula' (that being stated to be the year of its derivation), or as W25 for short.  
The formula is given in its original form as:

L =
a2 N2

9a+10b
 [ microHenries ]

Where a and b are respectively the radius and length of the coil in inches.  The accuracy is claimed 
to be within ±1%  for  b > 0.8a .

The above is, of course, a current-sheet formula (even though it is not identified as such in the 
original paper).  It is therefore interesting to rearrange it with a view to putting it into the form of 
equation (7.1) and extracting an expression for Nagaoka's coefficient.  We start by factoring  b  from
the denominator and multiplying by 10-6 to convert it to Henrys.  This gives:

Ls =
10−6 a2 N2

b(10+9
a
b)

 [Henrys]   

Now note that the quantity  a / b   (i.e., radius / length ) is dimensionless.  We can therefore 
immediately replace that part using the symbols preferred here (although we will use  D/2  instead 
of  r ).  Thus:

Ls =
10−6a2 N2

b(10+4.5D / ℓ )
 

and factoring 10 from the denominator gives:

Ls =10−7 N 2 a2

b
1

(1+0.45 D / ℓ )
 [Henrys]

     
Now recall that Nagaoka's coefficient → 1 when the coil becomes very long and thin, i.e., when 
D/ℓ → 0 .  Hence, according to this asymptotic behaviour, we can extract an approximation for 
Nagaoka's coefficient as:

k W25 =
1

(1+0.45D / ℓ)

Reinserting this into equation (7.1) we get:

Ls =μ N2 π r2

ℓ
1

(1+0.45 D /ℓ )
 [Henrys]     

with an accuracy of  ± 0.33 % for  ℓ ≥ 0.4D . 

45 Simple inductance formulas for radio coils.  Harold A Wheeler, Proc. IRE, 1928, Vol 16 (10) p1398-1400.
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This is fairly close to the optimal, but a small adjustment of the empirical coefficient from 0.45 to 
0.4502 reduces the maximum error for the range  ℓ/D ≥ 0.4  from 0.33 to 0.32%.   Thus the best 
metric formula is:

Ls =
μπ r 2 N 2

ℓ (1+0.4502D / ℓ)
         [ Henrys ]

± 0.32 % for
ℓ ≥ 0.4D

W25a
(optimised)

with

k W25a =
1

(1+0.4502D / ℓ)
 

The complete current-sheet expression (W25a), with the original coefficient value of 0.45 is a 
trivial rearrangement of a formula that appears in the 1965 first edition of Ramo et al46.  In that 
book, the formula is simply attributed to Wheeler's 1928 paper; but it has been  pointed out by 
Rodger Rosenbaum47, that the attribution is misleading because Wheeler's 1925 formula is not an 
asymptotic approximation.   The sleight of hand involved in using the asymptotic behaviour of 
Nagaoka's coefficient, rather than the length conversion factor, results in a small discrepancy 
between the inch and metric forms.  If we express the error as a proportion p we have:

L =
μ0 N2

π r 2 k W25

ℓ
 =

10−7 p N2 a2 kW25

b
 

and substituting μ0 = 4π × 10-7 gives:

4π
2 r2

ℓ
=

p a2

b
 

The US inch to metric conversion factor48 in use in 1928 was 1" = 25.400051 mm.  Since most 
readers will be interested in the discrepancy obtained using the modern conversion factor however, 
we will use  1" = 25.4 mm .  Thus:

r = 25.4×10-3 a      and     ℓ = 25.4×10-3 b

Using these substitutions gives:

4π
2
(25.4 × 10−3 a)2

25.4 ×10−3 b
=

p a2

b
 

i.e.:

p = 4π² × 25.4 × 10-3 = 1.002 751 807

46 Fields and Waves in Communication Electronics, Simon Ramo, John R.Whinnery, Theodore Van Duzer, Publ. 
John Wiley & Sons Inc. 1965. Library of congress cat. card no. 65-19477.  page 313.  The same formula also 
appears in Ramo et al 1994 (the 3rd edition) on page 195.

47 Subtle error. Rodger Rosenbaum, Private e-mail communications 27th & 28th March 2009.
48 Physical and chemical constants, Originally compiled by G W C Kaye and T H Laby, 12th edition, Longmans, 

1959.  Pages 2-3.
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Thus Wheeler's 1925 formula comes out at  1 / 1.002751807 = 0.997255744  of the long coil 
asymptotic value for the current sheet formula (i.e., 0.274% low).  Due to the shape of the error 
curve however; this choice, makes it slightly better than the metric asymptotic version in the region 
around  ℓ/D = 0.7 , but inferior for longer coils (see graph below).  Such subtleties, of course, do not
affect the use of either formula in the preferred application as a simple approximation for use with 
hand calculators.

The reworking of Wheeler's 1925 formula as detailed above provides a simple asymptotically-
correct semi-analytical current-sheet formula giving good accuracy with only a single empirical 
parameter.  It should be noted however, in view of Rodger's criticism, that it is not strictly Wheeler's
formula because it does not return the same values as Wheeler's formula.  Hence, since Ramo et al. 
do not identify its actual origin (presumably, one of them derived it), it is recommended that it 
should be referred to as the 'asymptotic version of Wheeler's long-coil formula', or 'Wheeler 25a'.  
Its accuracy is shown below.

The calculation used to produce the error curves can be examined in the spreadsheet 
L_formulae.ods (sheet 2).  When examining the spreadsheet note that the result for Wheeler 25 is 
simulated by using the scale factor  p  rather than dimensions in inches.

The  ℓ/D  range from  0.4 to ∞  covers a wide range of practical situations.  Hence Wheeler 25 and 
minor variants provide an excellent starting point for estimating the inductance of a coil from its 
dimensions, particularly when an approximation within a few  %  is all that is required.  Note 
however, that the accuracy deteriorates rapidly for  ℓ/D < 0.4  , the error (incurred using the original 
1925 formula) being  -1.4% when  ℓ = 0.3 D , -4% when  ℓ = 0.2 D , and -10.8% when  ℓ = 0.1 D .  
This should not be an issue for hand calculation because we can use the Rayleigh-Niven current-
sheet formula for short coils, and this is accurate to within 0.3% for  ℓ/D  up to 0.7 .  There is a 
warning here however for people who use 'online inductance calculator' programs of unknown 
provenance.  As was pointed out by Bob Weaver49 after a survey carried out in 2010; nearly every 

49 Numerical methods for inductance calculation part 3.  http://electronbunker.ca/CalcMethods3b.html . 
Also private e-mail communications, 3rd and 4th May 2010.

http://electronbunker.ca/CalcMethods3b.html
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program on offer used Wheeler's 1925 formula, despite the fact that any person finding out about 
the program would, by definition, be doing so using a computer.  Worse still, many of those 
programs failed to check for input data corresponding to  ℓ/D < 0.4 .
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  8d. Wheeler's 1982 unrestricted formulae 
After an interval of 54 years, Harold Wheeler came back to the subject of solenoid inductance 
calculation in a short article50 (this time in SI units) in which he reminds readers of the restricted 
shape-range of existing simple formulae and shows how to combine various long and short-coil 
expressions in order to remove such limitations.
     Note that, in the discussion to follow, the mathematical notation differs from that used in 
Wheeler's 1982 paper, and the use of  ℓ/D  instead of  ℓ/r  has caused some of Wheeler's coefficients
to change in value.  The transformations involved however, are too trivial to warrant further 
discussion.

For his prototype long-coil formula Wheeler gives an expression equivalent to:                                  

k W82..3 =
1

1+( 4
3π )(D / ℓ)

  (W82-3)

Notice here that the Maclaurin series for 1/( 1-x)  and  x < 1  is:

1
(1−x)

= 1+x+x2
+x3

+.. .. . .  

Thus (W82-3) is related to the first term of the Webster-Havelock formula, i.e.;

k W82..3 =
1

1+( 4
3π )(D / ℓ)

 ≈  1−( 4
3π )(D / ℓ)   

More intriguingly however, it is in the same form as the expression for  kW25  given earlier (i.e., the 
approximation for Nagaoka's coefficient extracted from Wheeler 1925).  It therefore hints at the 
underlying deduction that led to Wheeler's most famous formula.  Note however, that  
4/3π = 0.4244 , and the use of this value in place of the original empirical coefficient reduces the 
accuracy of the approximation.  The point however, is not to use this expression directly, but to 
obtain unrestricted range by combining it with others.

For his prototype short-coil expressions, he gives three examples; which can written as follows:  

k RNT =
2
π (ℓ /D)[ ln (4D / ℓ )−

1
2 ]  (W82-4.1)

which we have seen before as originating from the first term of the Rayleigh-Niven current sheet 
formula; 

k W82..4.2 =
2
π (ℓ /D)[ ln (1+π

2
(D/ ℓ ) )+ ln ( 8

π )− 1
2 ]   (W82-4.2)

and

k W82..4.3 =
2
π (ℓ /D)[ asinh( π2 (D / ℓ ) )+ln ( 4

π )−1
2 ]   (W82-4.3)         

50 Inductance Formulas for Circular and Square Coils.  Harold A Wheeler, Proc. IEEE (Letters), Vol 70, No 12, 
Dec 1982, p1449-1450.
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Where asinh is the inverse hyperbolic sine operator, defined by the expression:

asinh(x)= ln (x+√x2
+1 )  

These curves are shown plotted below (on a logarithmic scale), with the exact curve for Nagaoka's 
coefficient shown for comparison (see spreadsheet L_formulae.ods, sheet 4).

Wheeler's 1982 formulae (5) and (6)
It is by no means obvious how to combine the various prototype expressions, but as Wheeler points 
out; the first terms of the short-coil approximations (W82-4.2) and (W82-4.3) tend towards the 
correct value for long coils;  i.e., using the substitution zk=

2
π (ℓ /D)  to reduce the clutter:

as  ℓ/D → ∞   ,   zk ln( 1 + 1/zk )  →  1      and      zk asinh( 1/zk )  →  1

(columns are given in the spreadsheet to demonstrate this point).  Thus it is possible to combine 
these two terms with weighting coefficients chosen so that the correct offset is obtained for short 
coils; i.e.:

k L ≈ zk [k1 ln(1+
1
zk)+k2 asinh( 1

zk) ]  (W82-5) 

Wheeler gives  k1 = 0.48   and   k2 = 0.52  for an overall accuracy of  ±1.7% , and no restriction on 
solenoid shape.  The empirical coefficients however can be improved slightly (at the expense of 
increasing the number of decimal places).  The formula was therefore subjected to machine 
optimisation by comparison with the exact (AGM) calculation using a Nelder-Mead algorithm 
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written by Bob Weaver51 (see spreadsheet L_formulae.ods, sheet 5).  The following formula, 
accurate to within 1.6%  results:

k L = zk [0.53022 ln(1+
1
zk)+0.47877 asinh( 1

zk) ]       ± 1.6 %

where zk =
2
π ( ℓ /D)  

W82-5.1
(optimised)

Notice however, that due to the asymptotic behaviour of the individual terms, the empirical 
coefficients should strictly add-up to 1 if the formula is to be exact in the long-coil limit.  Wheeler's 
coefficients are obviously intended to preserve that behaviour (indeed, he refers to the formula as a 
'weighted average'); whereas the machine optimisation gives  k1 + k2 = 1.00899 .  This means that 
the machine optimisation has sacrificed strict asymptotic behaviour for the sake of minimum runout
(i.e., minimisation of the maximum error).  This is, of course, a perfectly reasonable choice for a 
simple formula with no analytical pretensions; because most practical coils fall in the middle of the 
range.  
     If convergence with the exact expression in the long-coil limit is required; constraining the 
formula to have  k2 = 1- k1  gives minimum runout when  k1 = 0.482  and  k2 = 0.518  (i.e., very 
close to Wheeler's original values) the maximum error then being ±1.63% .  The asymptotic version
(having effectively a single empirical parameter) is thus:

k L = zk [k1 ln(1+
1
zk)+(1−k1)asinh( 1

zk) ]       ± 1.63 %

where   zk =
2
π ( ℓ /D)     and     k1 = 0.482

W82-5a
(asymptotic, 
optimised)

Wheeler's next unrestricted formula (equation 6 in his paper) is based on the long-coil form 
(W82-3):

k L = zk [ 2.78
1.1+2 ℓ /D

+ln (1+0.195 D / ℓ)]      ± 0.91% W82-6

With three empirical coefficients, this gives an accuracy of ± 0.91% as written, but the maximum %
error is not symmetric above and below zero  and so, once again, further optimisation is possible.  
Also, since optimisation will increase the number of decimal places required in the parameters, we 
might as well start by factoring 1.1 from the denominator of the first term.  Thus:

k L ≈ zk [ k3

1+k4 ℓ /D
+ln (1+k5D / ℓ )]  

where, for initial fitting values:

51 See: Optimisation of multi-parameter empirical fitting functions: http://g3ynh.info/zdocs/math/ 
+ Nelder-Mead demonstration (spreadsheet).  Also: http://electronbunker.ca/CalcMethods3b.html.

http://g3ynh.info/zdocs/math/
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k3 = 2.78 / 1.1 = 2.5273    ,     k4 = 2 / 1.1 = 1.8182     and     k5 = 0.195  as before.

After machine optimisation (see spreadsheet: L_formulae.ods, sheet 6), the result is:

k L = zk [ 2.666
1+1.877 ℓ /D

+ln (1+0.161D / ℓ )]       ± 0.7%

where  zk =
2
π ( ℓ /D)

W82-6.1
(optimised)

The error curves for the three optimised formulae (W82-5a), (W82-5.1) and (W82-6.1) are shown 
below:

What is particularly noticeable about these curves is that the error functions for formulae derived 
from (W82-5) and (W82-6) are broadly complimentary.  This means that a new formula with 
greatly reduced error can be obtained by taking a weighted average.  If we also re-float all of the 
empirical parameters during machine optimisation, a trading process that will reduce the error still 
further will occur.  These observations lead to the following candidate expression: 

k L ≈ zk [ k1

1+k2 zk

+k3 ln(1+
k4

zk
)+ k5 ln(1+

1
zk)+k6 ashinh( 1

zk) ]  

Notice however that the parameters  k3  and  k5  are likely to be strongly correlated in some regions 
of the parameter space, because the terms that they control can become the same.  This implies that 
it may be possible to set one of them to zero with minimal penalty, which means that the formula 
might drop a term.
     When major parameter correlations exist, the non-linear fitting process can become ill-
conditioned.  In such cases it is often necessary to apply constraints on parameter variation until the 
system begins to approach a candidate solution.  For the problem here, an initial constraint was 
applied equivalent to forcing the asymptotic variant of the part corresponding to (W82-5); i.e.:
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k5 = k7 k8      and      k6 = k7 (1 - k8)

In this way,  k7  becomes a weighting coefficient for the whole of (W82-5a) and the correlation 
between  k5  and  k3  is eliminated.  Thus the fitting proceeded without mishap and a good 
preliminary solution was found.  Starting values for  k5  and  k6  were then calculated from the 
expressions above, and these parameters were allowed to vary.  After that, as occurs when there is a 
correlation, the error function was found to have a very flat bottom, with a process of trading 
between  k3  and  k5  occurring without much improvement.   k5  was also noted to pass through zero
at a point close to the error minimum.  Hence it was set to zero and excluded from the fit.  Finally, it
was noticed that the formula obtained was being slow to reach the asymptote for small  ℓ/D .  This 
problem was overcome by including a single extra point in the fit at  ℓ/D = 10-6 , with a fitting 
weight of  106  (all of the other points having a weight of 1 ).  This brought the overall error up a 
little, but guarantees the maximum stated runout  (for details, see the spreadsheet L_formulae.ods, 
sheet 8).  The formula obtained, accurate to within 470 ppM, is shown below.  Since it is effectively
an extended version of (W82-6) is is designated (W82-6x).

k L = zk [ 1.67405
1+2.5382 zk

+0.8053 ln(1+
0.1796

zk )+0.1955ashinh( 1
zk) ]    ± 0.05%

where  zk =
2
π ( ℓ /D)

W82-6x

The error curve is shown below, and a Basic macro function for evaluating the formula is given 
after that.
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Function W82eq6x(byVal x as double) as double
'Calculates Nagaoka's coeff. using optimised extended version of Wheeler 1982 eqn (6). 
' Accuracy is +/- 470ppM.  x = diam / length.
if x = 0 then
w82eq6x = 1
else
Dim u as double, v as double, w as double, zk as double
zk = 2/(pi*x)
u = 1.67405 / (1 + 2.5382*zk)
v = 0.8053*log(1 + 0.1796/zk )
w = 0.1955*log( 1/zk + sqr( 1/(zk*zk) + 1) )
w82eq6x = zk*(u + v + w)
end if
end function

Wheeler's 1982 formula (7)
The most accurate expression for solenoid inductance in Wheeler's 1982 paper is given as his 
equation (7).  This is based on the short-coil form (W82-4.2), with the constant term replaced by the
reciprocal of a polynomial.  Expressed using  ℓ/D  as the argument, the formula is:

k L ≈ zk [ ln(1+
1
zk)+

1
k0+ k1(ℓ /D)+k2( ℓ/ D)

2 ]  

where:  zk =
2
π ( ℓ /D)  ,  k0 =

1

ln ( 8
π )−1

2

 = 2.3004   ,     for k1 see text   , 

and    k 2 =
24

3π
2
−16

 = 1.7636  

W82-7

Note that with  k0  as given, the second term →  ln(8/π)-½   in the short-coil limit and the formula 
becomes convergent with (W82-4.2).  k0  therefore preserves the short coil asymptotic behaviour.  
Also, as noted earlier, zk ln( 1+1/zk ) → 1  in the long coil limit, and of course, the second term 
→ 0  when  ℓ/D  becomes large.  Thus the formula is doubly asymptotic.  
     k1  is the only empirical coefficient (in the original version at least), and Wheeler gave it the 
value  3.2 , which gives a maximum overall error of 0.09%.  Wheeler however, evidently had a 
liking for empirical constants with few decimal places; because this choice gives an error function 
that is always positive.  A simple adjustment to  k1 = 3.244  distributes the maximum error equally 
above and below zero and gives an accuracy of  ±469 ppM  ( 0.05% ).
     We should also note, of course, that although the value of  k0  is constrained if the asymptotic 
behaviour of the function is to be preserved, there is nothing particularly sacrosanct about  k2 .  The 
enumeration of natural constants is also laborious if current-sheet inductance is to be evaluated 
using a hand calculator, and so  k2  might as well be replaced by an empirical constant.  With that in 
mind, the formula was subjected to machine optimisation (using Bob Weaver's Nelder-Mead engine
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as before) and the maximum error promptly fell to  265ppM  ( ± < 0.03% ).  The coefficients 
obtained are shown in the table below (W82-7.2).
     It is also arguable that, since most coils fall in the middle of the  ℓ/D  range, there is not much 
point in preserving strict asymptotic behaviour.  That view was put forward by Rodger Rosenbaum, 
who gave hand-tweaked coefficient values that reduce the error to  231ppM.  A subsequent machine
optimisation then reduced the error to  163ppM  (W82-7.3), with coefficients as shown in the table. 

k0 k1 k2 error / ppM Source

1/{ln(8/π)-½} 3.2 24/(3π2 -16) +879, -0 (W82-7) Wheeler 1982

1/{ln(8/π)-½} 3.244 24/(3π2 -16) ±469 (W82-7.1) DWK 2007

1/{ln(8/π)-½} 3.2219 1.7793 ±265 (W82-7.2) This work

2.303 3.213 1.784 ±231 (W82-7R)* Rosenbaum52 2009

2.3056 3.2009 1.7904 ±163 (W82-7.3)* This work

* Deviation from the analytical value of k0 causes slow convergence with the short-coil asymptote.

The setup for performing the optimisations discussed can be examined in the spreadshet L-
functions.ods sheet 9.
     Note, incidentally, that there is little to be gained by extending the polynomial to have terms of  
(ℓ/D)3  etc..  The reason is that most of the error occurs in the middle of the argument range, and so 
high-power terms end up with small coefficients and have minimal overall effect.  
     Thus the best optimisations of Wheeler's 1982 formula (7) (adherent to the original form) are 
(W82-7.2) if doubly-asymptotic behaviour is required, and (W82-7.3) otherwise.  The error curves 
are shown in the graph below, and a Basic function that will calculate either according to the setting
of a flag is listed on the following page.

52 More error plots. Rodger Rosenbaum. Private e-mail communication, 27th March 2009.
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Function W827opt(byVal x as double, a as integer) as double
' calculates Nagaoka's coeff. using optimised Wheeler 1982 eqn (7).
' x = Diam. / length
' a  = 0 for asymptotic (+/-265ppM) version, otherwise gives min. runout (+/-163ppM).
if x = 0 then
  w827opt = 1
else
Dim k0 as double, k1 as double, k2 as double, zk as double, p as double
  if a = 0 then
    k0 = 1/(log(8/pi)-0.5)
    k1 = 3.2219
    k2 = 1.7793
  else
    k0 = 2.3056
    k1 = 3.2009
    k2 = 1.7904
  end if
  zk = 2/(pi*x)
  p = k0 + k1/x + k2/(x*x)
  w827opt = zk*(log(1 + 1/zk) + 1/p)
end if
end function

The setup used for performing the optimisations is given in the spreadsheet 
L-functions.ods sheet 9, and the routine above, which was used to produce the graphs, is in the 
included macro library.
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  8e. Weaver's continuous formula 
An error of < 270ppM from a compact continuous doubly-asymptotic expression, as obtainable 
using the original form of Wheeler 1982-7, is remarkable enough; but in early 2010 Bob Weaver 
decided to see if there could be any improvement53.  As we have noted above, there is little 
advantage in adding high-power terms to the inverted polynomial, and so he considered using terms
of fractional power.  In fact, if terms of  (ℓ/D)1/2  ,  (ℓ/D)3/2  and  (ℓ/D)5/2  are added, then the error 
can be reduced to about  91 ppM ; but after some experimentation he was able to reduce the error 
still further by adopting the following form:

k L = zk [ln(1+
1
zk)+

1

k0+ k1(ℓ /D)+k2(ℓ /D)2+
w1

( |w2 |+D / ℓ )
v ]

where:  zk =
2
π ( ℓ /D)  ,  k0 =

1

ln ( 8
π )− 1

2

 = 2.30038   ,   

k 2 =
24

3π
2
−16

 = 1.76356   ,    and for other coefficients, see below.

W82-7W

Notice that the coefficient  w2  is shown as a modulus.  This is because it must be constrained to be 
positive during machine optimisation, otherwise the variable power term can become complex and 
cause the process to crash.  k0  is set to Wheeler's analytical value in order to preserve the formula's 
asymptotic behaviour.  Also it transpires that, if all of the parameters (apart from  k0 ) are floated, 
then the value for  k2  comes out so close to the analytical value that it makes no significant 
difference if it is set to the analytical value.  Thus the formula ends up with four empirical 
parameters, and the following values are found to reduce the maximum error to  ±20.5 ppM :

k1 = 3.437   ,   w1 = -0.47   ,   w2 = 0.755   ,   v = 1.44  . W82-7W  fitting parameters

This formula is a serious rival for Lundin's formula because, although it is not quite as accurate, it 
has the advantage of being continuous, and  ±21 ppM  is still, for all practical purposes, exact.  The 
accuracy is maintained, incidentally, if the 5 decimal-place values for  k0  and  k2  are used in lieu of
evaluating them from natural constants.

(Continued on next page → )

53 Site update - at last, Bob weaver. Private e-mail correspondence, 3rd may 2010. Also discussed at 
http://electronbunker.ca/CalcMethods3b.html .
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The error curve is shown below, and a verified Basic macro is given below that.

Function W82W(byVal x as double) as double
' calculates Nagaoka's coeff. using Wheeler 1982 eqn (7) as modified by
' Bob Weaver. Max error is +/- 21ppM.  x = Diam. / length
if x = 0 then
  W82W = 1
else
Dim zk as double, k0 as double, k2 as double, p as double, w as double
  zk = 2/(pi*x)
  k0 = 1/(log(8/pi)-0.5)
  k2 = 24/(3*pi*pi -16)
  w = -0.47/(0.755 + x)^1.44
  p = k0 +3.437/x +k2/(x*x) +w
  W82W = zk*(log(1 + 1/zk) + 1/p)
end if
end function

For the sake of completeness, it is worth noting that the maximum runout error in Bob's formula can
be reduced very slightly by increasing the number of decimal places in the empirical coefficients, 
and reduced a little more by floating k0 (which sacrifices the asymptotic behaviour).  The error 
using the coefficient set presented above however is extremely small in comparison to other sources
of inaccuracy in inductance modelling, and so we will not pursue the matter here.  

Necessary accuracy
The circumstances that strictly require accuracy better than about ±0.1% in the calculation of the 
Lorenz current-sheet inductance are likely to be extremely rare; but it is so easily obtained that we 
might as well avail ourselves of it as a matter of course.  The first 0.1% empirical formula was 
given by Wheeler in 1982, and Lundin followed with a 3 ppM formula in 1985.  Consequently, 
there is no conceivable excuse for using Wheeler's 1925 formula in so-called 'online inductance 
calculators' (or any other computer program for that matter).
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9.  A note on the calculation of current-sheet inductance 
Note that many of the formulae given above for kL are in the form:

k L =
2
π (ℓ /D) [expression]  

This can also be written:

k L = zk [expression]  

If we call the expression in square brackets k'L , then we have:

k L =
2
π (ℓ /D) k'L  =  zk k'L  

Now turning our attention to the general form of the current sheet solenoid equation (7.1) we have:

μ
π r 2

ℓ
N2 k L  ,       [ permeability × area / length ]   

which, using D=2r, can be rearranged:

Ls =μ r N2( π2 )(D / ℓ)kL  =  
μ r N2 kL

zk

  

Substituting for kL we have:

Ls

μ r N2 zk k'L
zk

  

i.e., 

Ls = μ r N² k'L                          [ permeability × length ]

where    k'L = π
2
(D / ℓ) kL

9.1

 The point is that the factor 2
π (ℓ /D) does not always have to be evaluated explicitly when 

calculating current-sheet inductance.  It appears when the inductance is expressed using Nagaoka's 
coefficient  because Nagaoka took the view that solenoid inductance is related to area divided by 
length (as is capacitance).  In other words, Nagaoka in 1909, as we do now, preferred formulae that 
can be easily parsed to ensure that they make sense physically.  Those who worked or began their 
careers in the 19th Century, Maxwell included, took the more fundamental view that inductance, in 
general, has units of length.

One last thing to note on this issue is that, for many of the functions given earlier, zk =
2
π (ℓ /D)  

would actually have been a more natural choice of argument than  ℓ/D .
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10.  Rosa's round-wire corrections and the summation method 
Apart from the inclusion of internal inductance; all of the formulae given so far have been aimed at 
determining the inductance of a coil from the inductance of the equivalent Lorenz current-sheet.  
Practical coils however, no matter how good the choice of effective diameter, do not conform 
exactly to the Lorenz model.  This means that additional corrections are required; and in particular 
it is necessary  to allow for the use of physically realistic wire.   The so-called 'round wire 
corrections' were given for the low-frequency case by E B Rosa of the American National Bureau of
Standards in 1906 54 and result in an extended  expression for solenoid inductance that takes the 
form:

L = Ls - μ r N ( ks + km )        [Henrys] 10.1

where Ls  is the current-sheet inductance as given by equation (7.1);  ks  is a dimensionless 
correction coefficient for the difference between the self-inductance of a round-wire loop and that 
of a single-turn current sheet; and  km  is a dimensionless correction coefficient for the difference in 
the total mutual inductance of a set of round-wire loops as compared to that of a set of current-sheet
loops.  In Grover's 1946 monograph55,  ks  and  km  are called  G  and  H ; and in original NBS 
papers and elsewhere they are called  A  and  B .   Since all of the letters used in those early 
publications have other preferred meanings in a modern electromagnetic context, the notation has 
been altered here.
     The Rosa coefficients (actually approximations, as we will see) are tabulated in the publications 
mentioned above and a simple approximate function for ks , including DC internal inductance, is 
given.  In a modern computer-based modelling context however, the use of approximations is to be 
avoided wherever possible; and we require functions, not tables.  Internal inductance also needs to 
be treated separately so that it can be allowed to vary with frequency.  We will therefore re-
investigate the Rosa corrections in detail with a view to updating them.  To that end; we can begin 
by noting that they are derived from the difference between the current-sheet inductance and the the
round-wire solenoid inductance as obtained by summation of self and mutual inductances obtained 
using Maxwell's method of Geometric Mean Distances.  An introduction to the Maxwell approach 
is therefore appropriate at this point.

  10a. Geometric Mean Distances
The problem of calculating the inductance of an electrical circuit composed of an arbitrary system 
of conductors is the same as that of calculating all of the self and mutual inductances in the system 
and (bearing in mind that mutual inductance can be positive or negative) adding them all together.  
The problem of determining all of the individual inductance contributions moreover, was shown by 
Maxwell to be reducible in each instance to the problem of calculating the mutual inductance of a 
pair of equivalent infinitesimal filaments (i.e., conductors of finite length but zero cross-sectional 
area) spaced at the Geometric Mean Distance (GMD) for the corresponding conductor or conductor 
pair.
     The geometric mean of two numbers is simply the square-root of their product.  Similarly; the 
geometric mean of m numbers is the mth  root of their product.  Thus, if we wanted to find the 
approximate GMD between two conductors lying side-by-side, we could define a representative set 
of points within the cross-section of each conductor, measure the distance between each point in 
one conductor and every point in the other to obtain a total of (say) m distances, then take the mth 

54 E B Rosa, BBS Vol 2 (2), 1906, p161-187 [BS Sci. 31]. See also; BS Sci. 169, p122.
55 Grover 1946, p149
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root of their product.  To obtain the exact GMD, of course, we would need to have an infinite 
number of points in each conductor; but that problem can be surmounted by taking logarithms to 
turn the product into a summation, so that the summation becomes a set of nested integrals as the 
number of points in each conductor goes to infinity.
     The GMD of a conductor from itself is similarly given by taking the distance from every point 
within the conductor cross-section to every other point enclosed by the same area.  That distance is 
never zero for a finite cross-section (even if it is only one-dimensional, like a current sheet), and 
indeed, there would be no such thing as the self-inductance of an isolated linear conductor if it was.
     The subject of GMD determination is discussed by Maxwell in his Treatise on E&M56, and was 
further expanded by Andrew Gray57 in his magnum opus 'Absolute Measurements in E&M'.  Brief 
discussion and numerous standard solutions can also be found in BS Science Paper 169 58 and in 
Grover's monograph59.  For an excellent modern introduction to the GMD concept, with detailed 
derivations of most of the important results, see 'Inductance' by Clayton Paul60.
     Note that in early articles, GMD is usually given the symbol R.  In modern electrical documents 
however, the use of the capital letter R for anything not directly-related to resistance is likely to 
cause confusion.  Clayton Paul gets around that problem by using D, but in this article we have 
already allocated D for diameter.  Hence we allocate lower-case  g  and commend it as the initial 
letter of the concept to which it relates.

The determination of all of the self and mutual inductances in a system using the GMD approach, 
and the subsequent addition of the various contributions to obtain the total inductance is known as 
the summation method61.  Given standard solutions for the self and mutual GMDs of commonly-
encountered conductor cross-sections, and standard formulae for the mutual inductances of parallel 
filaments; the problem of inductance calculation for structures composed of parallel conductors 
(such as coils and cables) becomes conceptually straightforward.  When the number of parallel 
filaments is large however, as it often is in coils; the summation method is computationally 
inefficient.  That inefficiency is a drawback even in the age of electronic computers; but in the 19th 
and early 20th Centuries, it rendered the method largely impractical.
     Rosa's insight into the computation problem was to note that, given solutions for the GMDs of 
current-sheet segments, the inductance of a current-sheet solenoid can be obtained by both the 
summation and the Lorenz methods.  The Lorenz method  is highly efficient by comparison; but it 
provides only a  first approximation for the inductance of a practical coil and, being based on a 
model that is radically unlike any actual coil, cannot be directly adapted for accurate calculation.  
Rosa therefore decided to analyse the differences between the round-wire solenoid calculation and 
the current-sheet calculation when using the summation method for both.  The point was to obtain 
corrections that could be backwardly applied to the Lorenz formula.  The result was a pair of 
corrections; the reason being that there are distinct analytical differences between the mutual 
inductance and self-inductance parts of the problem.  Rosa thereby obtained a method of round-wire
solenoid inductance calculation that retains the efficiency of the Lorenz method, but is practically 
equivalent to the summation method.

56 A Treatise on Electricity and Magnetism, Vol 2, James Clerk Maxwell, 3rd edition 1892. 
[Maxwell E&M, Vol 2] OUP reprint 2002. ISBN 0198503741.  
On the GMDs of two figures in a plane.  Articles [691] and [692], pages 324-328.

57 Absolute measurements in electricity and magnetism, Andrew Gray, 2nd edition, rewritten & extended (in single 
volume), Macmillan 1921. ( http://archive.org/details/absolutemeasurem00grayuoft ) [Gray 1921] Chapter XIII, 
Calculation of Inductances. page 475 - .

58 BS Sci. 169, Section 9. Formulas for geometrical and arithmetical mean distances. p166 - 170.
59 Grover 1946. Ch 2. The GMD method, p. 14-16.  Ch.3. GMDs. p. 17-25. 
60 Inductance, Loop and Partial, Clayton R Paul. Wiley 2010. ISBN 978-0-470-46188-4.  Section 6.4. Concept of 

Geometric Mean Distance, p 266-272;  6.4.1. GMD between a shape and itself and the self partial inductance, p273 -
285;  6.4.2. GMD and mutual partial inductance between two shapes, p 285 - 291.

61 BS Sci. 169, The summation formula for L, p123.  (apparently attributable to Kirchhoff).
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  10b. Loop self and mutual inductance formulae 
The use of the summation method for solenoid inductance calculation is a matter of repeated 
application of loop inductance formulae.  Such formulae, of course, are also useful in their own 
right.
     The self inductance of a circular loop is the same as the mutual inductance between the loop and 
itself.  That can be found by calculating the mutual inductance of a pair of filaments separated by 
the geometric mean distance (GMD) of the conductor from itself.  For the construction of coils 
using ordinary round magnet wire, the quantities of interest are62:

For a solid conductor of circular cross section: g = rw exp(-¼) = 0.7788 rw 

For a thin-walled cylinder: g = rw exp(0) = rw 

The reason we are interested in these two specific cases, is that the first corresponds to a wire with 
uniform current throughout its cross section, which means that its self-inductance will include low-
frequency internal inductance.  The second corresponds to a wire with current flowing only at the 
surface, which means that its self-inductance will be without internal inductance.  Thus we can 
control the inductance calculation process, using the exponent argument of  -¼  to compare results 
with existing methods and tables, but changing to 0 so that the properly-calculated internal 
inductance can be added separately.

Maxwell gives an expression for the mutual inductance of two coaxial circles63 64 in complete 
elliptic integrals.  Converted to rationalised mks this becomes:

M =−μ √r1 r 2 [ (κ−
2
κ ) K(κ)+( 2

κ ) E(κ)]  [ Henrys] (M701.1)

where  r1  and  r2  are the radii of the circles and  s  is the axial separation.  The  elliptic integral 
modulus κ (kappa) is given by:

κ = 2 √ r1 r2

(r1+r2)
2
+s2   

A slightly less opaque version is obtained by rearranging terms to get rid of the forward minus sign 
and factoring-out  2/κ  :

M =μ√( r1+r2)
2+s2 [ (1− κ

2

2 ) K(κ)−E(κ)]  [ Henrys] (M701.1a)

This can be used to obtain a well-known approximation for wire-loop inductance, a derivation for 
which is given by Ramo et al65.  Firstly; note that we can calculate the external self-inductance by 
placing two notional filaments at a separation of rw  , that being the radius of the wire.  We can do 
that straightforwardly either by placing two circles of the same radius at an axial separation of rw , 

62 See for example Maxwell E&M Vol 2. Article [692] (9) page 328.
63 Maxwell E&M, Vol 2, Article [701], To find M by elliptic integrals, page 339. Note that the elliptic integral of the 

first kind, nowadays called K, is written as F  in Maxwell's notation.
64 BS Sci. 169, p6. Rosa also states that the formula is absolute, giving M for coaxial circles at any distance. 
65 Ramo et al. 1994, 'Self inductance of a circular loop through mutual inductance concepts'. Example 4.7b, p192 - 

193.  The same derivation is also given in the 1st edition:Wiley, 1965, LCCN 165-19477. section 5.25, 'Self-
inductance by selected mutual inductance' pages 309 - 311.



58

or we can set the axial distance to zero and place one circle inside the other.  The two choices give 
slightly different results, the concentric filament pair giving slightly less inductance than the parallel
pair when we use the average radius and the inner radius, and slightly more when we use the 
average radius and the outer radius.  The parallel filament choice is the most realistic; but the 
difference is supposedly not great when  r >> rw  , and the concentric choice gives a considerable 
simplification. 

If we put:    s = 0    ,    r1 = r    and    r2 = r - rw    ,    we get:

L1x =μ(2r−rw) [ (1−κ
2

2 ) K(κ)−E(κ)]  [ Henrys] (10.2)

with    

κ =
2√r( r−r w)

2r−rw

 

We can, of course, now calculate the loop external inductance using complete-elliptic-integral tables
or functions, but as pointed out by Ramo et al:

when    r >> rw    ,    κ → 1    and   E(κ) → 1

Thus:

L1x  ≈  μ r [ K(κ) - 2 ]

Also, as   κ → 1   ;

K(κ)≈ ln( 4

√1−κ
2)  

Substituting for  κ2  and rearranging, we get:

K(κ)≈ ln(4(2r−r w)

rw
)  

which, since  r >> rw , can be further approximated as:

K(κ)≈ ln(8 r
r w )  

Hence:

L1x ≈μ r[ ln(8 r
rw )−2]                [Henrys]

External inductance
of a round-wire loop

(approximate)
10.3
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The expression above is widely known and used.  It was given by Maxwell, not as a loop-
inductance formula, but as a first approximation for the mutual inductance of parallel coplanar 
circular filaments in close proximity66.  In BS Science paper 169, the same expression is obtained 
by rearrangement and truncation of a Maxwell series formula for the mutual inductance of coaxial 
circles67 (and there are other routes68 ).  Hartshorn also gives this formula without derivation69.  It is 
alleged to be accurate for  r > 5rw .  Note incidentally, that it corresponds to a truncated version of a 
formula for short round-wire coils given by Rayleigh and Niven70.  The full Rayleigh-Niven 
formula, excluding internal inductance, is:

Lx ≈ μ r N2[ln(8 r
rw

)−2 +
1
8( rw

r )
2

(ln(8 r
r w

)+1
3) ] 10.3a

For the accurate calculation of loop mutual or self inductance however, we need to evaluate the 
complete elliptic integrals properly.  The form given above (M701.1a) will work perfectly well, but 
as mentioned earlier (in section 7), best computational efficiency is obtained by using the K-E 
combination elliptic integral and calculating it by the AGM method.  A formula suitable for that 
approach was also given by Maxwell71 :

M = 2μ√ r1 r2
1

√κ1
[ K(κ1)−E(κ1)] [ Henrys] (M701.2)

where

κ1 =
s1−s2

s1+s2
 

s1  and  s2  being the furthest and nearest distances between the filaments, as
defined in the cross-sectional diagram on the right.  Hence, using Pythagoras:

s1 =√(r1+r 2)
2+s2    and   s2 = √(r 1−r 2)

2+s2

A Basic macro function that performs the calculation has been written by Bob
Weaver72; although for the work described here, a version of Bob's program
routine that has been trivially modified to accept input in mm and return M in nH
is used.

As mentioned above, we can use the GMD to find out how far a wire is from itself for the purpose 

66 Maxwell E&M, Vol 2, Article [704], p342-343.
67 BS Sci. 169, p13, formula [11].  A greatly extended version is also given by Coffin, p14, formula [13].
68 See, for example: Gray 1921, pages 490 - 492.
69 Radio-Frequency Measurements by Bridge and Resonance Methods, L. Hartshorn (Principal Scientific Officer, 

British National Physical Laboratory), Chapman & Hall, 1940 (Vol. X of "Monographs on Electrical Engineering", 
ed. H P Young). 3rd imp. 1942. [Hartshorn 1940].  Ch VIII, section 3, p146.

70 Rayleigh, Scientific Papers Vol 2.  page 15, formula (13).  Also given in BS Sci. 169, p111, formula (63).  A 
version appearing in BS RP90, p166 formula (2), has a typographic error.  The second ρ2/a2 (i.e.; rw

2/r2 ) term should 
be positive.  Note that in all sources: -7/2 = -2 +¼ .  To remove the internal inductance component, change the term 
to -2 (i.e.; subtract ¼ from the first term in the power series).  The formula requires correction for insulating space if 
used for multi-turn coils, but it is accurate to <1 part in 103 for 1-turn loops of ρ/a  (i.e., rw/r ) ≤ 0.1.

71 Maxwell E&M, Vol 2, Article [701], Second expression for M, page 340.
72 http://electronbunker.ca/CalcMethods1b.html
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of self-inductance calculation, but we have a choice regarding how to arrange a pair of notional 
filaments separated by the GMD.  Neglecting the effects of non-uniform current distribution, the 
average self-inductance is obtained by taking two filaments at the average coil radius and making 
the axial separation equal to  g  (i.e., the GMD).  If we regard M as a function:  M( r1 ; r2 ; s ) ,  then 
this is the  M( r ; r ; g )  choice.  There are, of course, an infinite number of choices that give a 
distance of  g  between the filaments, but the extremes are:  M( r ; r+g ; 0 )  and   M( r ; r-g ; 0 ) .   
The percentage difference between the extreme choices and the average choice is shown below 
plotted against  r/rw  .  Also shown for comparison, is a calculation using the approximate formula 
(10.3).  Note that internal inductance is not considered in these calculations, and so  g = rw .  The 
calculations are given in the spreadsheet Loop_funcs.ods , sheet 1 .

The difference between the upper and lower curves and the average is substantial (ca. ±7%) when  
r/rw = 10 ,  but even at  r/rw = 100  it remains at  ±0.6% .  Note also that most radio coils use 
relatively thick wire and so tend to fall in the middle of the range covered by this graph.  Thus the 
choice of definition is critical for accurate results; and making an inappropriate choice is a potential 
source of systematic error.
     Now recall that we apparently obtained  the formula (10.2) from Maxwell's first elliptic integral 
expression (M701.1a) by placing the filaments at the average radius and the inner radius, with zero 
axial displacement.  Not shown on the graph (but shown in the spreadsheet) is the fact that (10.2) 
evaluated by calling separate complete elliptic integral functions produces results that are exactly in 
agreement with M( r ; r-rw ; 0 ).  This confirms that there are no approximations involved in the 
transformation73 between Maxwell's two formulae (M701.1) and (M701.2). 
     The reason for performing these comparisons however, is that Ramo et al have effectively 
identified the ubiquitous formula (10.3) as originating from the  M( r ; r-rw ; 0 )  case.  Since the 
average choice  M( r ; r ; g )  is the correct one, this would make (10.3) extremely suspect.  We find 
however, that the simple formula gives a result very close to  M( r ; r ; rw ).  In fact it is remarkably 
good, being asymptotically correct as  r/rw → ∞ , and exhibiting only -0.32% deviation from the 
r1 = r2  elliptic integral calculation at   r/rw = 10  and  -1.5%  at  r/rw = 5 .  This suggests that the 
derivation given by Ramo et al is an invention to fit the facts, rather than a legitimate route to the 
result.  Certainly, it is extraordinary that the crude process of crossing-out small terms only serves to

73 In BS RP16, on p489, Grover points-out that Landen's transformation is used to get from M701.1 to M701.2 and 
gives refs..  The transformation is also described in the article at: 
http://en.wikipedia.org/wiki/Landen's_transformation
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improve the accuracy.

It is, incidentally, perfectly reasonable to use filaments with zero axial displacement when 
calculating the self-inductance of a loop; but not in the way that Ramo et al envisaged it.  As has 
been pointed out by Bob Weaver74; the correct approach when using concentric filaments is to 
define them so that the geometric mean of their radii is equal to the mean radius of the loop.  Thus; 
if the filament radii are  ra  and  rb  and the loop radius is  r :

r=√r a r b  

The filament separation is, of course, the GMD; and so, if  ra  is the radius of the inner filament:

g = rb -  ra

Using the second expression to substitute for  rb  in the first expression gives:

r2 = ra ( ra + g )

i.e.;

ra 
2 - ra g - r2 = 0

Applying the standard solution for quadratic equations we get:

r a =
−g ±√g2

+4 r2

2
 

In this case,  since the square root term is larger than  g , the solution with the positive square root  
is the appropriate one.  Hence: 

r a =
√g2

+4 r 2
−g

2
 

and

rb = ra + g

When these expressions for the filament radii are used for the concentric filament case, the 
calculated loop mutual inductance is exactly the same as that obtained using filaments of equal 
radius and an axial displacement of  g , i.e.;

M( ra ; rb ; 0 ) = M( r ; r ; g )

when  ra  and  rb  are as defined above.

74 GMD and wire loop inductance.  Bob Weaver. Private e-mail communication, 25th Aug 2012.
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  10c. Solenoid inductance by the summation method 
The summation method entails modelling the solenoid as a set of N wire rings (where N is the 
number of turns) and adding-up all of the ring self-inductances and inter-ring mutual inductances.  
For the purposes of the model, each ring lies in a plane perpendicular to the coil axis, is centred on 
the coil axis, and is positioned at the middle of the pitch interval for the turn to which it corresponds
(so that  the relationship  ℓ = N p  is preserved).
     A structure that gives something approaching a  physical realisation is depicted below.  The 
actual model however is an abstraction.  All rings carry the same radial current in the same 
direction, but the mechanism by which the current gets from one ring to the next is not considered.  
By joining the rings electrically in series, as has been done in the diagram, we can see that it is not 
possible to transfer the conduction current without creating additional inductance (due to a current 
in the axial direction); but in conventional modelling practice, that inductance (which amounts only 
to the partial inductance of a conductor the length of the coil) is not included.  Note incidentally that
the Lorenz current-sheet model also only allows conduction in the radial direction, and so suffers 
from the same limitation.

The ring self and mutual inductance contributions can be obtained using one of the Maxwell 
complete elliptic integral expressions for the mutual inductances of coaxial circles; i.e., (M701.1) or
(M701.2) as discussed in section 10b.  For the mutual inductances of round wires, the geometric 
mean distance (GMD) between loops is simply the axial distance from wire-centre to wire-centre.  
For the self-inductances, the GMD is as appropriate for the type of calculation required ( e.g.,  
g = rw , the wire radius, for a round wire excluding internal inductance).  Note that a pair of loops 
has two mutual inductances ( MN1,N2 and MN2,N1 ) and so makes two contributions to the total.  The 
complete set of contributions is listed below:

Magnetic interaction               Contribution
N loop self-inductances → N ×  M( r ; r ; g )

N-1 loop pairs spaced at distance p → 2(N-1) ×  M( r ; r ; p )
N-2 loop pairs spaced at distance 2p → 2(N-2) ×  M( r ; r ; 2p )
N-3 loop pairs spaced at distance 3p → 2(N-3) ×  M( r ; r ; 3p )

                   . . .  . . .
2 loop pairs spaced at distance (N-2)p → 4 ×  M( r ; r ; {N-2}p )
1 loop pair spaced at distance (N-1)p → 2 ×  M( r ; r ; {N-1}p )

where M( r1 ; r2 ; s ) represents the mutual inductance between coaxial circular filaments of radii r1 
and r2 and axial separation s .
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Careful consideration of the list will show that the total number of inductance contributions in the 
set is  N2 , but multiple instances of identical contribution result in the need for only N separate 
mutual inductance calculations.  Using standard notation, the inductance of a solenoid by the 
summation method is thus:

L = N M (r ; r ; g)+2∑
m=1

N−1

( N−m) M (r ; r ; mp)   

Or, alternatively:

L = N M (r ; r ; g)+2∑
m=1

N−1

m M (r ; r ; (N-m)p )  

Note that both of these expressions are made-up of two distinct parts: a sum of self-inductances (all 
identical) , and a sum of mutual inductances (not all identical).

A Basic routine that performs the calculation for coils made from cylindrically-symmetric wire is 
shown below:

Function Ljcm(ByVal N as long, r as double, x as double, g as double) as double
' Calc L of round-wire solenoid in uH using summation method. Version 2.20
' Calls function Mpar for mutual inductances.  N = no. of turns.  
' r=coil radius /mm, x=coil length /mm, g = conductor self gmd /mm.
If N < 1 then
  Ljcm = 0
elseif g <= 0 then
  Ljcm = 1E30
else
Dim p as double, L as double, m as long
' calculate the N loop self inductances using the conductor gmd:
  L = N*Mpar( r , g )
' calculate the N(N-1) mutual inductances:
  p =x/N
  for m = 1 to N-1
    L = L + 2*m*Mpar( r , (N-m)*p )
  next
  Ljcm = L/1000
endif
end function

Referring to the program code: Mpar( r ; g ) is a routine that calculates the mutual inductance of 
parallel coaxial filaments, in nH, using Maxwell's formula (M701.2) and Bob Weaver's AGM 
algorithm.  (see the macro library of the accompanying spreadsheet Rosa_v_summation.ods ).  
     The input argument g is used to control whether the function calculates external inductance only 
( g = rw ) or includes DC internal inductance [ g = rwexp(-¼)  ].  Including internal inductance in this
way is not recommended because the actual length of the wire in a coil is slightly longer than  nπD ,
but the facility is useful for comparing the results against other methods.  Note that setting g to zero 
results in infinite inductance and thus constitutes an invalid input.  The condition is therefore 
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trapped before it can be passed to Mpar(), and the function returns  L /μH = 1030 .
     Notice also that the GMD for mutual inductance calculation is taken to be an integer multiple of 
the pitch, i.e., the GMD is taken from wire-centre to wire-centre.  This is correct for points external 
to round wires and cylindrical tubes, but not for current-sheet segments or any other conductor 
cross-section that lacks infinite rotational symmetry.  Consequently, the program cannot be used to 
calculate the inductance of coils having non-cylindrical conductors (although, of course, it can be 
modified fairly easily to include a GMD factor in the call to Mpar ).

An idea of the relative computational efficiency of the summation method (for solenoids) can be 
gleaned by assuming (for the sake of argument) that we will use complete elliptic integrals for those
parts of any calculation that have a major effect on accuracy.  We will allow however, that when 
several elliptic integral terms have the same value of modulus (κ), then they can all be calculated in 
the same program loop; so the speed of computation is not so much linked to the number of terms, 
but to the number of different modulus values required.  
     When the Rosa method is used, the initial step of current-sheet inductance calculation usually 
gets the solenoid inductance to well within 3%.  The precision requirement for the Rosa corrections 
is therefore much less stringent than for the determination of Nagaoka's coefficient.  Thus we might 
argue that Rosa's method requires only one call upon an elliptic integral calculation routine 
(ignoring the fact that we have approximation methods good enough to eliminate even that).
     The summation method, in contrast, always requires N calls to a routine for calculating K-E.  
Thus it is very roughly N-times slower than the Rosa method for a given level of precision.  This 
incidentally, is not particularly important for spot calculations, or for graph-plotting if the maximum
number of turns is reasonably small; but for extensive repetitive calculations it can prove to be an 
encumbrance (especially when running programs via an interpreter).

The main drawback of the summation method however is not necessarily obvious upon initial 
examination.  It is that the mutual-inductance part of the summation is strictly limited to integer 
values of N.  This makes the method completely unsuitable for any kind of simulation that seeks to 
return a value of N on a continuum; i.e.; it cannot be used for the purpose of coil optimisation 
except in a very restricted sense.  There is a great deal of difference between setting up a model that 
gives values of N requiring truncation to a whole number, and setting up a model that can only use 
whole numbers internally for some variables.
     Thus, if there is need to supply a compelling modern-day reason for using the Rosa method, it is 
that it can free us from the integer-turns restriction.  It cannot do so directly, incidentally, because 
the mutual inductance correction is derived from the integer mathematics of the summation method;
but it leads to continuous approximate functions of high precision, and these provide the necessary 
facility for interpolation. 

A further general point that should be kept in mind, is that the summation method is not perfect, 
even within the limitations already discussed.  The reason is that, although the Maxwell elliptic 
integral formulae for mutual inductance are exact for coaxial circular filaments; the calculation of 
self-inductance on the basis that it is the same as the mutual inductance of a pair of filaments 
separated by the internal GMD is an approximation that is true only when the GMD is much smaller
than the loop radius75 (i.e., the curvature of the loop is assumed to be negligible).  Also, of course, it 
must be remembered that the turns of a helical coil are not rings.

75 See BS Sci. 31. p173. But note that Wein's formula mentioned there is wrong.  See BS Sci 169, footnote on p111. 
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  10d. Rosa's self-inductance correction 
Rosa's correction coefficient for self-inductance ( ks  here, A or G elsewhere) is derived from the 
difference in the inductance of a single-turn loop of round wire compared to that of a single-turn 
current sheet. 
     The inductance of a relatively-short current sheet can be obtained to a good approximation by 
using the Rayleigh-Niven formula given in section 8b.  For the special case of a single turn of a 
multi-turn coil (i.e., a very short current sheet), Rosa considered the truncated form (just the first 
term in the  ℓ/D  power series) to be sufficient, i.e.; 

k L1 =
2
π (ℓ /D)[ ln (4D / ℓ )−

1
2 ]  

Puting this into equation (9.1) with N=1 we get:

L1s =μ(x) r [ ln (4 D / ℓ)− 1
2 ]  

where  μ(x)  is the external permeability (i.e., the permeability of the medium outside the conductor).

For the current-sheet equivalent to one-turn of a coil, Rosa defined the problem in such a way that 
the length of the cylinder corresponded to the pitch  p  of the inductor to which the correction is to 
be be applied.  Hence, substituting  2r = D  and  p = ℓ , we get:

L1s =μ(x) r[ ln(8 r
p )− 1

2 ]   

Now turning to the loop inductance part: as we saw in section 10b, the external inductance of a 
single turn of round wire is given to a good approximation by the formula (10.3):

L1x =μ r[ ln( 8 r
(d /2))−2]   

Rosa however, also included the DC internal inductance in his expression. This was given earlier (in
section 6) as:

L i(dc) = ℓw

μ(i)

8π
 

In this case, the length of the wire is  2π r  (the circumference of the loop), and so:

L i(dc) =μ(i)
r
4

 

For the case where the wire is non magnetic, and the coil is not in proximity to any magnetic 
materials:

μ(x) = μ(i) = μ0

Hence, the total inductance of a loop of non-magnetic round wire, at low frequencies, in the absence
of a magnetic core is:
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L1(dc) =μ0 r [ln( 8r
(d / 2))−2 + 1

4 ]  

The correction for self inductance given by Rosa is obtained by subtracting the inductance of a 
single-turn current-sheet of length p from the inductance of a single-turn wire loop and multiplying 
by the number of turns ( N );  i.e., the per turn correction is applied N times and we have:

N(L1(dc)−L1s)=μ0 r N [ ln( 8 r
(d /2))−2 +1

4
−ln(8 r

p )+1
2 ]  

Observe here that subtracting logarithms is the same as performing a division of the numbers 
within.  Hence:

(L1(dc)−L1s)=μ0 r [ ln(2 p
d )−3

2
+ 1

4 ]  

The ¼ being the internal inductance term.  Note however, that Rosa defined his correction in 
equation (10.1) as negative.  Thus:

ks(dc) =−
(L1(dc)−L1s)

μ0 r
  

Hence, Rosa's original self-inductance correction coefficient,  ks(dc)  ( also known as A or G ), 
depends only on the wire-pitch / wire-diameter ratio and is given by:

ks(dc) =
5
4

−ln(2 p
d )  10.4

This can also be written: 

ks(dc) = ln(1.7542
d
p)  10.4a

where   1.7542 =
exp (5 /4)

2
 

p/d   is always  > 1 , for reasons set out in section 5a, and because close-spaced coils must be 
wound using insulated wire.  When   p/d = exp(5/4)/2  ,   ks = 0 ,  and so coils with a gap between 
turns of about ¾ of the wire diameter require no self-inductance correction at low frequencies. 

Separation of internal inductance
Rosa's self-inductance correction, given as above in various textbooks, was, of course, never 
intended to be used for high-frequency calculations.  Having preserved the identity of the internal 
inductance component in the derivation above however, we are in a position to modify the formula 
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to improve its versatility.  The most obvious approach is to make a complete separation between the
calculation of the internal and external inductances.  By so doing, it becomes possible to have 
different external and internal permeabilities, allowing the model to deal with magnetic cores (or 
even magnetic wires); and the full frequency dependence of internal inductance can be included if 
required. 

The self inductance correction, for external inductance only, is obtained by adding  ¼  to equation 
(10.4):

ks(x) =
3
2

−ln(2p
d )  10.5

Using this expression, the inductance of a round-wire solenoid becomes:

L = Ls - μ(x) r N ( ks(x) + km ) + Li             [Henrys] 10.6

The calculation of the internal inductance, Li , has already been discussed in section 6.

The separate calculation of internal and external inductance is slightly more accurate than Rosa's 
method, even at low frequencies.  By comparing (10.4) and (10.5) we can see that the internal 
inductance term included by Rosa is:

L i(dc)=
μ(i) r N

4
 

this expression being obtained by estimating the length of the wire in the coil as N times the 
circumference, i.e.; 

ℓw = 2π r N

This estimate is only accurate when the pitch is small relative to the coil diameter.  When  p  is 
relatively large, as it sometimes is in radio coils, it is better to use an exact expression for the wire 
length, i.e., (5.1) or (5.2):

ℓw   = √(2π r N)
2
+ℓ 2  =  

2π r N
cosψ

  

where  ℓ  is the solenoid length and  ψ  is the pitch angle.  

Note that, even when the internal inductance component is removed from the correction coefficient,
there is still a mechanism by which ks(x) can vary with frequency.  This is the repulsion between 
current streams in adjacent conductors (another manifestation of the proximity effect) that will 
cause the effective pitch / diameter ratio to increase.  Noting the sign conventions used in equations 
(10.5) and (10.6), such repulsion will give rise to a small increase in the self inductance of a turn, 
but this will be offset by the error incurred by neglecting the proximity-induced reduction in the 
internal inductance (see section 6).
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Precision and applicability of Rosa's self-inductance correction 
The Rosa self-inductance correction per turn is obtained by subtracting two formulae, one being the 
wire loop inductance formula (10.3) and the other being the truncated Rayleigh-Niven current-sheet
formula with N=1 and the length of the sheet defined as the axial length of a turn. 
     As we have seen in section 10b,  the simple wire loop formula is rather good, but it will become 
inaccurate for coils wound with very thick wire.  We might address that problem by calculating the 
correction term using using the elliptic integral expression for M( r ; r ; g ) instead of inferior 
approximations.  Remembering that Rosa's corrections are second-order adjustments to a much 
larger current-sheet inductance; the practical circumstances under which it will become necessary to
do that are likely to be somewhat rare, but it suggests a definitive calculation procedure against 
which to evaluate less computationally intensive approaches.
     The use of the truncated Rayleigh-Niven sheet formula is perhaps more contentious, but not 
greatly so.  Using pitch  p  in place of coil length  ℓ , this formula is good up to about  p/D = 0.1 ,  
i.e.,  ψ = arctan( p/πD ) = 1.82º .  This constitutes a fairly wide-spaced coil, but wider spacing is 
occasionally encountered in VHF or UHF radio practice.  
     Grover addressed the Rosa-correction issue in BS Research Paper 90 76, in response to some 
bungled attempts to show that the method is flawed (it isn't).  He was able to show that the Rosa-
Nagaoka approach is practically equivalent to the summation method, for which it was intended to 
provide a computationally-efficient alternative.  There is an issue however in that both the 
summation and the Rosa methods start to become inaccurate as the pitch-angle increases.  This 
shared pathology, which we will investigate later, is of course nothing to do with the Rosa 
corrections; but in discussing the matter, Grover pointed to a more precise version of the self-
inductance correction.  He did so only to show that it would make no practical difference; but we 
might now take the view that if we are to correct for the shortcomings of these methods and thereby
extend the applicable range of pitch, we must at least make sure that there are no defects in the basic
assumptions.
     The extended correction formula written by Grover is obtained by combining the complete 
Rayleigh-Niven current sheet formula with the wire loop formula.  Note that this will not cure the 
limitations of the underlying theory, but it will extend the precision of the method (as opposed to the
accuracy) to  p/D = 0.7,  i.e.;  ψ = Arctan( 0.7/π ) = 12.6º.

Recall that the complete solenoid (partial) inductance can be expressed in the form:

L = Ls - μ(x) r N ( ks(x) + km ) + Li        

Hence the complete self-inductance correction is:

ΔLself  = - μ(x) r N ks(x) + Li 

Internal inductance is given by (6.5) as:

L i =
μ(i) r N

cos ψ
Θ
4

 

Where  Θ  (Theta) is a factor that varies between 1 at low frequencies and  0  as  f → ∞ ; and the 
factor  1/cosψ  corrects for the difference between the circumference of a loop perpendicular to the 
axis and the conductor-length of a helical turn.  Hence:

76 A comparison of formulas for the inductance of coils and spirals wound with wire of large cross section.  F W 
Grover, BS J. Research. Vol 3. 1929. [BS RP90], Equivalence of the summation method and the Rosa method.  
p165-170, esp. formula (7), p167.
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ΔL self = N[−μ(x) r ks(x) +
μ(i) rΘ

4cos ψ ]  

This contracts into Rosa's original form when we put  μ(i) = μ(x) = μ  , set  Θ = 1  , and neglect the 
pitch correction, i.e.;

ΔLself  = μ r N (- ks(x) + ¼ )  = - μ r N ks(dc)

Here, avoiding the unfortunate practice of making approximations at the definition stage; we can 
dispense with the proliferation of permeabilities by expressing the internal permeability relative to 
the external permeability; i.e.;

μr(i) =
μ(i)
μ(x)

 

This is convenient for air-cored coils, because in that case, assuming copper, silver or some other 
non-magnetic wire-making material,  μr(i) = 1  to within a few parts per 1000.  Also, we can model 
an external permeability greater than  μ0 ,  i.e.;  μ =  μr(x) μ0 , by making  μr(i)  = 1/μr(x) .  Hence:

ΔL self =μ r N[−ks(x)+
μr(i) Θ

4 cos ψ ]  

We can also reduce distracting detail still further by including the internal relative permeability as 
part of the internal inductance factor; i.e.:  Θ' = μr(i) Θ .  Thus any derivation of the correction 
coefficient can start with the rigorously defined form:

−ΔLself

μ r N
= ks(x) −

Θ'
4cos ψ

 

Also note that, since the correction per turn needs to be applied N times:

ΔLself  = N ( L1 ‒ L1s )

where  L1s  is the inductance of a 1-turn current sheet, and  L1  is the complete inductance of a 
1-turn wire loop.  Thus:

ks = ks(x) −
Θ'

4 cos ψ
 =  

L1s−L1

μ r
 

Where Θ' = μr(i) Θ

Formal definition for Rosa's self-
inductance correction coefficient. 

Also, if we exclude internal inductance we get:

ks(x) =
L1s−L1x

μ r
 

Where  L1x  is the external inductance of a 1-turn loop.



70

Using the complete Rayleigh-Niven sheet formula (section 8b) with  N=1  and  ℓ = p  gives the 
inductance of  a 1-turn of the current sheet as:

L1s =μ r[ ln(8r
p )−1

2
+

1
32(

p
r )

2

[ln(8r
p )+ 1

4 ]  ]   

The loop external inductance can be accurately approximated using (10.3):

L1x =μ r[ ln(8r
r w)−2]  

Hence, subtracting the two formulae:

ks(x) = ln(8r
p )−1

2
+

1
32(

p
r )

2

[ln(8r
p )+ 1

4 ]−ln(8r
rw)+2  

Thus, noting that 2rw = d  (the wire diameter) and that inverting the argument of a logarithm 
changes its overall sign:

ks(x) =
3
2
−ln(2p

d )+ 1
32( p

r )
2

ln[ (8r
p )+ 1

4 ]   10.7

Comparing this with the simple version of Rosa's coefficient (10.5), we may note that, although the 
extended formula for  ks  remains dimensionless,  it now depends not only on the pitch to wire-
diameter ratio  p/d ,  but also on the ratio of pitch to coil radius or diameter, i.e.,  p/r  or  p/D .   
Expressed using the coil diameter it becomes:

ks(x) =
3
2
−ln(2p

d )+1
8( p

D )
2

ln[ (4D
p )+ 1

4]                  p ≤ 0.7 D   ,    D ≥  10 d  . 10.7a

To include internal inductance, we simply subtract  ¼  to be consistent with NBS documents, or 
more generally, we subtract  Θ'/(4 Cosψ) .  Note also, as mentioned in section 5 :

1
cos ψ

= sec ψ  =  √1+( p
2π r )

2

 

Thus:

ks =
3
2
−ln(2p

d )+ 1
32( p

r )
2

ln[ (8r
p )+ 1

4 ]−Θ'
4 √1+( p

2π r )
2

 

Where:   Θ' =
μ(i)
μ(x)

Θ  =  μr(i)Θ     

10.8
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Alternatively, using the coil diameter:

ks =
3
2
−ln(2p

d )+1
8( p

D )
2

ln[ (4D
p )+ 1

4 ]−Θ'
4 √1+( p

2π r )
2

 10.8a

Notice here incidentally, that we can force the formula to calculate ks(x) by setting  Θ' = 0 .

A Basic macro function that performs the calculation is shown below:

Function Rosaksx(byval pdw as double, pD as double, fi as double) as double
' Rosa's self inductance correction, extended series version for p/D <= 0.7 (psi <= 13 deg.)
' pdw = pitch / wire diam , pD = pitch / coil diam, 
' fi = internal inductance factor, zero for none, 1 for LF.
Rosaksx = 1.5 - log(2*pdw) +pD*pD*( log(4/pD) +0.25 )/8  -fi*sqr(1 +(pD/pi)*(pD/pi) )/4
end function

We can  also apply a correction to the formula (10.8a) to extend its range to  p/D = 1 , i.e.,  ψ = 
arctan(1/π) =  17.7º .   To do that, we simply add extra terms to convert the Rayleigh-Niven formula 
into Coffin's formula (see section 8b).  The extra terms (using  p  instead of  ℓ  ) are:

δks =−
1

64( p
D )

4

[ ln(4D
p )−2

3 ]+ 5
1024( p

D )
6

[ ln(4D
p )− 109

120 ]− 35
16384( p

D)
8

[ln(4D
p )−431

420 ]   

A Basic function extended in this way is: 

Function Rosaks18(byval pdw as double, pD as double, fi as double) as double
' Rosa's self inductance correction, extended series version for p/D <= 1 (psi <= 18deg.)
' pdw = pitch / wire diam , pD = pitch / coil diam, 
' fi = internal inductance factor, zero for none, 1 for LF.
Dim pd2 as double, pd4 as double, lge as double, dk as double
pD2 = pD*pD
pD4 = pD2*pD2
lge = log(4/pD)
dk = -pd4*(lge -2/3)/64 +5*pd2*pd4*(lge -109/120)/1024 -35*pd4*pd4(lge-431/420)/16384
Rosaks18 = 1.5 - log(2*pdw) + pD2*(lge +0.25)/8 -fi*sqr(1 +(pD/pi)*(pD/pi) )/4 + dk
end function

If a closed-form expression that remains precise for all possible pitch angles is required however, it 
is better to use one of the continuous empirical formulae for Nagaoka's coefficient to provide the 
current-sheet terms.  The best of these is Bob Weaver's modified version of Wheeler 1982-7 
(W82-7W) as discussed in section 8e.  That formula, with  p  substituted for ℓ  gives:
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L1s

μ r
= ln[1+π

2
D
p ]+ 1

Pnom( p
D)  

Pnom being a correcting polynomial defined as:

Pnom( p
D )= 1

[ln( 8
π )−1

2 ]
+3.437( p

D )+ 24

(3π
2
−16)(

p
D)

2

−
0.47

(0.755+
D
p )

1.44   

The four empirical constants shown give a precision of ±20.5 ppM, which makes the evaluation of 
1-turn sheet inductance practically exact in comparison to the wire loop formula to be subtracted 
from it.  The first term in the series is best evaluated as as given (rather than entered as a constant in
truncated form) because it ensures that the formula is asymptotic in the short-coil limit, this being 
an important requirement for the modelling of single turns.

Thus, using the polynomial-corrected formula, and also improving the accuracy of the round-wire 
loop part by using the complete Rayleigh-Niven short coil external inductance formula (10.3a) we 
get:

ks = ln[1+π
2

D
p ]+ 1

Pnom( p
D)

−ln(8D
d )+2−

1
8( d

D )
2

[ ln(8D
d )+1

3 ]−(Θ'
4 )√1+( p

πD)
2

10.9

A Basic function that performs this calculation is shown below.  The 90 in the function name 
implies that it remains precise for a pitch angle of 90° (albeit without the ability to compensate for 
the theoretical limitations of the Lorenz and Maxwell methods).

Function Rosaks90(byval pdw as double, pD as double, fi as double) as double
'Rosa's self-inductance correction, continuous empirical version 2.00.
' Uses Bob Weaver's modified version of Wheeler 82-7 for the current sheet part
' and the complete Rayleigh-Niven (13) formula for the round-wire part.
' pdw = pitch / wire diam , pD = pitch / coil diam, 
' fi = internal inductance factor, zero for none, 1 for LF.
Dim Ddw as double, pn as double, k0 as double, k2 as double, w as double, lg as double
Ddw = (1/pD)/(1/pdw)
k0 = 1/(log(8/pi)-0.5)
k2 = 24/(3*pi*pi -16)
w = -0.47/(0.755 + 1/pD)^1.44
pn = k0 +3.437*pD +k2*pD*pD +w
lg = log(8*Ddw)
Rosaks90 = log(1+pi/(2*pD))+1/pn-lg+2-(lg+1/3)/(8*Ddw*Ddw) -fi*sqr(1+(pD/pi)*(pD/pi))/4
end function
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Precise calculation of Rosa's self-inductance correction
The ultimate version of Rosa's correction is, of course, one that has no approximations within the 
limitations of the model.  Defining the external self inductance correction coefficient as before:

ks(x) =
L1s−L1x

μ r
 

we note that the one-turn current sheet inductance can be obtained by calling a function for the 
exact calculation of Nagaoka's coefficient with D/p as the argument instead of D/ℓ .  The complete 
expression for the inductance of 1-turn of the sheet is then, using (9.1):

L1s =μ r π
2 (D

p ) Nagaoka( D
p )  

Dividing this expression by μ r  gives the coefficient as:

ks(x) =
π
2 (D

p ) Nagaoka(D
p )−L1x

μ r
 

Now, for the loop inductance, we can use Maxwell's second expression for M in complete elliptic 
integrals (M701.2) as discussed in section 10b.  The reason for going back to basics in this way is 
that the correction coefficient is dimensionless, and can therefore be calculated by a function having
dimensionless arguments.  Putting r1 = r2 = r  gives:

L1 =μ r
2

√κ1
[ K(κ1)−E(κ1)]=M(r ; r ; g)  

which gives gives the Rosa coefficient as:

ks =
π
2 (D

p ) Nagaoka(D
p )− 2

√κ1
[ K(κ1)−E(κ1) ]  

Note that the subscript x (for external) has here been dropped because the inclusion of internal 
inductance is now dependent on the choice of GMD as used in the (dimensionless) arguments of the
elliptic integrals. The argument common to both elliptic integrals was given earlier as:

κ1 =
s1−s2

s1+s2
   where    s1 =√(r1+r 2)

2+s2    and   s2 = √(r 1−r 2)
2+s2  

With  r = r1 = r2  , and the filament separation  s  made equal to the GMD, we get:

s1 =√4 r2
+g2       and     s2 = g

i.e.:

κ1 =
√(4r2

+g2
)−g

√(4r2
+g2

)+g
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Factoring out  g  and cancelling gives:

κ1 =
√( 2r /g)

2
+1  −1

√( 2r /g)
2
+1  +1

The ratio  g/r  is defined as:

g
r

 =  
r w

r
exp(−γ)  =  

d
D

exp(−γ)  

where  γ = 0  if only the external inductance is to be calculated, and  γ = ¼  if the DC value of the 
internal inductance is to be included for comparison with old methods and data.  Note incidentally, 
that if we include internal inductance in this way, then the total conductor length is taken to be NπD 
(i,e., the secψ factor is neglected ), and the relative permeability of the wire is forced to be the same 
as that of the external medium.  Hence, the feature is useful for testing, but it is not recommended 
for actual modelling.  This is, incidentally, in contrast to the extended and continuous formulae 
discussed previously, where full provision for internal inductance was included. 
     So now we have a function that needs the calling arguments D/p  (for the current sheet part) and 
d/D  (for the wire loop part); and also, optionally, the exponent argument  -γ  for the GMD factor.  
For consistency with the Basic functions for the closed-form formula (given above) however, the 
two unique arguments in the Basic function shown below have been chosen as  p/d  and  p/D .  In 
that case  d/D  is given by:

d
D

=
p/D
p /d

 

Function Rosaksp(byval pdw as double, pD as double, ga as double)
' Precise calculation of Rosa self inductance correction ks.
' Calls functions Nagaoka and KminusE
' pdw = pitch / wire diam. pD = pitch / coil diam.
' ga = gmd exponent, 0 for no int. inductance, -0.25 for LF.
Dim kL1s as double, kL1 as double, k1 as double, sr as double
sr = exp(ga)*pD/pdw
k1 = ( sqr(4 + sr*sr) - sr)/( sqr(4 + sr*sr) + sr)
kL1 = 2*sqr(1/k1)*KminusE(k1) 
kL1s = (pi/2)*Nagaoka(1/pD)/pD
Rosaksp = kL1s - kL1
end function

The function KminusE is a fast routine for calculating the complete elliptic integral combination 
K(κ) - E(κ)  using Bob Weaver's AGM algorithm (see the macro library in the spreadsheet 
Loop_funcs.ods, version 1.00 onwards).
     Note that further simplification might be possible by writing the expression for Nagaoka's 
coefficient in complete elliptic integrals and subtracting the loop inductance component from it.  
That operation however, does not appear to reduce the number of function calls for elliptic integral 
calculation, and so is unlikely to give significant improvement in computational efficiency.
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Comparison of formulae for ks 
An evaluation of the closed formulae discussed above for the Rosa self-inductance correction 
coefficient is shown in the graph below.   The baseline for comparison is the precise calculation 
using complete elliptic integrals as just described.

The calculations used to produce the curves are given in the spreadsheet Loop_funcs.ods , sheet 2.

● The curve marked " 3/2 - ln(2p/d) " is produced using the simple formula (10.5)
(acceptable for ψ ≤ 1.8°).
● " Extended 1 " is the version (10.8a) using the full Rayleigh-Niven current-sheet formula  
(acceptable to about 13°).
● " Extended 2 " is the version using Coffin's formula' (very precise up to 18°).
● " Continuous " is the version (10.9) based on Bob Weaver's modified form of Wheeler 1982-7 and
the non-truncated Rayleigh-Niven round-wire external inductance formula (10.3a).

Regarding the matter of which of these calculation methods is best for routine use; it should be 
noted that, although it cannot be seen on the graph, the formula "Extended 2", based on the Coffin 
series is the most severely wrong once out of its range of application.  Hence, like online inductance
calculators in general, it harbours nasty surprises for those who encounter it divorced from its 
caveats. The others are more friendly and may be chosen according to practical considerations; but 
given the availability of a programming environment, it is hard to think of a reason for not using the
continuous version (10.9).
     The precise method is perhaps too computationally intensive for routine use; but even the 
interpreted  Basic implementation is not painfully slow for the plotting of a few hundred graph 
points.
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  10e. Rosa's mutual inductance correction 
The mutual inductance correction coefficient  km  (also known as B or H ) was introduced in section
10 as part of the general Rosa expression for solenoid inductance (10.1).  The correction is required 
because pairs of round-wire loops and pairs of current-sheet loops separated by the same average 
distance do not have the same geometric mean distance (GMD) for mutual-inductance calculation.  
For conductors having cylindrical symmetry, the external GMD is the distance from centre-to-
centre of the conductor cross sections (the cross sections being taken in a plane perpendicular to the 
conductor axes).  For current-sheet segments however, the GMD is slightly less than the average 
(i.e., the arithmetic mean) separation

GMD for pairs of current-sheet segments
For the purpose of mutual inductance calculation, the GMD of a pair of current sheet segments is 
the same as that of a pair of straight lines of finite length both lying on the same straight line.  The 
general solution for this was given by Maxwell77, but here we are only interested in the special case 
in which the segments both have the same length  p  and the average separation between segments 
is an integer multiple of  p .  Of course,  p corresponds to the pitch of the coil;  and we will use  m  
for the integer multiplier because it will turn out to correspond to the summation-index for the 
mutual-inductance part of the summation-method inductance calculation.  
     The required formula is easily obtained from the general solution and was given explicitly by 
Rosa as the starting point for the derivation of his correction coefficient78.  The expression, for loge 
of the GMD (with a change from Rosa's notation), is:

ln(g)=
(m+1)2

2
ln [ (m+1)p ] −m 2 ln(mp)+

(m−1)
2

2
ln [ (m−1) p]−3

2
   (10.10)

From here on however, we will deviate from the narrative of Rosa's paper in order to clarify an 
important logical step.  Firstly, in keeping with earlier discussion, we will represent the GMD as the
average distance between segments multiplied by an exponential: 

g = m p exp(-γ) 

This means, noting the general logarithmic
relationships  ln(ab) = ln(a) + ln(b) , and
ln(ex) = x  , that:

ln(g) = ln(m) + ln(p) -γ 

Now, inspect equation (10.10) and note that:

(m+1)
2

2
+

(m−1)
2

2
−m 2

= 1  

This means that if the factor p within each logarithm is moved into a separate logarithm term, there 
will be obtained a single  ln(p)  term on the right that will cancel the  ln(p)  component of the 

77 On the GMD of two figures in a plane.  J C Maxwell. Trans. Roy. Soc. Edinburgh. Vol. 26. 1872. p280 - 285.  See 
page 282, formula (3).

78 Rosa, 1906, BS Sci. 31, pages 167 - 169.
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logarithm of the GMD.  Thus:

ln(m)−γ =
(m+1)

2

2
ln(m+1)−m 2 ln(m)+

(m−1)2

2
ln(m−1)−3

2
 (10.11)

What Rosa did was to set  p = 1  to make it disappear from (10.10), a step that caused the definition 
of the GMD to change from that point onwards.  That operation appears to make no sense unless we
realise that what he continues to refer to as the GMD no longer has dimensions of length.  In fact, 
all we are interested in is the factor by which the GMD differs from the average (arithmetic mean) 
distance.  That can be  obtained from the quantity γ (the argument of the GMD-factor exponent), 
which is now given by rearrangement of (10.11):

γm =(m2
+1) ln(m)+

3
2
−

(m+1)2

2
ln (m+1)−

(m−1)
2

2
ln(m−1)  (10.12)

Notice, incidentally, that although the definition of γ has not changed from that given by  (10.11), 
we have by this point established that it is purely a function of m (but only for the special case of 
equal segments separated by an integer number of segment lengths).  Hence it has been given the 
subscript  m  as a reminder and to distinguish it from instances related to other GMD problems.
     Inserting  m=1  into equation (10.12) we find that  γ1 = (3/2) - ln(4) = 0.1137... .  Hence the 
factor by which the average distance between two adjacent segments needs to be multiplied in order
to obtain the GMD is  exp(-0.1137...) = 0.8925... .  Thus the GMD is considerably less than the 
average distance, and so the mutual inductance is significantly greater than for a pair of round-wire 
turns at the same average separation.  This however is the extreme case.  As the current-sheet 
segments get further and further apart, the GMD tends gradually towards the arithmetic mean 
distance.
     A formula for  γm  is needed, of course, not only for the purpose of enumerating Rosa's 
coefficient, but also for calculating the mutual inductance component of current-sheet inductance by
the summation method (for determining the effect of approximations if nothing else).  With that in 
mind, note by inspection, that as  m becomes large, evaluating (10.12) becomes a matter of 
subtracting terms that become very similar in value.  This means that the expression is prone to 
roundoff error.  Rosa's solution was to take the series expansions of the logarithms and recombine 
the terms to give  γm  as an infinite series.

γm =
1

12m 2
+

1

60m 4
+

1

168m6
+

1

360m8
+

1

660m10
+. .. . ..  

The generating function is:

γm =∑
i=1

∞

[ 1
2i

+
1

2i+2
−

2
2i−1 ] 1

m2i  (10.13)

Bob Weaver has also found an alternative version79 that gives the integer denominators of the series 
coefficients directly:

79 Investigation of Rosa's round wire mutual inductance correction.  Robert Weaver, July 2008.  [Weaver 2008] 
[ http://electronbunker.ca/DLpublic/Rosa_Derivation.pdf   also  g3ynh.info/zdocs/magnetics/  ]
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γm =∑
i=1

∞ 1
(2i+1) ( i+1)2i

 
1

m 2i    (10.13a)

Comparison of the closed form and series form expressions (10.12) and (10.13a) is given in the 
spreadsheet Rosa_km.ods (sheet 4).  The calculations given there show that, in double-precision, in
the Open Office Basic programming environment, the roundoff error in (10.12) has no effect 
beyond the 9th decimal place for m < 1000.  The closed-form expression also has the advantage of 
being continuous.  That can be seen in the graph below, which shows the smooth form of (10.12) 
with points from the integer-only (10.13a) superimposed.  

Bear in mind however, that the GMD function is used for calculating current-sheet inductance, and 
also Rosa's round-wire corrections, by the summation method.  This means that any roundoff error 
will accumulate in the mutual-inductance summation, actually reducing the overall precision to 
about 7 decimal places for coils approaching 1000 turns.  That problem is circumvented by 
changing to the series summation for m ≥  100 .

A Basic routine that uses the closed form expression for γm  when  m < 100  and then switches to 
the series form (10.13a) is shown in the box below.  
     Note, on examining the code; that in obtaining the quantity  m2i  the exponentiation operator is 
not used.  In general, exponentiation in programs should be avoided for large integer powers with 
non-optimising compilers and interpreters, because it involves taking logarithms and thereby 
introduces roundoff error.  The specific reason for avoiding it in this case is that the exponentiation 
routine built into Open Office Basic becomes noticeably inaccurate for powers greater than about 
106 (and, for such an extreme case, the same limitation will be present in other programming 
languages).  The solution is to multiply the last-used value of  m2i  by  m2  at the end of each 
summation loop, thereby obtaining the value required for the next term.  
     If the crossover point for using the summation rather than the continuous formula is changed to 
m ≥  1000 ;  then rounding  m  to an integer from that point onwards has no effect in the 9th decimal 
place, and so the function becomes effectively continuous.  The main use of the function however is
in creating data for the development of empirical fitting functions; in which case, the m ≥  100  
crossover is the choice that has no significant impact on overall precision.
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Function gsm(byval m as double) as double
'GMD factor exp argument for M of current sheet segs.  Ver. 2.0,  9th Aug. 2012.  
' Uses continuous log formula for m < 100.  Uses series summation for m >= 100.
' Based on the function dgmd by Bob Weaver.
if m <=1 then
  gsm = 1.5 - log(4)
elseif m < 100 then
  gsm = (m*m+1)*log(m) +1.5 -0.5*(m+1)*(m+1)*log(m+1) -0.5*(m-1)*(m-1)*log(m-1)
else
Dim mi as long, mm as double, mmi as double, i as integer, sum as double, term as double
  mi = m
  mm = mi*mi
  mmi = mm
  for i = 1 to 18
    term = 1/( (2*i+1)*(i+1)*2*i*mmi)
    sum = sum + term
    if term < 1E-36 then exit for
    mmi = mmi*mm
    next
  gsm = sum
endif
end function

Definition of Rosa's mutual inductance coefficient
For the summation-method calculation procedure, the inductance of a solenoid has the form:

L = Lself + Lmutual 

where, as we saw in section 10c, the mutual inductance part can be written:

Lmutual = 2∑
m=1

N−1

(N−m ) M (r ; mp)  

M( r ; mp )  being, in principle, any function that can return the mutual inductance of coaxial 
circular filaments of equal radius  r  and axial separation  mp .  Recall also, that when the radii are 
equal, the axial filament separation is equal to the GMD for the type of conductor under 
consideration ( it is written as  mp  above because  the expression is for cylindrically symmetric 
conductors, in which case the GMD is the same as the average separation ). 

For the Rosa-method calculation procedure, the solenoid inductance has the form given earlier as 
equation (10.1):

L = Ls - μ r N ( ks + km )        [Henrys]

Where  Ls  is the equivalent current-sheet inductance, and  ks  and  km  are the round-wire correction 
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coefficients ( ks  on this occasion being assumed to include an internal-inductance component).  
With a formula for the GMDs of pairs of current sheet segments we can, of course, now envisage 
calculating the current-sheet inductance using the summation method.  Thus:

L = Lself + Lmutual = Ls,self + Ls,mutual  - μ r N ks  - μ r N km 

The self-inductance part was dealt with in section 10d, leaving us with the mutual inductance part:

Lmutual = Ls,mutual  - μ r N km

i.e.:

k m =
Ls,mutual−Lmutual

μ r N
 

Formal definition for Rosa's mutual-
inductance correction coefficient. 

which, noting that the GMD for current sheet segments is  m p exp(-γm) , can be written explicitly 
as:

k m =
2

μ r N
∑
m=1

N−1

(N−m)[ M ( r ; mpexp(−γm) )−M ( r ; mp) ]   (10.14)

We could, of course, now adopt the practice of calculating km using one of Maxwell's elliptic 
integral formulae and the function for  γm  described earlier; but there would be no computational 
advantage (indeed, there would be a disadvantage) in doing so.  The expression above is however, 
general, and is therefore suitable both for evaluating approximations and as a starting point for 
finding approximations.

Rosa's formula for km ( aka  B or H )
In the early part of the 20th Century; the preferred approach to the problem of calculating the mutual
inductance of circular filaments was not to use Maxwell's elliptic integral formulae, but to use one 
of the various available series expansions (with a view to truncating it after the minimum possible 
number of terms).  For the derivation of his coefficient, Rosa used the Maxwell general series 
formula for coaxial circles80 , which, as befits the present problem, can be simplified by making 
both radii equal and identifying the axial separation as the GMD.  The resulting expression is:

M (r ; g)=μ r[ (1+ 3
16(g

r )
2

)ln(8r
g )−2−

1
16(g

r )
2

]   (10.15)

                   
Rosa however, chose to neglect terms in  (g/r)2  and higher, to obtain the simple formula:

M (r ; g)=μ r[ ln(8r
g )−2]   (10.15a)

This is the loop formula (10.3) with  rw  replaced by  g .  We therefore know,  from the discussion in 

80 Maxwell E&M, Vol 2, Article [705], p345.  Also BS Sci. 169, p13, formulae [10] and [12].
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section 10b,  that the expression is fairly accurate for  r/g > 10 .  This is fine for calculating the self-
inductance of wire loops; but for the mutual inductances of turns on a solenoid, the distance can 
easily exceed the coil radius.  The choice therefore seems inappropriate on first consideration.  It is 
in the nature of this formula however, to under-predict (eventually reporting negative inductance 
when  r/g < e2/8 = 0.9236.. ).  We also know that the difference between the mutual inductances for 
pairs of current-sheet loops and pairs of wire loops disappears when the separation is large. Hence 
the truncated formula should (perhaps) provide a fair approximation when used solely for the 
purpose of calculating differences.

Substituting (10.15a) into (10.14) gives an astonishing simplification:

k m =
2
N
∑
m=1

N−1

(N−m) γm  (10.16)

This seemingly innocuous formula however, has previously caused the greatest difficulty in the 
matter of adapting the Rosa method for use with electronic computers.  Recall that  γm  is given 
(according to Rosa's preference at least)  by the series expression (10.13); which means that (10.16) 
is actually a double summation.  The calculation is so laborious by manual methods that is doubtful 
that either Rosa or Grover ever imagined that users of the NBS approach would want to do it.  Great
effort was therefore put into the tabulation of  km  (B or H), and little thought was given to the 
matter of explaining or refining the generating function.  Readers of Rosa's original 1906 paper will 
note (for example) that not only does he discard the pitch from the GMD formula apparently 
arbitrarily, he also uses the same symbol for the summation index and for turns in the coil.  This is 
easily done in private notebooks, since the person performing the derivation knows which symbol is
which, but it should not have ended up in print.  The subject is taken up again by Grover in BS 
Research Paper 90, and although this results in a new formula that we will examine shortly, the 
basic derivation is still far from clear. Hopefully, the logical development given above will help to 
unravel the matter.

Practical methods for calculating km 
An empirical formula81 for the calculation of  km  was first given by this author (DWK) in 2006.   It 
was obtained by fitting the four-figure data given in Grover's 1946 monograph82, but it was also 
obvious from the fitting residuals that there were some minor errors in the table.  At the time 
however, the only NBS data available to the author were in Grover's book and in the 1911 first 
edition of what was later to become BS Science Paper 169 ( the 1911 data being even less accurate).
Hence the work appeared to be the best that could be done with the resources available.
     The empirical formula was made public via the author's website, accompanied by a comment to 
the effect that the original generating function was 'not well described' in the sources used.   There 
the matter rested until June 2008, when Bob Weaver wrote83 to say that he had managed to deduce 
the original function (or its equivalent) using the current-sheet mutual GMD series formula given 
by Grover84 and what was essentially a process of reverse-engineering.  The expression he gave was
identical to (10.16) in all but notation,  and the derivation given above was greatly assisted by prior 
knowledge of that result.  The GMD series formula given by Grover moreover is in truncated form 
with no explanation of how the coefficients come about; and by studying the pattern of numbers 

81 See the spreadsheet Rosa_km.ods, sheet 3.
82 Grover 1946, Table 39, p150.
83 Rosa's round wire corrections for mutual inductance.  Bob Weaver, private e-mail communication, 16th June 2008.
84 Grover 1946, page 20, formula (e).
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Bob was able to deduce the formula (10.13a), which is actually more convenient than Rosa's 
original.  The Rosa coefficient  km , as given by (10.16) using a program routine written by Bob85, is
shown plotted below.  Note that it is purely a function of  N .

The following analytical values of km are also useful when dealing with special cases:

N = 1 km1 = 0

N = 2 km2 =  ln(¼) + 3/2  =  0.113 705 638  =   γ1

N → ∞ km∞ = ln(2π) - 3/2  =  0.337 877 066

With the help of Bob Weaver's investigative work, we can be confident of the definition of the Rosa
mutual inductance correction and the method by which the tables were calculated.  All findings are, 
incidentally, also confirmed in BS Research Paper 90 86.  It should be understood however, that 
recalculation of the data for large N takes many hours using interpreted Basic and a fast personal 
computer, and so the summation formula (10.16) is not a good basis for a general-purpose solenoid-
modelling subroutine.  A further limitation of the formula, of course, is that it is for integer values of
N only.
     In view of the computationally-intensive nature of the calculation, and the need to provide an 
inherently continuous function, the empirical formula first obtained in 2006 was revisited.  This 
time however, the raw data were machine-calculated, free from illegitimate errors, and precise to at 
least 10 decimal places.  The development of the fitting function and its subsequent updating is 
discussed in a separate article87.  Details of the fit can be examined in the spreadsheet Rosa_km.ods
(sheet 2).  The best optimised version is:

85 http://electronbunker.ca/CalcMethods2a.html.  See also the article cited earlier as Weaver 2008.  All functions 
discussed in this section will be found in the Basic macro library of the spreadsheet Rosa_km.ods .

86 BS RP90, Section V, page 174, formula (28).
87 Rosa's mutual inductance correction for the round-wire solenoid.  David Knight, April 2010. [Knight 2010] 

g3ynh.inf/zdocs/magnetics/  .  A Basic routine is given in the macro library of the spreadsheet: Rosa_km.ods.
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k m = [ln(2π)−
3
2 ][1− 1−0.01711

N−0.01711 ]+ln (N)[−0.16641
N

+
0.00479

N 2
+

0.001772

N3 ]  (10.17)

The maximum difference between this function and (10.16) is ±0.000 001 04  (i.e., < 1.1 × 10-6 ).

A further approximation formula, more precise than the one above, was obtained from information 
given in BS Research Paper 90.  In that paper, Grover sets out to defend the Rosa method by 
comparing it with a modified version of the summation-method as developed by Strasser.  Strasser's
approach replaces the mutual inductance part of the summation-method with a formula involving a 
tabulated coefficient.  That gives an improvement in the tractability of the calculation procedure for 
moderate  N , but the coefficient is difficult to calculate for large  N  by straightforward summation. 
Asymptotic formulae for the calculation of Strasser's coefficient have however been developed; and
Grover goes on to show that these are related to the Rosa coefficient and can therefore be used to 
obtain an expression for it.  The investigation led him to the following formula88 :

k m = ln(2π)−
3
2
−

ln(N)

6N
−

0.330842
N

−
1

120N3 +
1

504N5 for N ≥ 4

This expression is extremely precise for large N, and so enabled Grover to update the existing 1916 
NBS table (which, given the difficulty in obtaining the coefficient by summation, is only reliable to 
two decimal places for large N ).  A difficulty with the Grover formula however, is that it is not 
accurate for  N < 4 , and does not give zero for  N=1.  Hence it cannot be used as it stands in 
functions and computer programs.  The problem is easily solved however; by adding more terms 
and by finishing the series with a closing term calculated to give the correct result89 when N=1 .  
This, with some adjustment of Grover's empirical coefficient to minimise runout, gives the 
optimised formula:

k m = ln(2π)−
3
2
−

ln(N)

6N
−

0.33084236
N

−
1

120N3 +
1

504N5 −
0.0011925

N7 +
c9

N9  10.18

Where the coefficient c9 is calculated from the other terms in order to force  km  to zero when  N=1 ;
i.e.:

c9 =−[ln(2π)− 3
2
−33084236− 1

120
+ 1

504
−0.0011925] =  0.000507000 

The formula (10.18) gives a maximum absolute error of  ±0.000 000 013  (i.e., 1.3 × 10-8 ) for 
integer N.  A reduction in precision is to be expected for non-integer values of  N < 5 , due to 
undulation of the error curve in that region, but the error is unlikely to extend into the 6th decimal 
place.
     Note that, although the formula given above will return  km  to at least 6 decimal places; such 
extreme precision is not necessary in practice.  Four decimal places is more than adequate, one 
reason being that the self, mutual, and internal inductance corrections for realistic wire will 
generally affect the total inductance at the level of a few % at most.  Thus the determination of 
small correction terms even to a modest accuracy of about  1%  moves the overall effect on 
precision to the level of a few parts in 10 000 .  Also, it must be understood that the formula (10.16) 

88 BS RP90, page 176, formula (31).
89 Knight 2010.  Optimisation of Grover's 1929 series formula. See also spreadsheet Rosa_km.ods, sheet 1.
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from which the km correction originates is, in the first place, an approximation.

Accurate calculation of the mutual inductance coefficient
The methods given above for the calculation of Rosa's coefficient are extremely precise, which is to
say that they return a value to a large number of decimal places; but precision does not imply 
accuracy (i.e. truth).  The issue here is that the mutual inductance formula (10.15a) from which the 
correction is derived is actually a fairly crude approximation when the distance between filaments is
a substantial proportion of the loop radius.  Thus the only appraisal of Rosa's calculation procedure 
that we can give with any certainty at this point is that it will be exact for solenoids having zero 
pitch-angle.  Such coils are, of course, physically impossible.  We do know, however, that Rosa's 
original method is very good in practice for calculating the inductance of fine-pitch solenoids; a 
provenance albeit somewhat dependent on the fact that the corrections are second-order on an initial
current-sheet calculation.
     Prior to the development of the electronic computer, no one was in a position to improve matters.
Even the precise evaluation of Rosa's original formula was impractical for large  N  until Grover 
carried out his investigation of Strasser's method (as described in Research Paper 90 and discussed 
above).  There the matter was left moreover, perhaps because the explanations given were difficult 
to follow and the built-in approximations were forgotten.  Having re-worked the derivation 
however, we can now see the problem.  The mutual inductance correction is dependent on the pitch-
to-diameter ratio ( p/D ).  As the turns of the coil get further and further away from each other, the 
differences in the GMDs for mutual inductance calculation for current-sheet segments and wire 
loops become smaller and smaller.  Hence the Rosa correction should diminish as the coil pitch 
increases, becoming zero when the pitch-angle reaches 90º (at which point, the turns are infinitely 
far apart).  This means (bearing in mind that the corrections are subtracted from the current-sheet 
inductance) that the Rosa method always underestimates the mutual inductance contribution to the 
total inductance.  Obviously, this error must be small for coils of reasonably fine pitch, but so far we
have no idea of its magnitude.
     This gap in our knowledge can of course be filled by developing a program to calculate the 
correction exactly.  That will not lead directly to a practical calculation method because the program
will be computationally intensive; but it will provide a source of data for the development of other 
methods.

A potentially exact expression for km was given earlier as (10.14). 

k m ψ =
2

μ r N
∑
m=1

N−1

(N−m )[ M ( r ; mpexp(−γm) )−M ( r ; mp) ]   

Note however, that an additional subscript  ψ  has been appended as a reminder that the function we
will be working with from now on is dependent on the pitch angle.  Also note that since:

p
D

= π tanψ  

(see section 5)  saying that a function is dependent on  ψ  is the same as saying that it is dependent 
on the coil pitch-to-diameter ratio.



85

For the exact calculation of the mutual inductances we can use Maxwell's elliptic integral formula 
(M701.2)  (see section 10b) with  r1 = r2 .  This gives:

M(r ; g)=μ r
2

√κ1
[ K(κ1)−E(κ1)]  

with modulus:

κ1 =
√1+(D /g)

2
 −1

√1+(D /g)
2
 +1

 , (where  D = 2r ).

The current sheet and round wire parts of the problem, or course, require different moduli because 
they have different geometric mean distances.  Hence we will define:

For the round-wire coil:      gw = m p

and for the current sheet:     gs = m p exp(-γm) = gw exp(-γm)

Thence:

gw

D
=

mp
D

     ,     
gs

D
=

gw

D
exp(−γm)      ,

κs =
√1+(D /gs )

2
 −1

√1+(D /gs )
2
 +1

     and     κw =
√1+(D /gw)

2
 −1

√1+(D /gw)
2
 +1

     .

and we calculate kmψ from the following expression:

k m ψ =
4
N

∑
m=1

N−1

(N−m)[ K(κs)−E(κs)

√κs
−

K(κw)−E(κw)

√κw ]   (10.19)

A Basic routine that performs the calculation is given below.  It will be found in the macro library of
the spreadsheet Rosa_km.ods (versions after 9th August 2012).  
     Note that  p/D = 0  is an illegal argument for the elliptic integral formula; and so in that case the 
program evaluates the function using expression (10.16).  The current sheet GMDs are obtained 
using the function  gsm(m)  (discussed above), and the  K-E  complete elliptic integral combination 
is obtained using the function  KminusE(k) .
     If experimenting with this routine in a spreadsheet, be sure to cut the results from the cells after 
calculation and put them back using ' paste special / numbers only '.  If the function call is left 
active, the cell will be recalculated upon reopening the spreadsheet.  If there are hundreds of 
instances, particularly of calculations for small pitch angle, that can take many hours; and there is 
no means of escape save for killing the spreadsheet program via the computer operating system.
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Function kmref(ByVal N as long, pD as double) as double
' Reference function for Rosa-method mutual inductance coeff.  Version 3.0, 9th Aug. 2012. 
' Calls functions gsm and KminusE.  N = no. of turns. pD = coil pitch / diam.
Dim m as long, term as double, sum as double
if N <= 1 then
  kmref = 0
elseif pD = 0 then
' Routine for p/D = 0 (use analytical value if N=2)
  if N = 2 then
    kmref = log(0.25) + 1.5
  else
    for m = 1 to N-1
      term = (N-m)*gsm(m)
      sum = sum + term
    next m
    kmref = 2*sum/N
  endif
else
' Routine for p/D > 0
Dim gf as double, Dss as double, Dsw as double
  for m = 1 to N-1
    gf = exp( -gsm(m) )
    Dsw = 1/(m*pD)
    Dss = Dsw/gf
    ks = ( sqr(Dss*Dss+1)-1 )/( sqr(Dss*Dss+1)+1 )
    kw = ( sqr(Dsw*Dsw+1)-1 )/( sqr(Dsw*Dsw+1)+1 )
    term = 4*(1-m/N)*( sqr(1/ks)*KminusE(ks) - sqr(1/kw)*KminusE(kw) )
    sum = sum + term
    if term < 1E-15 then exit for
  next
  kmref = sum
endif
end function

In the routine  for p/D > 0 (the second part of the program), a test is included in the summation 
loop.  The procedure calculates only differences.  Hence, with the summation performed in order of 
increasing GMD, it is permissible to jump out of the loop if the term being calculated turns out to 
be very small.  Note however, that the exit criterion used above, which is that the summation can be
aborted when terms become smaller than 10-15, does not imply that the precision of the result will be
to 15 decimal places.  
     Say, for example, that we abort a summation because the last term was almost negligibly less 
than 10-15 , but there are still a million terms to go.  If the rate of convergence is very slow (which it 
most definitely is) then the termination criterion used only strictly guarantees an accuracy of  9 
decimal places for  N ≤ 106  (because if the neglected 1 million terms are all nearly the same, they 
would have added-up to enough to roll-over the digit in the 9th decimal place).  In practice however,
convergence will always be somewhat faster than the most pessimistic assumption.  It was found, 
for example, that adjusting the convergence criterion to be 3 orders of magnitude smaller than 10-15  
caused no changes greater than 1 in the 11th decimal place for N = 107 . 
     There is, of course, no practical requirement for the modelling coils of more than a million turns;
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but the point is to find the asymptotic value for kmψ at any pitch angle to a sensible precision (say, 6 
decimal places).  Also, we know when the summation has converged with the asymptotic value to 6 
decimal places for  p/D = 0 ,  because we have the analytical value for km∞  in that case (and 
calculations for small pitch angle are by far the slowest to converge).  It transpires that  N = 107  is 
more than enough to produce the asymptotic value to 6 places for  p/D = 0 .  Hence that number of 
turns is comfortably adequate to give the asymptotic value to 6 decimal places in all instances.  
With the convergence criterion given, a calculation for  p/D = 0.0001  and  N = 107  using an Intel 
2.66 GHz quad-core computer took 75 seconds.  Calculations for larger pitch angles take less time 
than this; but calculations for  p/D = 0 with large N  take much longer.
     Notice that the routine for  p/D = 0  (the first part of the program) does not have a convergence 
criterion.  That is because, for a hypothetical coil with all of the turns coincident (which is what that
limit implies), the summation does not converge.  All we can do to obtain the solution is carry on to 
the bitter end.  Spot calculations, using a somewhat ancient workstation (as above) took 108 
seconds per million turns ( 18 minutes for N = 107 ). 
     The  p/D = 0  routine, incidentally, duplicates program functionality previously provided by Bob 
Weaver90.  The replication enabled the various coding methods to be checked against Bob's earlier 
calculations.

The results of a few hours of computer time are plotted below.  The numbers can be inspected by 
viewing the spreadsheet Rosa_km.ods (sheet 5).

It has been mentioned already that, until we devise a correction for the axial current contribution to 
the total inductance; we are pushing the Rosa method beyond its range of applicability if we use it 
to calculate inductance for coils having  p/D  greater than about 0.1  ( ψ > 1.8º ).  The 

90 See: http://electronbunker.ca/CalcMethods2a.html
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uncomfortable discovery is therefore that the accuracy of the original Rosa coefficient is not 
particularly good for  0 < p/D < 0.1 .

The breakdown of Rosa's approximation can be
seen in the graph on the right, which is a curve
obtained by plotting  kmψ  vs. ψ  with  N = 107 .
This shows that the  asymptotic value of  kmψ

decays  (approximately) exponentially as the pitch
increases.  The decay law is given to a first
approximation by the expression.:

k m ψ∞ = [ ln(2π)−
3
2 ]exp(−1.6257

p
D)  ±0.0028

This means that the rate of change  ∂kmψ/∂ψ  has its
greatest magnitude in the range associated with
practical coils.  

An empirical function for the accurate mutual inductance coefficient
In order to calculate the Rosa mutual inductance coefficient in a manner that is accurate for all pitch
angles, it is first necessary to have a way of calculating accurate values of kmψ∞ .  One method for 
that is to add a correcting polynomial to the expression given above, and subject both the 
polynomial coefficients and the single empirical coefficient in the exponential bracket to 
simultaneous machine optimisation.  Two examples are given below, becoming more complicated 
as the accuracy is improved.  
     The Basic function below, which was obtained by fitting the numbers used to produce the graph 
above, calculates kmψ∞  to within ± 0.000 08 , and is asymptotically correct as  p/D → 0  and 
p/D → ∞ .  

Function kmpinf(byval pD as double)
' calculates asymptotic value of Rosa B correction as a function of p/D.
' Version 1.0 (+/- 0.00008 ), 9th Aug. 2012.  pD = pitch / coil Diam. 
Dim kminf as double
kminf = log(2*pi) - 1.5
if pD <= 0 then
  kmpinf = kminf
else
Dim poly as double, x as double
  x = 1/(1+pD)
  Poly = log(1+pD)*(-0.0905*x^3 +1.7565*x^4 -2.1277*x^5 +1.0967*x^6 -0.0664*x^7 _
   -0.4186*x^8 -0.363*x^9 +0.499*x^10 )
  kmpinf = kminf*exp(-2.3736*pD) + poly
endif
end function

Note that the correcting polynomial has the argument:
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x =
1

1+p/D
 

This is chosen because it is valid for any value of  p/D .  The factor  ln(1 + p/D)  that operates on the
whole polynomial is zero when p/D = 0  and so forces the correction term to zero at that point.  The 
expression used will actually return the correct value when  p/D = 0 ,  but the condition is trapped in
the process of disallowing negative values of  p/D .

The kmψ∞  function shown below is accurate to within ± 0.000 000 75 

Function kmpinf(byval pD as double)
' Asymptotic value of Rosa B correction as a function of p/D.
' Version 2.1 (+/- 0.000 000 75 ).  D W Knight, 10th Oct. 2012.  
' pD = pitch / coil Diam.
Dim kminf as double
kminf = log(2*pi) - 1.5
if pD <= 0 then
  kmpinf = kminf
elseif pD > 72 then
  kmpinf = 0
else
Dim x1 as double, x2 as double, x3 as double, x4 as double
Dim x5 as double, x6 as double, x7 as double, poly as double, k as double
  x1 = pi*(1-1/sqr(1+2.185698*pD))
  x2 = pi*(1-1/sqr(1+2.557432*pD))
  x3 = pi*(1-1/sqr(1+1.995623*pD))
  x4 = pi*(1-1/sqr(1+2.117234*pD))
  x5 = pi*(1-1/sqr(1+2.82975*pD))
  x6 = pi*(1-1/sqr(1+2.320973*pD))
  x7 = pi*(1-1/sqr(1+1.315417*pD))
  poly = 0.02545714*sin(x1) + 0.021469*sin(2*x1) +0.004551*sin(3*x2) _
  -0.00203236*sin(4*x3) -0.00067821*sin(5*x4) -0.00006356*sin(6*x4) _
  +0.00000823*sin(7*x5) +0.00009831*sin(8*x5) -0.00003428*sin(9*x6) _
  -0.00004050*sin(10*x6) -0.00000801*sin(11*x7) -0.00000511*sin(12*x7)
  k = kminf*exp(-2.295314*pD) +poly
  if k < 0 then k = 0
  kmpinf = k  
endif
end function

The simple exponential decay function gives zero error as as  p/D → 0  and as  p/D → ∞ .  Hence, it
being sensible policy to use only fitting functions that preserve analytical values, a correcting 
polynomial that goes to zero at these limits is required.  This is obtained by defining baseline 
functions (xi ) that vary between 0  and  π  as  the pitch angle ψ  varies between 0 and 90º.  Hence 
any term defined as:

Tn = cn Sin( n xi )

will be zero both when ψ = 0 and when ψ = 90º .  The machine optimisation process tends to 
produce error curves that undulate.  The baseline functions are chosen and adjusted so that the 
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undulations on a particular scale appear approximately sinusoidal.  Multiplying the sine function 
that gives the same number of undulations by a suitable coefficient and then subtracting it from the 
error curve reduces the error.  This minimisation process can be performed successively to reduce 
the error to any desired degree.  In principle, each sine term can have its own baseline function.  In 
practice, the baseline parameter is much less critical than the term coefficient, and so, in cases 
where the baseline parameters appear similar, several terms can be made to share the same baseline 
function.  In practice also; the initial fitting formula is constructed by applying successive 
approximations, but the final formula is obtained by allowing all parameters to vary simultaneously.

>>>> work in progress

Empirical functions for kmψ

>>>>>

------------------------------------

Some notes on the work in progress:

An empirical function for kmψ is in development:

I have calculated a large array of data, with N increasing on going down a column, and pitch angle 
varying between 0 and 90 deg on going along a row.  The contents of each column in turn have been
fitted it to an extended version of my original 2006 empirical function for km (see spreadsheet 
Rosa_kmp.ods).  The parameter sets for each fit were then put into an array in place of the column 
data.
     I find that if I approach the fitting in the same way in each case, the parameters evolve smoothly.
Hence I should be able to create empirical functions that produce the requisite parameter set for 
each input value of  p/D . 
     The downside of this method is that the fitting needs to be very precise, because the errors in the 
parameters are transmitted into the final result.  I could envisage doing a final fitting run on all of 
the data in one go, but since a good minimisation on 15 parameters and a couple of hundred data 
points can take a day, that would probably take weeks.  Consequently, the best option appears to be 
to get the parameters right in the first round.

A note on the choice of fitting functions:

Legendre and Chebyshev polynomials provide a way of decorrelating the parameters to simplify 
fitting, but ultimately they can be decomposed into simple polynomials, and so don't reduce the 
number of parameters required, and certainly don't respect limiting values in the error function.  I 
note however, that the Chebyshev polynomial terms can be represented as: 

Tn(x) = cos[ n arccos(x) ]

and this has led me to a useful approach.  For example:  For the asymptote-value function kminf(ψ) 
(assuming that pitch angle is used as the argument), we have:
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kminf(0) = ln(2 pi) - 3/2

and 

kminf( π / 2) = 0

Then most of the fitting is done by the expression

kminf(ψ) = [ ln(2 pi) - 3/2 ] exp{-c p/D }

where

p / D = π tan(ψ)

This leaves an error function that is analytically zero at both extremes.  So I chose the form:

kminf(ψ) = [ ln(2 π) - 3/2 ] exp{-c p/D } + Polynom(ψ)

with terms in the polynomial:

Tn(x) = Cn sin(n π xi ) 

where xi is a function that varies between 0 and 1 as ψ varies between 0 and  π/2 .  All such terms 
are, of course, anchored to zero at the ends, but the trick lies in the function xi.  The optimisation 
process tends to produce an error function that undulates.  By choosing  xi  to space the undulations 
evenly,  xi  turns the error curve into an approximate sine wave on its scale.  Hence, using an 
appropriate  xi  function, and choosing the coefficient according to the height, the error curve can be
successively minimised at each undulation frequency.  In the most extreme cases, a different  xi  
function is required for every term, but the difference is sometimes quite small (or can be forced to 
be small) between adjacent terms and so sets of terms can share the same xi  to reduce the number 
of parameters.

The method works well on error curves that have a roughly sinusoidal appearance.  In the event that
the error dies off exponentially at the extremes, the polynomial can be multiplied by a Gaussian 
(this is reminiscent of the Hermite functions, which are obtained by multiplying Hermite 
polynomials by a Gaussian), or by a Lorentzian (or modified Lorentzian, of which much has been 
written in my article on internal impedance). 

--------------------------------

>>>>>>>

Comparison of Rosa and summation methods - error due to curvature.

>>>>>>>>
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11.  Helicity 
The formulae and calculation methods for static inductance outlined so far will produce results that 
are consistent with practically all traditional approaches to the problem of solenoid inductance 
calculation.  There is however, a limitation on the method, which is almost invariably ignored.  
     We might say that, since we cannot measure inductance using DC, and since single-layer air-
cored solenoids only start to become practical as inductors at radio frequencies; then we tend to test 
solenoid models against measurements made at relatively high frequencies.  We then note that the 
actual inductance, after correction for leads and self capacitance, comes out a little lower than the 
value calculated using the average coil diameter.  We can put this down to non-uniform current 
distribution; and then on the basis that the calculation is only a quasi-static approximation, satisfy 
ourselves that this is as good as can be obtained without introducing empirical adjustments.  
     In reality however, the decline of inductance with frequency is even greater than traditional 
modelling methods would have us believe, because those methods do not account for all of the 
static inductance.  We might have suspected that from the curiously convenient fact that Nagaoka's 
coefficient depends only on ℓ/D .  When something seems too good to be true, there is usually a 
reason.
  

>>>> work in progress
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12.  Combined static magnetic corrections 
Having now collected and evaluated all of the necessary formulae and functions for the application 
of the modified Rosa-Nagaoka inductance calculation method; it is worth noting that it is possible 
to combine all of the solenoid static-field corrections into a single coefficient.  This coefficient is 
useful when building lumped coil-inductance into general circuit models, and it is an important 
parameter in transmission-line inductor models.

We start by inserting the expression for current sheet inductance (7.1) into the modified form of 
Rosa's general inductance equation (10.4). This gives:

L = [μ(x)
π r 2

ℓ
N2 kL]−μ(x ) r N(ks(x)+km)+L i  

Li  can be expressed in terms of the internal inductance factor Θ , which was given as part of the 
formula (6.1).  Thus:

L i = ℓw

μ( i)

8π
Θ  

and substituting for ℓw using equation (5.2) gives:

L i =
2π r N
cosψ

μ(i)

8π
Θ  

Hence:

L = [μ(x)
π r 2

ℓ
N2 kL]−μ(x ) r N(ks(x)+km)+

μ(i ) r NΘ

4cosψ
  

Now removing the factor  μ(x) π r² N² /ℓ   from the second and third terms gives:

L =
μ(x)π r2 N2

ℓ [kL −
(km+ks(x) −

(μ(i)/μ(x))Θ

4cosψ ) ℓ

π r N ]   

Using the substitution  ℓ / r = 2 ℓ / D  then gives:

L =
μ(x)π r2 N2

ℓ [kL −

2(k m+ks(x) −
(μ(i)/μ(x))Θ

4 cosψ ) ℓ

π D N ]           [Henrys] 12.1

Hence we can write a compact expression for lumped solenoid inductance as:

L =μ
π r2

ℓ
N 2 kH                 [Henrys] 12.2
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where: 

k H = kL −
2
π ( ℓ /D)

(km+ks(x)−
(μ(i)/μ(x))Θ

4 cosψ )
N

 12.3

To make this expression more compact, we can also put:

zk =
2
π ( ℓ /D)      and     ks = ks(x)−

(μ(i)/μ(x))Θ

4cosψ

so that:

k H = kL −zk

(km+ks )
N

 (12.3a)

Note that equation (12.3) tells us that the round-wire corrections disappear when  N  is large or 
when  ℓ/D  is small; i.e., they are intermediate corrections and are not important for very short coils, 
and are only required for long coils if the number of turns is low in comparison to  ℓ/D.  The 
corrections are also generally small for coils of unexceptional design; the error incurred in 
neglecting them is usually less than 2%, and so it is often acceptable to ignore them in rough 
engineering calculations.  When the round wire corrections are neglected, i.e., when it is assumed 
that  kH = kL  , this is known as the current-sheet approximation.
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13.  Apparent inductance and equivalent lumped inductance 
At this point, we have collected all of the formulae needed to calculate the quasi-static magnetic 
contribution to the impedance seen when looking into the terminals of a solenoid inductor.  In other 
words, we can calculate some inductance L (neglecting qualifying subscripts), and calculate a 
reactance XL = 2πfL from that.  This reactance however, will only correspond to the actual or 
measured reactance at low frequencies. 
     As mentioned earlier, the static magnetic model does not allow for the finite velocity of 
electromagnetic waves travelling along the wire.  This means that the impedance seen at the coil 
terminals will be different from that predicted by the method outlined so far (even after correction 
for parasitic contributions), and this can be accounted-for by evoking a hypothetical 'self-
capacitance', CL  , in parallel with the coil.  Hence the actual reactance (neglecting losses) will be:

X'L = XL // XCL  =  
XL XCL

XL+XCL
 

where:   XCL =
−1

2π f CL
 

The self-capacitance can be neglected at low frequencies because the magnitude of XCL  is large 
when f is small, in which case  ( XL + XCL ) ≈ XCL  and so  X'L ≈ XL .

In early publications (before the widespread availability of electronic computers), it was generally 
assumed that the "true" inductance of a coil (after correction for self-capacitance) is constant.  This 
is reasonable when working to an accuracy of a few percent, but it leads to an unfortunate and 
potentially confusing usage; which is that of referring to the pure inductance component as the 
"low-frequency inductance".  Since we have added a number of high-frequency corrections to the 
magnetic model, the term 'low-frequency inductance' should now be taken to mean 'the inductance 
when the skin depth is greater than the wire radius', i.e., the inductance below the LF-HF transition 
frequency as discussed in section 6a.  A preferable term for the quasi-static magnetic component is; 
equivalent lumped inductance: and the inductance obtained by dividing the measured reactance by 
2πf should be referred to as the apparent inductance.
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14.  Solenoid inductance calculation vs. measurement 

>>> work in progress

█
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