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The Maximally-Flat Current Transformer1

By David W Knight

In the design of current transformers for broadband RF applications, good performance at the low-
frequency end of the operating range requires either, a large secondary inductance, or a low value of
secondary load resistance, or both.  Large inductance however implies either the use of high-
permeability core material; with attendant core losses and dispersive effects (variation of AL  with 
frequency); or a large number of turns, with associated low sensitivity and high winding resistance.  
A low value of load resistance also implies low sensitivity; and we are in danger of concluding that 
we can make excellent broadband transformers as long as we don't want any actual output. 
     There is however, a way of obtaining a flat amplitude response with high sensitivity by 
steepening the skirt of the low-frequency band-edge.  The downside of the technique is that it 
degrades the phase-performance, but it is nevertheless perfectly suitable for phase-insensitive 
instruments such as ammeters.  It involves placing a capacitor between the transformer output and 
the load resistor, and will be referred to here as the maximally-flat current transformer.
     The maximally-flat current transformer is an offshoot of a mathematical analysis2 carried out by 
this author (DWK) for the purpose of evaluating a low-frequency compensation scheme patented by
Will Herzog in 1988 [US Pat. No. 4739515].  The maximally-flat configuration was however, not 
considered by Herzog and is not subject to his patent.  Herzog's idea was that, since the output of 
the transformer falls at low frequencies, but can be made to increase by increasing the secondary 
load resistance; it ought to be possible to achieve a correction by splitting the load resistance into 
two parallel components and placing a capacitor in series with one of those.  The point is that the 
output of the transformer will increase and undergo a negative phase-shift as the reactance of the 
capacitor increases, and it might be possible to tailor this effect to compensate for the falling output 
and positive phase shift caused by the falling inductive reactance.  Neither the patent nor an 
associated article3 gave any analysis or design equations however, which is why the investigation 
referred-to above was carried out.
     The outcome of the analysis was that Herzog's
compensation circuit (shown right) can be used to improve
the phase performance of the transformer at the expense of
degrading the amplitude performance.  It therefore has
little merit in comparison to the standard practice in bridge
design, which is to tailor the amplitude and phase response
of the voltage sampling network to match that of the
current transformer.  The spurious amplitude error
however, is in the form of a large low-frequency hump,
and it was discovered on further analysis that this could be
eliminated by taking the output from the load-resistor side
of the capacitor.

1 Version 1.00, 20th Feb. 2014.  © D. W. Knight, 2014 (Updated version of an HTML article first published in 2008). 
Please check the author's website to make sure you have the most recent version of this document and  the 
accompanying spreadsheet file: http://www.g3ynh.info/ .

2 Analysis of Herzog's LF phase compensation method.  D W Knight.  http://g3ynh.info/zdocs/bridges/  .
3 VSWR Bridges, Will Herzog K2LB, Ham Radio, March 1986, p37-40.
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     For the modified circuit shown on the right, we can write an
expression for the voltage appearing across the secondary
winding as follows:

Vi' = ( I/N ) [  jXLi // (Ri + jXCh ) ]

     = ( V/ZN )[  jXLi // (Ri + jXCh ) ]

The output voltage  Vi  however is obtained from  Vi'  via a
potential divider composed of  jXCh  and  Ri ,  hence:

Vi = Vi' Ri / (Ri + jXCh )

     = (V/ZN) [ jXLi //( Ri + jXCh ) ] Ri /( Ri + jXCh )

which, by expanding the parallel product, gives:

Vi = (V/ZN) [ jXLi ( Ri + jXCh ) / ( jXLi + Ri + jXCh ) ] Ri / (Ri + jXCh )

and has the corresponding dimensionless transfer function:

Vi / V = ηi = [ jXLi / (jXLi + Ri + jXCh ) ] Ri / N Z

This, as is usually the case, is easier to handle in reciprocal form:

1/ηi = [ (jXLi + Ri + jXCh ) / jXLi ] N Z / Ri

Which rearranges to:

1/ηi = [1 + (XCh / XLi ) -jRi / XLi ] N Z / Ri

Now we can imagine that the network is part of a bridge that, at infinite frequency, balances when 
Z = R0 .   In this limit,  XLi → ∞  and XCh → 0 ,  and so the reciprocal transfer function reduces to:

1/η∞ = N R0 / Ri

This can be equated to the actual transfer function when Z is chosen to balance our hypothetical 
bridge, i.e., 

N R0 / Ri = [ 1 + (XCh / XLi ) -jRi / XLi ] N Z / Ri

Hence:

R0 / Z = [ 1 + (XCh / XLi ) -jRi /XLi  ] 1

This expression captures all of the magnitude and phase errors of the current transformer network 
and so characterises the circuit.  In this case however, we are interested in finding the component 
relationships that give the maximally flat amplitude response, and to this end we take the 
magnitude:

Maximally-flat network
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| R0 / Z | = √{ ( 1 + XCh / XLi )² + ( Ri / XLi )² } 2

Now, factoring  1 / XLi²  from the square-root bracket and expanding we have:

| R0 / Z | = (1/ XLi ) √{ XLi² + XCh² + 2XLi XCh + Ri² }

i.e.,

| R0 / Z | = (1/ XLi ) √{ XLi² + XCh² + [ Ri² - 2 Li / Ch ] }

What to do next to find the maximally flat amplitude condition is not immediately obvious, but on 
the basis that such a condition should exist, the circuit was simulated to see what would happen as 
Ch  was varied.  The solution was quickly discovered once the model had been set up, and centres 
on the pair of terms captured between square brackets in the expression above.  If we multiply 
1/ XLi  back into the square-root bracket we have:

| R0 / Z | = √{ 1 + ( XCh / XLi )² + [ Ri² - 2 Li / Ch ] / XLi²  }

It transpires that, for Li  of around  10 μH  and  Ch  of a few nF, the term ( XCh / XLi )²  is much 
smaller than 1 for frequencies of  1 MHz and above.  Hence, the variation of amplitude with 
frequency can be effectively eliminated over a very wide frequency range by choosing components 
so that:

Ri² - 2 Li / Ch = 0 3

In the analysis of Herzog's LF compensation method, it was found that best phase performance 
could be obtained by choosing the network components to give the condition of critical damping; 
i.e., with the network on the borderline between ability to exhibit real resonance or imaginary 
resonance 4.  It transpires here however, that the capacitance for maximum flatness is exactly twice 
the capacitance for critical damping.  This places the network state well within the imaginary 
resonance region, as might be expected from the requirement that there will be no peak in the 
response.  It also means that the phase response will never coincide with the zero axis at finite 
frequency (neglecting the transformer propagation delay); but neither does the phase response of the
uncompensated network, and we can deal with that issue in situations where phase is important by 
modifying the companion voltage sampling network to have the same response. 
     The phase angle of  Z can be determined from equation (1) as the arctangent of the negative of 
imaginary part divided by the real part (the phase angle of  1/Z  is the equal and opposite of the 
phase angle of  Z ), i.e.,

Tanφ = ( Ri /XLi ) / [ 1 + (XCh / XLi ) ]

which rearranges to:

Tanφ = Ri / ( XCh + XLi ) 4

Notice that when  XCh + XLi → 0 ,  Tanφ → ∞  and  φ→ +90°.  An infinitesimal reduction in 
frequency will then cause the tangent to change sign.  This, according to the default behaviour of 

4 AC Electrical Theory,  D W Knight.  http://g3ynh.info/zdocs/AC_theory/   .  See section 21.
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spreadsheets, calculators and other mathematical engines, may make it appear that the phase angle 
has suddenly switched to -90°, but this phase discontinuity does not actually occur.  An ambiguity 
arises because inverse trigonometric functions have an infinite number of solutions for every 
argument.  In the case of tangents:

Tanφ = Tan( φ ± n × 180° )

where n is any whole number including zero.  E.g., Tan(91°) is the same as Tan(-89°).  Hence, there 
is no unique solution to the inverse tangent function; and so, strictly:

If     x = Tanφ

Then    φ = Arctan(x) ± n × 180°

Hence, in this case, we should interpret the change in sign of the tangent, not as a switch to a 
negative angle, but as the angle moving out of the first (0 to 90°) quadrant into the second (90 to 
180°) quadrant.  The frequency at which this event occurs is given by the standard resonance 
formula:

fx = 1/ [ 2π √( Li Ch ) ] 5

Below this frequency, the calculation formula for φ is:

φ = [Arctan{ Ri / ( XCh + XLi ) }] + 180°

Shown below are graphs of the results from calculations for the case when Li = 10 μH  and
Rh = 50 Ω .  The compensation capacitance is given by equation (3) as:

Ch = 2 Li / Ri² = 8 nF
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Relative output vs. frequency for maximally flat current transformer
Li = 10 μH , Ri = 50 Ω ,  Ch = 8 nF.  (Spreadsheet calculation: maxflat_sim.ods).

Phase vs. frequency for maximally flat current transformer
Li = 10 μH ,  Ri = 50 Ω ,  Ch = 8 nF.  (Spreadsheet calc: maxflat_sim.ods). 
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In practice, the phase of the transformer output (relative to the input current) will usually become 
slightly negative at high frequencies due to transformer propagation delay and other parasitic 
effects, but the presence of Ch  does not preclude the use of the various HF neutralisation techniques
available5.

Amplitude frequency-response measurements for a practical maximally flat current transformer are 
given in a separate article6 and agree with the theory.  Hence the circuit offers a possible solution to 
the long-standing secondary inductance problem.  The example case with Li = 10 μH  and  
Ri = 50 Ω gives an output that has dropped by just less than 1% at 1.5 MHz (compared to 11.7% for 
the uncompensated version) and, although this performance might be degraded in practice by other 
causes of amplitude error, the circuit is obviously a good candidate for the construction of 
magnitude bridges and accurate RF ammeters; i.e., for devices that discard the phase information in 
the output by rectifying the signal before using it.  The properties of the network are a little less 
compelling for the design of ordinary impedance bridges, since moderate variations of sensitivity 
are usually of little consequence; but it is nevertheless possible to derive a companion voltage 
sampling network with identical phase performance7, which might be of use to those who wish to 
make accurate SWR or return-loss analysers.

DWK, 2008, 2014
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5 Evaluation and optimisation of current transformer bridges.  D W Knight.  http://g3ynh.info/zdocs/bridges/
6 Amplitude responsof conventional and maximally-flat current transformers.  D W Knight. 
7 Resistive voltage-sampling and maxflat transmission bridges.  D W Knight. 


