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Abstract 
An impedance monitoring bridge can be characterised by choosing two independent (or nearly 
independent) circuit parameters related to the magnitude and phase of the load impedance at 
balance.  By adjusting the selected parameters to balance the bridge exactly with a reference load 
attached, the deviations of the parameters from their target values can be used to compute the bridge
error at a given frequency.  In a bridge that uses a capacitive potential divider for voltage sampling 
(Douma's bridge), suitable parameters are the lower voltage-sampling network capacitance and the 
LF-compensation resistance.  The balance point can be located with great precision by using a 
communications receiver as the detector.  Shielding and the use of common-mode chokes in the 
earth-loop between the signal generator and receiver prevents errors due to spurious signal 
injection.  The optimised system can make relative phase measurements with an RMS uncertainty 
of about ±0.0075º.
     The effect of the series inductance of the lower voltage sampling capacitor is clearly determined 
by the data.  Compensation for this parasitic reactance can be obtained by inserting a small 
adjustable inductance in series with the upper voltage-sampling arm.  Magnitude flatness of around 
±0.03% over 5 octaves is possible by this method.
     The parallel-equivalent secondary-inductance of the current transformer is a strongly conserved 
model parameter.  The measurement of parallel secondary capacitance is however skewed by 
through-line mismatch and other parasitic reactances, to the extent that it may appear to be positive, 
negative, or accidentally zero.  A perturbation series is derived to account for the various 
contributions, and includes a hitherto undocumented effect of Faraday shield displacement current.  
Control of parasitics is needed if bridges built by different individuals are to give comparable 
results.
     The data show a linear relationship between phase error and frequency except for a small 
deviation attributable to a dispersion region in the permeability of the ferrite transformer core.  This 
supports the view that the phase error can be considered as a time delay occurring primarily in the 
transformer.
     Various phase compensation schemes are proposed and evaluated.  These lead to bridge designs 
with 2-point frequency tracking that can easily achieve a maximum phase error of better than ±0.2° 
and a maximum magnitude error of better than ±0.3% over the 1.6 MHz to 30 MHz range.  A three-
point tracking scheme that gives a maximum phase error of ±0.04° is also demonstrated.
     The need for the transformer Faraday shield is investigated.  Theory indicates that the effect of 
the parasitic capacitance from line to detector port is correctable depending on the coupling factor. 

http://www.g3ynh.info/
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An unshielded bridge with 2-point frequency tracking gave a maximum phase error of ±0.05° over 
the 1.6 MHz to 30 MHz range, close to the ±0.03° limit imposed by dispersion effects in the ferrite 
used.

Note:  Data and mathematical analysis relating to the following discussion is contained in Open 
Document Spreadsheet (.ods) files.  These can be viewed and modified using the Open Office 
software suite, available without charge from OpenOffice.org.
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1.  Bridge parameter perturbation 
It is too much to expect that a current-transformer bridge designed using a lumped-element analysis 
based on simplified component models will give perfect results.  Therefore a practical circuit 
evaluation method is needed, but unfortunately, conventional frequency-response test procedures 
are not well suited to this task.  The problem is that; in order to characterise an imperfect bridge, it 
is necessary to apply a generator to an input port and then determine the impedance that must be 
connected to an output port in order to bring the voltage at a detector port to zero.  This implies the 
need for a variable impedance load and an auxiliary bridge or network analyser good enough to 
resolve small variations, i.e., it seems on first appraisal that bridges cannot be tested without access 
to extremely accurate test equipment.
     There is however, an alternative approach that uses what might reasonably be called a 
'perturbation method'.  The basic idea here is that, provided that the theoretical model is fairly 
accurate, it should be possible to make measurements that are related to the extent to which a bridge
is out of balance and then use the information to calculate the impedance that must be connected to 
the load port in order to restore balance. 
     For a first try at devising a test procedure based on perturbations, we might note that; if a fixed 
and accurately characterised load (i.e., a UHF coaxial resistor) is connected to the output port, and 
the degree of imbalance is small; then the actual load required to balance the bridge can be 
calculated from the phase and magnitude of the error voltage appearing at the detector port.  
Unfortunately, this requires the use of a sensitive vector voltmeter or a very accurately phase-
compensated oscilloscope, and so is neither a low-cost nor a potentially straightforward approach. 
     There is however a much simpler solution: If a bridge has a minimum of two suitably chosen 
adjustable components (ideally analogs of R and X or |Z| and φ), then it can be made to balance 
exactly at a single frequency when connected to the design load impedance.  When the frequency is 
changed, the bridge, being imperfect, will go out of balance, but the adjustable components can be 
altered to restore it.  If we can measure the changes in the component values, then these 
perturbations (being hopefully small) can be applied to the circuit model in order to deduce the 
load-impedance error that would have occurred at the new frequency had the adjustments not been 
made. 
     A bridge that uses a potential divider as its voltage-sampling network can be re-balanced; by 
altering the basic ratio to correct for load-resistance errors, and by adjusting the LF-compensation 
component to correct for reactance errors.  In the case of a bridge with a resistive potential divider, 
changing the ratio is straightforward; but the LF-compensation component is an inductor, and this 
presents a serious practical drawback.  A significant non-ideality of current-transformers is the 
propagation-delay or 'self-capacitance' of the secondary winding.  At some frequency, the phase-lag 
due to the delay will cancel the phase-lead due to the secondary inductance.  The LF compensation 
inductance can, in-principle, be adjusted to track the deviation from the 'ideal transformer with 
secondary inductance' model, but at the phase-crossover (secondary network pseudo-resonance) 
frequency, the inductance required becomes infinite.  Hence, in order to make measurements 
anywhere near the crossover point, a large variable inductance is required, and to produce such an 
inductance without introducing further significant non-idealities is all but impossible.
     The Douma bridge is a different proposition however.  Here the potential divider is a pair of 
capacitors, and the LF-compensation component is a resistor.  Reasonably well-behaved variable 
capacitors and resistors are realisable, and test-equipment for measuring resistance and capacitance 
is commonplace.  Hence the Douma bridge is the obvious candidate for the perturbation method.
     An important aspect of basic experimental design is that of how to find out when the bridge is 
balanced.  The issue here is that the null-point must be located accurately at each measurement 
frequency in order to minimise the scatter in the data.  If a diode detector is used, the null will be 
difficult to locate because the forward-threshold effect makes such detectors insensitive to small 
voltages.  Running the test with high power levels in an attempt to overcome this limitation will 
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tend to make the bridge components hot and introduce the problem of thermal drift.  The solution is 
to construct the bridge in such a way that any passive detector can be removed and a radio receiver 
substituted in its place.  A laboratory signal generator or VFO with an output of around 0 dBm 
(224 mV) can then be used instead of a radio transmitter.  In the experiments to be described here, 
null depths of 80 dB to 120 dB were typical, with the signal at balance falling below the noise floor 
of a good HF communications receiver (<100 nV).
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2.  The Douma bridge 
Shown below is the circuit of Douma's bridge [US Pat. No. 2808566] terminated by its target load 
resistance R0 .  The bridge is balanced when the current analog Vi  is equal in magnitude and phase 
to the voltage analog Vv , the two voltages being arranged in series opposition.  The current 
transformer is tightly-coupled and is therefore largely described by its turns-ratio N and its 
secondary inductance Li .  It has a finite insertion impedance Zii , which causes a voltage-drop Vii  in 
the path to the primary load.  The secondary winding is terminated in a resistance Ri , which serves 
to damp, but cannot eliminate, the effects of transformer reactance.  A component of the transformer
output voltage in phase with the primary current is cancelled by choosing an appropriate ratio for 
the potential-divider capacitors C1 and C2 .  A leading quadrature component in the transformer 
output, due to the finite secondary inductance, is cancelled by introducing a corresponding 
quadrature component in the potential-divider output by appropriate choice of the resistor Rv .  Also 
shown is a parasitic capacitance Ci , which notionally represents the transformer propagation-delay 
and the strays across the secondary winding; but is, as will be shown later, also a composite of the 
effects of the various parasitic reactances in the system.  This capacitance (when positive) produces 
a lagging quadrature component in the transformer output, which increases in magnitude as the 
frequency of operation is increased, and will at some point overwhelm the effect of the inductance.

The Douma bridge, as shown, has no means of compensation for the parasitic capacitance Ci , save 
for the use of a relatively low value of resistance for Ri .  Hence the design equations for the bridge 
have to be derived on the basis that Ci  is negligibly small.  The procedure is to write dimensionless 
expressions for the voltage and current analogs and set them to be equal when the bridge is 
terminated in its target load resistance R0 . The resulting complex expression is then separated into 
its real and imaginary parts, the real part being the in-phase balance condition, and the imaginary 
part being the quadrature balance condition.  Note that the transformer inefficiency, which can be 
represented as a resistance1 (Rk say) in parallel with the secondary winding, has been neglected at 
this stage of the analysis.  The slight shortfall in output can be compensated by a trivial adjustment 
of the voltage sampling potential-divider ratio, and may be quantified if so desired by replacing Ri 
with an effective value Rik = Ri // Rk .

The output of the current transformer, by equating primary and secondary ampere-turns, is given 
by:

Vi = I Zi / N     where     Zi = (Ri // jXLi // jXCi )

1 The input impedance of a tightly-coupled current transformer is too small to allow determination of its leakage 
inductance in the analysis of this circuit, so the voltage shortfall due to incomplete coupling can also be absorbed 
into this parameter.
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but

I = V / R0

hence

Vi = V Zi / (N R0 )

This gives the dimensionless current transfer function at balance:

Vi / V = Zi / (N R0 )

The output of the voltage sampling network is derived as for any potential divider network2 :

Vv = V' (jXC1 // Rv ) / [ jXC2 + (jXC1 // Rv ) ]

and a more convenient form is obtained by multiplying top and bottom of this expression by jXC2 :

Vv = V' (jXC1 // jXC2 // Rv ) / jXC2

but note that V' is not the same as V.

V' = V + Vii  =  V + I Zii  =  V + V Zii / R0  = V (1 + Zii / R0 )

where the insertion impedance Zii  is the secondary load impedance reflected back into the primary, 
i.e., it is (to a very good approximation) the secondary load impedance divided by the square of the 
turns ratio.  Hence:

V' = V [ 1 + Zi / (R0 N² ) ]

and the dimensionless voltage transfer function is:

Vv / V = [ 1 + Zi / (R0 N² ) ] ( jXC1 // jXC2 // Rv ) / jXC2

The overall balance condition is given by equating the voltage and current transfer functions:

[1 + Zi / (R0 N² ) ] (jXC1 // jXC2 // Rv ) / jXC2 = Zi / (N R0 )

This can be simplified by dividing both sides by  1 + Zi  / (R0 N² )  and inverting the whole 
expression:

jXC2 / (jXC1 // jXC2 // Rv ) = [ 1 + Zi / (R0 N² ) ] N R0 / Zi

Multiplying out the right-hand side gives:

jXC2 / (jXC1 // jXC2 // Rv ) = ( N R0 / Zi ) + 1/N

2 See for example: AC Theory, by D W Knight (www.g3ynh.info/zdocs/AC_theory/ ).  Section 35.
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and noting that Zi = (Ri // jXLi // jXCi )  :

jXC2 / (jXC1 // jXC2 // Rv ) = [ N R0 / (Ri // jXLi // jXCi ) ] + 1/N

This can now be separated into real and imaginary parts by observing that3:

1 / (a // b // c // . . . ) = (1/a) + (1/b) + (1/c) + . . . 

but before we do that we will combine the transformer reactance into a single quantity, i.e.;

Xi = XLi // XCi

The reason for so doing is that the circuit has no provision for compensating for the effect of Ci , 
and so a frequency-independent set of balance conditions can only be obtained insofar as Xi can be 
treated as a purely inductive reactance (i.e., at low frequencies where XCi → -∞).  When Xi is 
inductive, we can consider it to arise from an inductance Li' , i.e.:

Xi = 2πf Li'

and bridge-balance depends on the approximation that Li' does not vary with frequency.  Now the 
balance identity becomes:

jXC2 / (jXC1 // jXC2 // Rv ) = [ N R0 / (Ri // jXi ) ] + 1/N

and the reciprocal impedance (admittance) factors separate into arithmetic series:

jXC2 [ (1/jXC1 ) + (1/jXC2 ) + (1/Rv ) ] = N R0 [ (1/Ri ) + (1/jXi ) ] + 1/N

Multiplying out, and noting that XC = -1/(2πfC) gives: 

(C1 /C2 ) + 1 + (jXC2 / Rv ) = (N R0 / Ri ) + (N R0 / jXi ) + 1/N

Equating reals:

(C1 /C2 ) + 1 = (N R0 / Ri ) + 1/N

Hence, the in-phase balance condition is:

C1 = C2 [ (N R0 / Ri ) + (1/N) - 1] 2.1

Equating imaginaries:

jXC2 / Rv = N R0 / jXi

and noting that capacitive reactance is negative and 1/j = -j :

-XC2 / Rv = N R0 / Xi

3 See for example, AC Theory (already cited) section 17.
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Expanding the reactances:

1 / (2πf C2 Rv ) = N R0 / (2πf Li' )

which rearranges to give the quadrature balance condition:

Rv = Li' / (N R0 C2 ) 2.2

Now notice that both C1 and Rv depend on the choice of C2 .  Consequently, given that N and R0 are 
fixed parameters during any test; if C2 is chosen to be a fixed parameter (ignoring its parasitic 
inductance for the time being), then C1 is purely a function of Ri , and Rv is purely a function of Li'.  
With C2 fixed, any adjustments of C1 and Rv are non-interactive, i.e., data relating to the in-phase 
and quadrature balance conditions can be separated and analysed independently (at least, to the 
approximation that C2 does not change with frequency).
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3.  Prototype test bridge 
On the basis of the preceding discussion, a Douma bridge was constructed in such a way that C1 and
Rv could be both adjusted and measured.  The bridge, in its earliest form, is shown in the 
photograph below. Some important initial considerations were that the transformer Faraday shield 
should be earthed at the detector socket4, that the three ports should be reasonably shielded from 
each other, and that the voltage and current sampling networks should be mounted on opposite sides
of a metal bulkhead.  Experiments were conducted using a signal generator having an output of 
about 0 dBm (224 mV), and the detector was a Kenwood TS930s short-wave transceiver used in 
USB mode (3 kHZ bandwidth, noise floor circa 100 nV) with the AGC set to 'fast' .  The basic 
arrangement proved to be adequate in that the bridge could always be nulled to the point where the 
detector signal fell below the receiver noise.
     In the first version, the resistor Rv was a 500 Ω carbon skeleton potentiometer with a fixed 
resistor in series; measurement of its value being effected by connecting clip-on probes from a 
resistance meter across it, with the radio receiver unplugged.  The problem of how to measure the 
capacitance C1 however, is a little less straightforward.  An adjustable capacitance is shown 
mounted on a plug-in header so that it can be taken away and measured using a laboratory bridge.  
C1 however is composed of this capacitance plus strays; and so the plug-in capacitance is designated
C1' .  Hence: 

C1 = C1' + C1s

C1s  is the stray capacitance due to the socket, the wiring, the ceramic insulating pillars, the 
capacitance of Rv and the capacitance to ground of the Faraday shield.  It amounts to several pF and
can only be determined by estimation using transformer loss data from other sources5.  Hence the 
experiment permits accurate relative measurements of C1 , but the uncertainty increases somewhat 
for absolute measurements.  This limitation is not serious for the present purpose however, because 
the measurement of transformer losses is not part of the experimental objective.  All capacitors used
were either silvered-mica or air-spaced, and had negligible ESR in comparison to external circuit 
impedances.

4 See: Amplitude response of conventional and maximally-flat current transformers, D W Knight.  
www.g3ynh.info/zdocs/bridges/appendix/a6-3.html

5 See: Current transformer efficiency factor, D W Knight. www.g3ynh.info/zdocs/bridges/appendix/a6-1.html
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Silver-mica capacitor and 
2.5 pF - 30 pF trimmer

To commission the bridge, a current transformer was made using an 
Amidon FT50-61 ½" ferrite bead (AL = 68.8 nH/turn² nominal), with 
12 turns of 0.9 mm diameter enamelled copper wire for the 
secondary winding, and a stub of URM108 (Ag-PTFE 50 Ω) cable 
for the primary.  The fixed circuit parameters are listed on the right, 
where Lsec is the measured secondary inductance, expected to be a 
few % higher than Li due to leakage inductance and neglect of self-
capacitance, but nevertheless providing a first estimate.

N = 12
Lsec = 9.25 ±0.23 μH 
Ri = 49.80 ±0.06 Ω
R0 = 49.96 ±0.06 Ω
C2 = 10.0 ±0.2 pF

     Resistances were measured using a Fluke 8060A 4½-digit multimeter.  Inductance and 
capacitance were measured at 1.5915 MHz using a Hatfield LE-300A/1 TRAB6.  The capacitor C2 
was a silvered-mica type with a nominal tolerance of ±5%, but this was reduced to ±0.2 pF or better
by selection of the median sample from a batch of 5.

According to equation (2.1), the expected value for C1 , neglecting transformer losses, is:

C1 = C2 [ (N R0 / Ri ) + (1/N) - 1 ] = 111.2 pF

According to equation (2.2), on the basis that Lsec  is approximately equal to Li  and the secondary 
capacitance is negligible, an initial estimate for Rv  is:

Rv = Lsec / (N R0 C2 ) = 1543 Ω

The first dataset to be acquired is listed and analysed in the spreadsheet  testbrg61-12_1.ods, 
measurements being made at points over a range from 1.4 MHz to 15 MHz.  The value of Rv 
required to balance the bridge remained reasonably constant at around 1520 Ω at low frequencies, 
allowing nulls to be found using a 500 Ω variable in series with a 1.2 kΩ fixed resistor.  Rv started 
to increase rapidly above about 4 MHz however, and at this stage the fixed resistor had to be 
changed at each new frequency.  No resistance measurements were made above 13 MHz because 
nulls became difficult to locate even with the variable resistor changed to 5 kΩ, and the point at 
which balance was achieved with Rv disconnected was found to lie somewhere around 14 MHz. 
     Variation of Rv with frequency is, of course, expected in the event that the parasitic capacitance 
Ci  is finite.  Ci  adds a lagging component to the transformer output in opposition the leading 
component associated with the inductance.  The result is that the inductance appears to increase 
with frequency up to the phase crossover point, above which the secondary reactance becomes 

6 Manual at  http://g3ynh.info/zdocs/bridges/LE300/
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capacitive.  Allowance for this was made in the initial theoretical considerations, where we 
allocated the symbol Li' to the apparent inductance and defined it in the relationship:

Xi = 2πf Li' = XLi // XCi 3.1

Experimentally, Li' is obtained from equation (2.2) rearranged thus:

Li' = N R0 C2 Rv 3.2

Spot values of Li' vs frequency calculated from the experimental data ('observed') are shown below 
superimposed on a graph obtained by extracting Li and Ci from a regression analysis ('calculated').  
Note that the graph should not be interpreted to mean that the bridge becomes wildly inaccurate as 
the frequency increases.  On the contrary, the phase error due to Ci  is only about 3° at 15 MHz, and 
the graph simply shows that the experiment is very sensitive.

The analysis procedure by which the graph above was produced (see testbrg61-12_1.ods ) begins 
with the combination of equations (3.1) and (3.2).

2πf  N R0 C2 Rv = XLi // XCi

Inverting this expression gives:

1 / (2πf N R0 C2 Rv ) = [1 / (2πf Li ) ] - 2πf Ci

Multiplying top and bottom of the right-most term by 2πf and cancelling through then gives:

1 / ( N R0 C2 Rv ) = (1 / Li ) - (2πf)² Ci 3.3
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This is in the form  y = a + bx  and so can be subjected to a linear regression analysis7.   A suitable 
breakdown into variables and parameters is:

y = 1 / ( N R0 C2 Rv )   ,   a = 1 / Li   ,    b = Ci   ,   and    x = -(2πf )². 

A weighted linear regression procedure was used in order to allow for the non-linear scaling of the 
uncertainties in Rv due to its reciprocal relationship with y .  The estimated standard deviation 
(ESD) of a measurement of Rv ( σRv ) was taken to be 1%, not due to the uncertainty in the meter 
reading but on the basis of repeatability; the issue being that, for this crude early version of the 
experiment, there was some ambiguity regarding the exact balance point.  The figure of 1% was 
arrived at by repeating a few measurements and noting the scatter of results.  Observe also that the 
fitting weight for a y value is determined only by the effect of Rv on its precision.  It does not 
depend on the overall accuracy of a y value because the uncertainty contributions from R0 and C2 
are correlated over the whole dataset and so do not contribute to the weight (although they do, of 
course, contribute to the uncertainties in the derived parameters Li = 1/a  and  Ci = b).  The precision 
of a y value, σy , is given by:

σy = |∂y/∂Rv| σRv

where

∂y/∂Rv = -1 / ( N R0 C2 Rv² )

The fitting weight is the reciprocal of the square of the precision:

w = 1/σy²

The fit gave a reduced χ² of 1.3 on 17 degrees of freedom; indicating that, within the precision of 
the data, the hypothesis that the transformer secondary reactance can be modelled as an inductance 
in parallel with a capacitance is validated (i.e., the shape of the graph of Li' vs f given above, is so-
far accounted for by the theory).  The transformer parameters obtained from the fit were:

Li = 9.006 ±0.026 μH     ,     Ci = 14.11 ±0.06 pF

but note that the uncertainties from the fit represent only the precision of the data.  The true 
uncertainty of a parameter is greater than the precision, because the contributions from to the 
uncertainties in R0 and C2 have not been taken into account; and also because these are the results of
an experiment that has yet to be investigated for hidden sources of systematic error.  It will transpire
that the experiment is in need of improvement, which means that the results obtained at this stage 
are not trustworthy; but if we treat this as an exercise that serves to establish the basic technique 
(and the spreadsheet template for the data analysis), then it is sensible to determine the parameter 
accuracies.  To do so analytically is somewhat difficult, because of the various correlations 
involved, but there is a simple solution to the problem.  The spreadsheet (testbrg61-12_1.ods) was 
written in such a way that the input parameters R0 and C2  are taken from a single cell in each case.  
Hence it is possible to shift these parameters, one at a time, to the upper and lower limits of their 
standard deviations and note the changes in Li and Ci  that occur.  The RMS average deviation in 
(say) Li , which occurs when (say) R0 is shifted, is the error contribution to Li  from the uncertainty 
in R0 , i.e., it is, to a very good approximation, (∂Li /∂R0 ) σR0 .  The other error terms (∂Li /∂C2 ) σC2 , 
(∂Ci /∂R0 ) σR0 , and (∂Ci /∂C2 ) σC2  are collected in similar fashion.  All we need then are the error 

7 See, for example, Scientific Data Analysis, D W Knight, www.g3ynh.info/zdocs/math/data_analy.pdf
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contributions from the experimental uncertainties, i.e., ( (∂Li /∂Rv ) σRv  and (∂Ci /∂Rv ) σRv , but these 
are already available as the estimated standard deviations (precision) obtained from the fit.  The 
input parameter and fitting uncertainties σR0 , σC2 , and σRv  are uncorrelated, and so their 
contributions to σLi  and σCi  are orthogonal.  Hence:

σLi = √{ [ (∂Li /∂R0 ) σR0 ]² + [ (∂Li /∂C2 ) σC2 ]² + [ (∂Li /∂Rv ) σRv ]² }

σCi = √{ [ (∂Ci /∂R0 ) σR0 ]² + [ (∂Ci /∂C2 ) σC2 ]² + [ (∂Ci /∂Rv ) σRv ]² }

Using this approach, the determined transformer parameters become:

Li = 9.01 ±0.18 μH     ,     Ci = 14.1 ±0.1 pF
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4.  Parasitic inductance of the adjustable capacitor 
Although the variation of Rv with frequency so-far supports the 'ideal transformer with parallel 
reactance' model for the transformer under test, the data for the adjustable capacitor C1' were not so 
well behaved.  Evidence of deviation from the model can be seen in the graph of C1' vs frequency 
below (see testbrg61-12_1.ods, sheet 2 ); C1' in this instance being the value of the detachable part 
of C1 as given by measurement on a laboratory bridge operating at 1.5915 MHz.

Recall that C1 is given by equation (2.1) as:

C1 = C2 [ ( N R0 / Ri ) + (1/N ) - 1 ]

It is apparently related only to fixed system parameters and so should not vary with frequency, and 
yet according to the graph it drops by about 4% over the range covered.  One possible but unlikely 
explanation is that the apparent efficiency of the transformer could be increasing as the frequency 
rises (Recall from the earlier discussion that Ri  can be replaced with Rik = Ri // Rk  if efficiency 
needs to be taken into account).  Such an effect is possible in the event of a severe mismatch in the 
primary transmission line (see section 14), but measurements of the relative amplitude vs frequency
response of a similar transformer over a 1.6 MHz to 30 MHz frequency range did not show it8.  
Hence that hypothesis has to be rejected.  The only sensible conclusion is that the effective value of 
C1 (and by inference also C2 ) is changing with frequency, i.e., the inductance of the potential 
divider network is not negligible. 
     When a capacitor has a significant parasitic series inductance, the inductive reactance cancels 
some of the capacitance reactance, causing the effective capacitance to increase with frequency.  
Hence, according to this second hypothesis, the setting of the capacitor designated  C1'  has to be 
backed-off as the frequency is increased, giving the impression that the capacitance required to 
balance the bridge has fallen.  If C1 varies with frequency, then of course, so must C2 , but there is 
reason to believe that the variation of C1 will be substantial, whereas the variation of C2 will not.  
The point is that C2  is a small capacitance (10 pF) and therefore, over the frequency-range of 
measurement, will always have enough reactance to keep the inductance in its arm of the circuit at 
bay.  An educated guess for the inductance in series with C2  for the test bridge is that it will be 
somewhere in the region of 50 nH.  At a frequency of 108 radians/sec (15.915 MHz) a 10 pF 

8 See: Amplitude response of conventional and maximally-flat current transformers, D W Knight.  
www.g3ynh.info/zdocs/bridges/appendix/a6-3.html
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capacitance has a reactance of -1000 Ω, whereas an inductance of 50 nH has a reactance of only +5 
Ω.  Hence the deviation from pure capacitance for C2 over the range from 0 to 16 MHz is only 
about 0.5%.  C1 however, is a different matter.  A 102 pF capacitance has a reactance of -98 Ω at 108

radians/sec, and so a series inductance of 40 nH to 50 nH could well account for the observed 4% to
5% deviation from the model.  The test of this reasoning however, is to see how well it agrees with 
the data; and to this end we must define the problem correctly. We will start by allocating the 
following symbols:

● C1' is the value of plug-in capacitance required to balance the bridge, and is assumed not to vary 
with frequency.

● C1'm  is the capacitance of the plug-in capacitor measured at 1.5915 MHz (the raw data).

● C1'0  is the true capacitance of the plug-in capacitor at zero frequency.

● L1  is the inductance of the plug-in capacitor and its associated connector and wiring.

Recall that the total capacitance required is defined as:

C1 = C1' + C1s

Here we will make the reasonable assumption that the stray capacitance does not have significant 
inductance and is therefore constant.  Hence if we can prove a condition that makes  C1'  invariant, 
then C1 is invariant and the transformer model requires no modification.

When the plug-in capacitor is connected to the Douma bridge, its reactance is given by:

XC1' = XC1'0 + XL1 

i.e.:

-1/(2πf C1' ) = -[ 1/(2πf C1'0 ) ] + 2πf L1

Multiplying both sides by -2πf gives:

1/C1' = (1/C1'0 ) - (2πf)² L1         . . . . . . (4.1)

Similarly, when the plug-in capacitor is mounted on the measuring bridge, which operates at
107 radians/sec (1.5915 MHz), we obtain:

1/C1'm = (1/C1'0 ) - 1014 L1        . . . . . . . (4.2)

This assumes that the inductance L1 does not change when the capacitor is transferred, for which 
reason the measuring bridge was fitted with a socket identical to the one on the test bridge.  Also 
note that the inductive reactance correction is small at 1.5915 MHz, so that any error in this 
assumption will have negligible effect.  Now, subtracting equation (4.1) from equation (4.2):

(1/C1'm ) - (1/C1' ) = -1014 L1 + (2πf)² L1

i.e.:
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(1/C1'm ) = (1/C1' ) + [ (2πf)² - 1014 ] L1

This is in the form y = a+bx , with variables and parameters as follows:

y = 1 / C1'm     ,     a = 1 / C1'    ,     b = L1      ,      x = (2πf)² - 1014

As before, a weighted linear regression procedure was used in order to cope with the non-linear 
scaling of uncertainties when computing y from C1'm   (see sheet 2 of testbrg61-12_1.ods).  As may 
be noted from the data, the C1'm  values were recorded to the nearest 0.5 pF.  Hence, due to the 
rounding error, this gives the precision of the data as ±0.25 pF, i.e., σC1'm  was taken to be 0.25 pF.  
σy is given by:

σy = |dy/dC1'm| σC1
'
m

where

dy/dC1'm = -( 1/C1'm )2

The fit gave a reduced χ² of 1.15 on 19 degrees of freedom, confirming that the apparent variation 
of  C1'  with frequency is an artifact.  The graph below illustrates the point by showing the smooth 
curve underlying the rounded measurements.  The derived circuit parameters were:

C1' =102.32 ±0.07 pF     ,     L1 = 50 ±2 nH

the quoted uncertainties representing precision, not accuracy.

The inductance L1 obtained from the fit is, incidentally, slightly smaller than the true inductance of 
the capacitor because the inductance of the upper voltage sampling arm has been neglected.
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5.  Stray Capacitance 
Equation (2.1) gives C1 as:

C1 = C2 [ ( N R0 / Ri ) + (1/N ) - 1 ]

but if we wish to take transformer voltage-transfer efficiency9 into account, then Ri can be replaced 
by:

Rik = Ri // Rk = k' Ri

Hence a refined prediction for C1 is given by the expression:

C1 = C2 [ (N R0 / k' Ri ) + (1/N ) - 1 ] 

with uncertainty

σC1 = √{ [(∂C1 /∂C2 ) σc2 ]² + [(∂C1 /∂R0) σR0 ]² + [(∂C1 /∂k ) σk ]² + [(∂C1 /∂Ri ) σRi ]² }

where:

∂C1 / ∂C2 = [ (N R0 / k Ri ) + (1/N ) - 1 ]

∂C1 / ∂R0 = C2 N / (k Ri )

∂C1 / ∂k = -C2 N R0 / (k² Ri )

∂C1 /∂Ri = -C2 N R0 / (k Ri² )

[dimensionless]

[Farads/Ω]

[Farads]

[Farads/Ω]

An transfer efficiency measurement on a 12-turn current transformer wound on a FT50-61 bead10  
gave k' = 0.959 ±0.011.  Hence, using the formulae and derivatives given above, our best prediction 
for C1 is:

C1 = 116.4 ±2.8 pF

(for calculation, see sheet 3 of testbrg61-12_1.ods).

The previous investigation gave C1' =102.318 ±0.07 pF.  The uncertainty in this case is the precision
from the fit.  A more realistic standard deviation must also take the calibration uncertainty of the 
measuring bridge into account (about 1%), which gives C1' =102.3 ±1.0 pF.  The estimated stray 
capacitance is the difference between the predicted C1 and this value, i.e.:

C1s = C1 - C1'

and

9 The k' apparing here is not the same as the transformer coupling factor k, because it includes an element of voltage 
shortfall due to losses.  Numerically however, it is statistically indistinguishable from the coupling factor.

10 Current transformer efficiency factor.  www.g3ynh.info/zdocs/bridges/appendix/a6-1.html
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σC1s = √ [σC1² + σC1'²]

giving:

C1s = 14.0 ±2.9 pF

This value appears to be somewhat high in view of the bridge layout, and indicates a possible 
systematic error.

5a. Transformer constant 
The quantity [ (N R0 / k' Ri ) + (1/N) - 1] is a circuit constant that defines the ratio C1 /C2  and also 
the derivative ∂C1 /∂C2 .  As was outlined above, it is used for error analysis and for estimating the 
stray capacitance C1s . Since it involves only parameters related to the transformer, it will be referred
to from here on as the transformer constant.

KT = C1 / C2 = (N R0 / k' Ri ) + ( 1/N ) - 1 5.1

This version of the transformer constant is correct for Faraday-shielded bridges.  A modified version
for unshielded bridges is given in section 19 (equation 19.9a).



19

6.  Test procedure optimisation 
In the matter of demonstrating the feasibility of the proposed bridge evaluation method, the 
prototype served its purpose.  Experimentally however, it left a lot to be desired; and further 
investigation, triggered by a slightly high value for C1s , uncovered several sources of systematic 
error.  The various problems and their solutions are discussed in sections 6 to 9.

The need to change resistors to track the variation of Rv with frequency was both tedious and 
potentially disruptive to the circuit layout.  The solution was to replace the Rv arm with two plastic-
bodied 2 W Cermet potentiometers (Vishay 93R1A-R22-xxx) in series, one having a value of 250 Ω
(fine) and the other having a value of 25 kΩ (coarse).  The potentiometers were initially mounted on
a metal plate, screwed to the jig; but it was found that adjustment of the fine control was 
accompanied by a small change in the capacitance of the arm, making nulls difficult to locate.  The 
solution was to mount the pots away from any conducting surfaces.
     The need to disconnect the radio receiver and connect test-leads to measure Rv was once again 
tedious and potentially disruptive.  In looking for a resolution to this issue, it was first noted that the
resistance of the transformer secondary-winding is small in comparison to Rv ; and so a more 
reliable connection can be made by fitting the resistance-meter with a BNC to 4 mm adapter, and 
then connecting it to the detector port via a short length of coaxial cable.  A further refinement 
resulted from the observation that; if the input to the radio receiver could be made a DC open-
circuit, then the line to the receiver could be left connected and the resistance measured via a 
T-piece.  The required DC-block was implemented by mounting a capacitor between two BNC 
connectors, as shown below, and inserting it into the coaxial line.

DC blocking capacitor.
10 nF  1 kV Ceramic.

The BNC connectors are joined using 
threaded Ni-plated brass pillars. The final 
assembly is wrapped in aluminium foil and 
covered with heat-shrink tubing. 

Breaking the DC path to the receiver and measuring Rv via a T-piece lead to the discovery that the 
resistance could be measured continuously, i.e., with the RF on and while searching for nulls.  This 
certainly works when using the Fluke 8060A, and will probably work with other meters.  No sign of
sampling noise could be heard in the receiver, and the only interference was a pure tone of less than 
1 μV at 16.00 MHz and another at 3.20 MHz (presumably sub-multiples of the 8060A's clock 
oscillator), which could be eliminated by switching the meter off while balancing the bridge at those
frequencies.  The resistance reading did not change at any of the measurement frequencies when the
the signal-generator was switched off and on.  The Fluke 8060A did not even care when the 
generator and receiver connections were swapped to test for bridge reciprocity (but some digital 
multimeters are known give misleading results when making DC readings in the presence of 
superimposed RF).  There was, furthermore, no change in the balance settings on plugging-in and 
removing the meter.
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Setup for continuous 
measurement of Rv

Also tedious, and requiring considerable care, was the business of unplugging the reference 
capacitor and measuring it on a separate bridge.  The solution in this case was to make up an 
assembly consisting of an air-spaced variable capacitor and a reduction-drive; the control knob and 
the capacitor being separated by insulating pillars and a non-conductive drive-shaft, so that 
adjustment could be accomplished without proximity of the operator's hand.  The capacitor was 
fitted with a connector so that it could be taken away and measured as before, but the point in this 
instance was to take a series of readings of capacitance versus dial-setting and fit them to a 
regression function.  From then on, measuring capacitance became a matter of noting the dial-
readings during an experimental run; the nominal (1.5915 MHz) capacitance being obtained later by
entering the data into a spreadsheet and applying the formula.  Details of the data reduction are 
given in the spreadsheet file: capcal_p500.ods .
     One serious problem with early versions of the 500 pF variable capacitor assembly was 
backlash.  The first version had two flexible couplers, but these permitted a twisting motion that 
made the backlash so severe that accurate capacitance measurement was impossible.  The problem 
was reduced by using one straight coupler and one flexible coupler, but even then, due to the 
elasticity of the 6 mm diameter plastic drive-shaft fitted at the time, the backlash remained at ±5 
divisions of the vernier dial.  Finally, the backlash was reduced to ±1 division by using a straight 
drive-shaft made from solid 19 mm diameter acrylic bar (see photographs below).  To allow for the 
residual backlash, all measurements were made by approaching the null from the clockwise 
direction of the control knob.
     The 500 pF variable capacitor proved useful for tracking the impedance meanderings of 
uncompensated bridges, but was necessarily limited in resolution on account of its large variation 
range.  A second variable reference capacitor was therefore constructed, this time with a 40 pF 
range and a 36:1 reduction drive, with a socket for a plug-in padding capacitor.  This device 
fortuitously gave exactly 2.5 pF per turn in its linear region, with a resolution of better than 
0.025 pF and no detectable backlash  (capcal_8-48.ods).
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Philips dual-gang 500 pF variable capacitor and General Electric 50:1 anti-backlash worm drive
(capcal_p500.ods ).  The drive-shaft is machined from 19 mm diameter acrylic bar for stiffness 
and the assembly is clamped to a baseboard in use to prevent torsion of the mounting frame.  
Mounting plates and pillars are made from non-conductive materials.  Only one gang of the 
capacitor is connected, but both can be used if a large capacitance is required.  Wiring to the 
connector is via copper straps to provide rigidity and minimise inductance.
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40 pF variable reference capacitor with 36:1 anti-backlash worm drive (capcal_8-48.ods).  A 
socket is provided for a parallel padding capacitor 
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7.  Balance disturbances due to common-mode currents 
An impedance bridge is a linear reciprocal network.  Therefore, if it is configured correctly, the 
balance condition should not change when the generator and detector are swapped.  Note that when 
the generator is connected to the 'detector' port, it requires a terminating resistor, which can be 
provided on a T-piece near to the bridge.

Reciprocity test.
The cable to the DMM is kept 
short (ca. 100 mm) to avoid 
excessive mismatch.

It was discovered, during the course of the optimisation work, that the bridge did not behave in an 
exactly reciprocal fashion.  Significantly different results were obtained with the generator and 
radio-receiver connections swapped, and the results were different again if the generator was left 
un-terminated.  The capacitance setting was seen to change by 3 to 4% ;  and the resistance setting 
changed by about 4%  at low frequencies and considerably more around the phase-crossover 
frequency where Rv  is heading for infinity.  Such deviations are not acceptable if any physical 
meanings are to be attached to the derived parameters; and can seriously skew the values obtained 
for Ci  and C1s  because these are dependent on small changes in other parameters.
     After some deliberation it was concluded that the problem was occurring because the radio 
receiver did not have infinite common-mode rejection, i.e., it could pick up radio signals travelling 
on the outside of the antenna cable by virtue of the voltage developed between the antenna socket 
and the mains wiring.  When this problem is related to the situation in which one piece of mains-
powered equipment feeds signals into another, it is known, in old parlance, as an "earth loop".  The 
traditional solution, before the invention of  'Health and Safety at Work', was to disconnect the 
earth-wires from the mains plugs; and although this is unlikely to work, because there is still plenty 
of capacitance between the chassis and the live and neutral wires, it does add excitement to 
otherwise dull activities by introducing the risk of lethal electric shock.
     The hypothesis for the case of a bridge that fails to obey the reciprocity rule is that the receiver is
picking up a small signal from the generator via the common mode.  Thus, when a null is obtained, 
it represents not exact balance, but a situation in which the desired differential-mode output signal is
of the correct magnitude and phase to cancel the common-mode signal.  The common mode signal 
changes depending on how the generator is terminated and the bridge connected, and so the 
balance-condition appears to change according to the external configuration.  A test of this 
hypothesis is to see what happens when the common-mode current is disrupted; not by indulgence 
in illegal wiring practices, but by the insertion of one or more common-mode chokes into the loop.
     Two common-mode chokes (1:1 unun transformers) were constructed as shown below.  They 
were made using ferrite sleeves having an AL value of 2.5 μH/turn2, and ferrite rings having an AL 
value of 400 nH/turn2, (inductance factors were measured at 1.5915 MHz).  Both chokes have three 
sections of differing inductance adding up to 47.5 μH (X = +475 Ω at 1.5915 MHz), and were made
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deliberately different from each other; the point being that a series resonance in any section can 
never bring the total reactance to zero.

Multi-stage common-mode chokes. The cable is URM108.

It was found that the reciprocity error fell within the measurement repeatability at low frequencies 
with a single choke in either the lead from the generator or the lead to the receiver.  It was also 
discovered that the balance point could be shifted by connecting a jumper lead across the choke 
(i.e., by shorting-together the outer bodies of the two BNC plugs), thereby directly confirming the 
common-mode signal hypothesis.  Inserting chokes in both sides gave a lesser but still worthwhile 
improvement.  Note that there is a general point here relating to the extraction of a signal from any 
bridge for processing by mains powered circuitry, or likewise for feeding a signal into a bridge for 
purposes such as quiet tuning11 12.  If the auxiliary electronics is earthed in any way; then for best 
accuracy, a common-mode choke should be used to isolate it from the main transmission line.

11 Simple Quiet Tuning and Matching of Antennas, M. J. Underhill G3LHZ, Rad Com, May 1981, p420-422.
An antenna can be matched in receive mode by injecting a small signal into a reverse wave directional coupler in the
line to the ATU.  The antenna is matched when the level of injected signal heard in the receiver is minimised.  The 
injected signal can be from a noise source, or it can be a comb-spectrum from, say, a crystal calibrator.  The injected 
signal is too weak to interfere with other stations, being undetectable at about 1 wavelength from the antenna.

12 A Quiet Antenna Tuner, Tony Lymer GM0DHD, QEX May/June 2002, p9-12.
Underhill-Lewis method using a single-core version of the Sontheimer-Fredrick bridge (1.8 - 146 MHz).
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Optimised experimental configuration. Common-mode chokes (47.5 μH each) are 
connected on both sides.  The inductance balance coil (discussed in Section 17) is 
used for bridge optimisation, but not during the determination of basic circuit 
parameters.
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Bridge on baseboard with 40 pF variable capacitor fitted.

Bridge on baseboard with 500 pF variable capacitor fitted.
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Close-up view of the voltage-sampling network.  To minimise interaction between the in-phase 
and quadrature balance adjustments; the potentiometer mounting bracket is made from 
polypropylene and the network is earthed at the detector socket via a copper strap.
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Plan view of bridge with 500 pF capacitor fitted.  The bridge is quickly released by loosening 
three knurled nuts and pulling it away from the reference capacitor.  An inductance balance coil is 
not fitted in the configuration shown (it is bypassed by a wire link, in series with C2 ,  adjacent to the
RF input socket.)
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8.  Reciprocity error due to radiated signals 
After elimination of the common-mode signal, and after changing the transformer secondary load 
resistor from two 100 Ω resistors in parallel (about 1 pF parallel capacitance) to a single 49.9 Ω 
resistor (about 0.4 pF), the apparent phase-crossover frequency for the 12-turn transformer went up 
from 14.1 MHz to 22 MHz.  At 21 MHz, with Rv  still in range of the two Cermet pots, it was found 
that there was still some residual reciprocity error.  The error was tiny in phase terms, but sufficient 
to affect Rv  by several kΩ in this critical region.
     In the process of investigating this problem it was discovered that, having balanced the bridge to 
the point where the signal had disappeared into the receiver noise; a weak signal (not sufficient to 
move the S-meter) would reappear on unplugging the cable leading to the radio receiver.  Hence the
bridge balance point was being skewed slightly by a radiated signal picked up by the cable.  The 
signal became stronger on moving the receiver cable close to the generator cable. 
     A major part of this spurious sensitivity was traced to a nickel-plated connector at the receiver 
antenna socket (several milli Ohms resistance at the shield connection).  Replacing the offending 
connector with a silver-plated version reduced the signal by an order of magnitude.  The very weak 
residual signal was then attributed to the imperfect shielding provided by the RG58 cable in use at 
the time.  When the receiver cable was changed to triple-shielded Belden 9880 10Base5 Ethernet 
cable there was no detectable pickup from the generator with the cable unplugged from the bridge, 
regardless of proximity to the generator cable.  The bridge showed perfect reciprocity within the 
measurement repeatability at all frequencies after that substitution.

Receiver input cable.  Foil and double-braid shielded Belden 9880 (10Base-5 cable) with silver-
plated connectors and adapters.  The four Mn-Zn Ferrite beads at the receiver end give an 
additional 30 μH of choking inductance.  Immunity from shield pickup requires that the PL259 
connector and elbow at the receiver socket are done-up tightly.
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9.  Capacitance of the reference load resistor 
A coaxial resistor, for all its pretensions, is just a resistor in a tube; and low value resistors 
(presuming that they are properly designed for RF applications) tend to be capacitive at high 
frequencies.  As will be demonstrated in Section 14, a correction for the secondary parallel 
capacitance of the current transformer can be had by connecting a capacitor across the load port.  
Therefore, any parasitic capacitance across the reference load gives the impression that the 'self 
capacitance' of the transformer is less than it really is.
     With the test bridge operating at a frequency just below the phase crossover point (21 MHz), a 
variety of load resistors of differing sizes and power-ratings were tried in order to see the effect on 
Rv .  Observe here that load resistors with residual capacitance have the effect of shifting the 
apparent phase crossover to higher frequency; i.e., the load with the least capacitance (the best 
reference load) gives the lowest measured crossover frequency.  Rv  was found to vary over the 
range from about 7 kΩ to 16 kΩ depending on the load, but note that this only corresponds to about 
0.1° change in phase angle.  Perhaps not surprisingly, the best resistor (the one giving Rv =16 kΩ) 
was also physically the smallest.
     In the absence of evidence to the contrary, the best selected reference load resistor has to be 
assumed to be a pure resistance.  Any residual reactance adds uncertainty to to the derived 
secondary parallel capacitance Ci .
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10. Post optimisation test data 
After completion of the optimisation work, two new datasets for the 12-turn FT50-61 current 
transformer were obtained.  The first experiment was conducted using the 500 pF variable reference
capacitor, and the second with the 40 pF (8-48 pF) variable capacitor and a 68 pF padding capacitor 
to bring it into range.  The data analyses were performed as described in previous sections, the only 
difference being that values for C1'm  were obtained from capacitor dial-readings by means of the 
appropriate fitting function (see sheet 4 of spreadsheets testbrg61-12_2.ods and testbrg61-
12_3.ods ).  The value for C2 was amended to 10.3 ±0.2 pF for both of these fits on the basis of an 
estimated 0.3 pF of strays across the upper voltage-sampling arm.
     In both experiments, the data for  C1'  were fitted perfectly on the assumption that the non-
ideality of the reference capacitor can be modelled as a series inductance.  In both cases, the graph 
of residuals (observed minus calculated) was chaotically scattered around zero, indicating that what 
is is left over after the fitting process is mainly statistical noise.  The 500 pF reference capacitor 
turned out to have an effective series inductance of 62 nH and a precision of ±0.14 pF (obtained by 
adjusting the ESD of an observation to obtain a reduced χ² of about 1).  The 8 pF to 48 pF variable 
capacitor with 68 pF in parallel turned out to have a effective inductance of 81 nH and a precision 
of 0.08 pF.  As mentioned previously, the inductances obtained from the fits are slightly lower than 
the true values due to the neglect of the inductance associated with C2 .
     The extracted voltage-sampling network parameters are summarised below.  Note that the 
accuracy of the capacitance measurement (about ±1.1 pF) is a lot worse than the precision, the 
overall uncertainty being responsible for the differences between C1' and C1s  for the two 
experiments; but for bridge evaluation purposes, it is the change in capacitance rather than the 
absolute capacitance that must be determined.

500 pF ref. cap. 40 pF ref. cap.

Data file testbrg61-12_2.ods testbrg61-12_3.ods See sheets 2 and 3

Parameter Value ±ESD Value ±ESD

C1' 109.0 ±1.1 pF 107.3 ±1.1 pF Corrected for L1

L1 62.3 ±0.5 nH 80.8 ±0.3 nH Effective inductance of the ref. cap.

C1s 10.8 ±3 pF 12.5 ±3 pF Stray capacitance.

The data for Rv  were not so well behaved and show a clear deviation from the model in the 14 MHz
to 21 MHz region, as can be seen in the graph of Li'=N R0 C2 Rv  vs. frequency reproduced below.
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It was found for both experiments, that if the uncertainty of an Rv  measurement was taken to be 
0.25%, then the datasets could be fitted up to 14 MHz with a reduced χ²  (i.e.,  χ²/ν ) of just less than
1.  Trying to fit all of the data however, pushed the  χ²/ν  to about 60, indicating a failure of the 
model (or perhaps, given the faith often placed in naive circuit simulations, a failure of reality). 
Interestingly, if the data were only fitted up to 5 MHz, the χ²/ν went to 1 for an ESD of observation 
of about 0.06%, which happens to be the same as the stated accuracy of the Fluke 8060A used for 
the resistance measurements.  This would seem to indicate that the balance-point determinations 
were very nearly exact, and that something not described by the model is happening above 5 MHz.

There are several possible sources for the anomaly, all of which might be active to some extent:

● High-order effects due to circuit parasitic reactances.

● Failure to include transformer leakage inductance and winding resistance in the model.

● Breakdown of the lumped-component approximation (transmission-line effect).

● Dispersion in the permittivity associated with the transformer 'self-capacitance' (variation of 
velocity factor with frequency).

● Dispersion in the permeability, and hence AL , of the transformer core, causing Li  to vary with 
frequency.

In looking for evidence of dispersive effects, we can observe that every measurement of Rv  can be 
regarded as an indirect measurement of Ci  if Li  is a constant, or as an indirect measurement of Li  if 
Ci  is a constant.  Hence, if Li  is set to an estimated value, we can use the observed value of Rv  at a 
particular frequency to compute a corresponding value for Ci .  Similarly, if Ci  is set to an estimated 
value, we can use the observed value of Rv to compute a corresponding value for Li .  The required 
relationship for such computations was given earlier as equation (3.3):
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1 / (N R0 C2 Rv ) = (1 / Li ) - (2πf)² Ci 

Rearranging this in favour of Ci  gives:

Ci = [ (1 / Li ) - 1 / (N R0 C2 Rv ) ] / (2πf)²     . . . . . (10.1)

The result of computing Ci  in this way is shown in the graph below.  The upper curve uses 
Li =8.970 μH, which is the inductance obtained by fitting all of the data up to 14 MHz.  The lower 
curve uses Li =8.982 μH, which is the inductance obtained by fitting all the data up to 5 MHz.

The capacitance graphs are chaotic below 3 MHz because the small amount of information in each 
observation amplifies the measurement uncertainty.  Ci  begins to assert itself above 3 MHz 
however, and soon becomes well defined.  What we see then is a hump in the apparent capacitance 
between about 6 MHz and 20 MHz, and this is indeed characteristic of a dispersive effect.  It is not 
necessarily indicative of a dispersion in permittivity however, as we may observe by differentiating 
equation (10.1) with respect to Li .

∂Ci /∂Li = -1 / (2πf Li )²

Ci  is negatively correlated with Li ; and we could flatten the line for Ci  by allowing Li  to rise in the 
6 MHz to 20 MHz region.  There is very good reason for wanting to do so, as can be seen by 
examining the manufacturer's graph of complex permeability for type 61 ferrite material.
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The manufacturer's data show classic dispersive behaviour, with the onset becoming evident in the 
real part of the permeability at about 8 MHz.  Note that the inductance of a coil is directly 
proportional to the permeability of the core material.  Hence, viewing the graph, we would expect to
see a rise in Li  on moving above 8 MHz, followed by a fall commencing somewhere around 
18 MHz.

Rearranging equation (3.3) in favour of Li  gives:

Li = 1 / [ (2πf)² Ci + 1 / (N R0 C2 Rv ) ]         . . . . . (10.2)

Shown below are two graphs of Li  computed from Rv  via equation (10.2).  The upper curve uses 
Ci = 5.74 pF, which is the value obtained by fitting the data up to 5 MHz, and the lower curve uses 
Ci = 6.29 pF, which is the value obtained by fitting the data up to 14 MHz.
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The upper curve bears a striking similarity to the dispersion shown in the permeability data and 
must leave us in little doubt that one cause of deviation from the model has been identified.  There 
is a little more to it than that however.  Estimation from the manufacturer's graph shows that the 
permeability of the ferrite rises from 125 at low frequencies to about 160 at 18 MHz.  Hence we 
would expect the inductance to rise in proportion from 9 μH at low frequencies to 11.5 μH at 
18 MHz.  Computed on the basis that Ci  is constant however, the inductance starts to drop away at 
about 15 MHz after a rise to only 9.4 μH.  This could be indicative of other unknown effects, but it 
could also merely indicate the increasing dominance of the capacitance, and inapplicability of the 
manufacturer's permeability graph.  By modelling the complex permeability on the basis of a single 
relaxation process it was possible to produce curves consistent with the data, but this matter is too 
conjectural to be worth pursuing.
     Note, incidentally, that these investigations of model breakdown do not imply that the 
experiment has in some way failed.  It is rather the fact that the data are somewhat better than 
expected.  Had the Rv  measurements been made with a meter having an accuracy of 2% instead of 
0.06% , then all of the data could have been fitted with a  χ²/ν  of 1 , and we would have remained 
blissfully unaware of the additional information lurking in the noise.

Shown below is the spread of results obtained by fitting the quadrature-balance data in different 
ways.  Given that we know that the AL value for the core varies with frequency above 5 MHz, it 
seems sensible to take the low-frequency inductance value from the average of the RV readings up to
5 MHz.
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500 pF ref. cap. 40 pF ref. cap.

Data file testbrg61-12_2.ods testbrg61-12_3.ods See sheet 1*

Parameter Value ±ESD Value ±ESD ESD in grey is precision from the fit.

Li

8.98 ±0.18 μH 9.01 ±0.18 μH Fitting data up to 5 MHz

8.97 ±0.18 μH 8.98 ±0.18 μH Fitting data up to 14 MHz

9.08 ±0.18 μH 9.09±0.18 μH Fitting all data

Ci

(apparent)

5.74 ±0.07 pF 5.74 ±0.08 pF Fitting data up to 5 MHz

6.29 ±0.13 pF 6.55 ±0.02 pF Fitting data up to 14 MHz

5.81 ±0.03 pF 6.11 ±0.03 pF Fitting all data

* L2 fitting flag (Sheet 1, cell B7) must be set to zero to reproduce these results.

The uncertainties for the capacitance determinations represent precision from the fit, not accuracy. 
As we shall soon see moreover, there is no point in considering any of these results to represent a 
good value for Ci  because there are a number of systematic error contributions that need to be taken
into account first.  With a view to understanding how large the residual systematic errors are 
however, it is interesting to compare the results obtained so far with the hypothesis that 'self 
capacitance' is a lumped-component alias for time delay.  If the effective velocity for an 
electromagnetic wave travelling along the winding wire is taken to be exactly c (the speed of light), 
then the equivalent capacitance is given by:

Ci' = ℓw / (2 Ri c)

Where ℓw  is the length of the secondary winding13.  The wire length for the test transformer was 
228 mm, which predicts Ci' =7.6 pF.  Naively adding about 0.4 pF to this, to allow for the 
capacitance of the secondary load resistor, we thus predict Ci = 8 pF.  From this we might conclude; 
either, that the effective velocity is greater than c ; or, that the data are skewed.  A velocity-factor of 
greater than 1 is by no means impossible, but for a transmission line system in proximity to a high-
permeability medium it is only likely to occur on the high-frequency side of a major dispersion such
as the half-wave line resonance (which for 0.228 m of wire occurs at 657 MHz).  Hence we are 
looking for errors of at least 2 pF to 2.5 pF.
     As mentioned previously, we are to some extent cursed by the quality of the data; and there has 
to be a cut-off point in the matter of how far we go in accounting for minor discrepancies.  
Engaging in a search for a missing 2 pF might therefore seem unreasonable; but any effect that 
makes the coil self-capacitance seem smaller than it really is can provide the basis for a high-
frequency phase-compensation scheme.

13 Current transformers, D W Knight, www.g3ynh.info/zdocs/bridges/Xformers/part_2.html, section 13
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11. Faraday shield displacement current 
In the test bridge used during the previous experiments (shown below), the Faraday shield earth 
connection was made on the load-port side.  The unconnected end of the coaxial-cable braid 
protruded from the transformer core to a distance of about 13.5 mm when measured from the 
middle of the core.  50 Ω coax. has a capacitance per unit length (C0 ) of about 100 ±5 pF/m (a 
34.5 mm length of the URM108 used here measured 33 pF, i.e., 96 pF/m), and so the capacitance 
between the protruding part of the braid and the central conductor, allowing a little extra for the 
fringing fields at the end, is about 1.6 ±0.1 pF.  The displacement current for this capacitance passes
through the transformer core on its way to ground and will therefore add a quadrature component to
the transformer output.

The situation is represented in the equivalent circuit shown below.  Subject to the approximation 
that no voltage is developed across the shield (the consequences of which will be discussed in 
section 18b) the primary current is I + Ish, where:

I = V / R0

and

Ish = V' / ( jXCsh )

or, using the approximation that V' = V

Ish = V / ( jXCsh )

Now, if we use the definition:

Zi = (Ri // jXLi // jXCi )

Then, by the ampere-turns rule:
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Vi = (I + Ish ) Zi / N

i.e.:

Vi = 
V Zi 

N

┌
│
│
└

1 

R0

+
1 

jXCsh

┐
│
│
┘

Now notice that

( 1/R0 ) + ( 1/jXCsh ) = 1 / ( R0 // jXCsh )

Hence, in terms of its effect on the current-transformer output, the Faraday shield protrusion can be 
considered to act (to a fair approximation) as an extra capacitance in parallel with the primary load. 
     Note incidentally, that it is only the unconnected portion of the Faraday shield protruding beyond
the exact centre of the transformer core that concerns us here.  The shield on the load side also has 
capacitance, but if the cable used has a characteristic resistance equal to the load resistance R0 , then
the inductance per unit length (L0 ) balances the capacitance per unit length such that √(L0 /C0 ) = R0  
and there is no net effect.  It is the fact that the capacitive current from the unterminated end of the 
shield must pass through the transformer core (and only that) that gives rise to the additional 
quadrature component in the transformer output.
     What we need to do now is to write an expression for the current transfer function and compare 
it with the transfer function for a model with no Faraday shield protrusion capacitance.  The 
difference in the imaginary part between the new model and the old model will tell us the apparent 
or 'effective' secondary parallel capacitance (Cieff   say) in the event that the Faraday shield protrusion
displacement-current exists.

For a transformer with no shield displacement-current, the transfer function is:

Vi / V = Zi / (N R0 )

The apparent secondary capacitance is of course hidden within Zi , and since it is easier to expand 
this in reciprocal form, we will work with reciprocal transfer functions.  Hence:

V 

Vi

= N R0

┌
│
│
└

1 

Rieff

+
1 

jXLi

+
1 

jXCieff

┐
│
│
┘

(11.1)

Notice here that Ri has also been changed to an effective value to allow for the fact that if the shield 
protrusion capacitance (Csh ) changes the phase of the transformer output, then it will also affect the 
magnitude (and hence the apparent transfer efficiency).
     Now, to include the effect of Csh , we simply replace R0 with ( R0 // jXCsh ), and Ci and Ri change 
from their effective values to their 'true' (i.e., less-seriously skewed) values.  Thus:
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V 

Vi

= N ( R0 // jXCsh )

┌
│
│
└

1 

Ri

+
1 

jXLi

+
1 

jXCi

┐
│
│
┘

Expanding the parallel product gives:

V

Vi

= N
R0 jXCsh

( R0 + jXCsh )

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

and multiplying numerator and denominator by the complex conjugate of the denominator gives:

V

Vi

= N
R0 jXCsh ( R0 - jXCsh ) 

( R0² + XCsh² )

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

This is not a particularly tractable expression as it stands, but we can make the observation here that
Csh  is a small capacitance in HF radio engineering terms and therefore XCsh² >> R0² .  Hence we can 
delete R0²  from the denominator without making a significant difference.  Thus: 

V

Vi

= N R0

jXCsh ( R0 - jXCsh ) 

XCsh²

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

Multiplying out the left-most bracket (and noting that j² = -1 ) gives:

V

Vi

= N R0 (1 + jR0 / XCsh )

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

and multiplying out completely gives:

V

Vi

= N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

+
jR0

XCsh Ri

+
jR0

jXCsh XLi

+
jR0

jXCsh XCi

┐
│
│
┘

Now, noting that j= -1/j , the admittances in brackets can be regrouped thus :

V

Vi

= N R0

┌
│
│
└

1

Ri

+
R0

XCsh XLi

+
R0

XCsh XCi

+
1

jXLi

+
1

jXCi

-
R0

jXCsh Ri

┐
│
│
┘
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Comparing this with equation (11.1), we get:

1 

Rieff

=
1 

Ri

+
R0

XCsh XLi

+
R0

XCsh XCi

which is the same as:

Rieff = Ri // [ -Li / ( Csh R0 ) ] // ( XCsh XCi / R0 ) 11.2

Thus the shield displacement-current does affect the in-phase output, but since the magnitudes of 
the additional parallel components will be much larger than Ri , we can expect the difference 
identified here to be lost in the uncertainty of the transformer efficiency.

The capacitive susceptances tell a different story however:

1

XCieff

=
1

XCi

-
R0

XCsh Ri

i.e.:

-2πf Cieff = -2πf Ci + 2πf Csh R0 / Ri

Hence:

Cieff = Ci - Csh R0 / Ri 11.3

This expression tells us that if the earth connection to the Faraday shield is made on the load side of 
the transformer core, then the capacitance of the braid protruding from the other side reduces the 
apparent secondary parallel capacitance.  In the preceding experiments, with R0 =Ri , we measured 
an effective secondary capacitance of about 6 pF, expected at least 8 pF on the basis of time delay, 
and the shield protrusion capacitance was about 1.6 pF.  So far, so good, but the true test of a 
hypothesis lies not in what it explains but in what it predicts.

Consider what happens when the earth
connection to the Faraday shield is made
on the generator side. The currents flowing
through the transformer core are shown on
the circuit diagram on the right. Now we
have:

Vi = (I + Ish - Ish) Zi / N

i.e.:

Vi = I Zi / N

The shield protrusion displacement-current makes a hairpin loop through the core and cancels itself 
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out.  Hence we predict the following:

● When the shield earth is on the generator side, the apparent secondary capacitance will be higher 
than for the converse configuration. 

● When R0 = Ri , the difference will be approximately equal to the capacitance of the shield 
protrusion for the case when the shield is earthed on the load side. 

We can also note that the value of Ci obtained from bridge-parameter measurements when the shield
is earthed on the generator side is the best starting point for estimating the true secondary 
capacitance.

In order to test the theory outlined above, the bridge used in the previous experiments was rebuilt 
with the Faraday shield earth connection on the generator side.  The arrangement is shown below.

Care was taken to minimise disturbance to the circuit layout, but inevitably the various stray 
capacitances could not be exactly the same as before.  The shield protruding beyond the transformer
towards the load port measured 18.5 mm from the middle of the core (about 2.1 pF) but in this case 
we do not expect it to contribute to the apparent secondary capacitance.  It was found that the phase 
crossover frequency had dropped from about 21 MHz to just over 18 MHz as a result of the shield 
reversal.  Bridge balance datasets were acquired using both of the available reference capacitors and
the results are summarised and compared with the previous experiments in the tables below.  More 
detail can be had by downloading and studying the spreadsheets.
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Shield earthed on load
side

Shield earthed on
generator side

500 pF ref. cap.

Spreadsheet testbrg61-12_2.ods testbrg61-12_4.ods See sheets 1 - 3.

Parameter Value ±ESD Value ±ESD ESD in grey is precision from fit.

C1' 109.0 ±1.1 pF 109.3 ±1.1 pF

L1 62.3 ±0.5 nH 61.6 ±0.4 nH

C1s 10.8 ±3 pF 10.4 ±3 pF

Li 8.98 ±0.18 μH 8.95 ±0.18 μH
Fitting data up to 5 MHz*

Ci 5.74 ±0.07 pF 7.94 ±0.07 pF

Shield earthed on load
side

Shield earthed on
generator side

40 pF ref. cap.

Spreadsheet testbrg61-12_3.ods testbrg61-12_5.ods See sheets 1 - 3.

Parameter Value ±ESD Value ±ESD ESD in grey is precision from fit.

C1' 107.3 ±1.1 pF 107.4 ±1.1 pF

L1 80.8 ±0.3 nH 79.4 ±0.3 nH

C1s 12.5 ±3 pF 12.4 ±3 pF

Li 9.01 ±0.18 μH 8.94 ±0.18 μH Fitting data up to 5 MHz*

Ci 5.74 ±0.08 pF 8.14 ±0.06 pF

* L2  fitting flag (Sheet 1, cell B7) must be set to zero to reproduce these results.

Shield reversal increased the apparent secondary capacitance by 2.2 pF, as against a prediction of 
about 1.6 pF based on the length of the shield protrusion when the earth was on the load side.  Note 
here that the precision from the fit is not a fair estimate of the standard deviation of the secondary 
capacitance.  Given the difficulty of maintaining exactly constant experimental conditions apart 
from the shield reversal, the true ESD is of the order of ±1 pF.  Hence the experiment does confirm 
the shield displacement-current hypothesis to within the experimental accuracy. 

For those who remain sceptical of shield displacement-current, the following experiment should 
settle any residual doubts.  The bridge was re-jigged with the Faraday-shield earth on the load side 
and a trimmer capacitor was connected from the generator terminal to the unconnected end of the 
shield.  The arrangement is shown below.
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The bridge was balanced at 2 MHz by adjustment of RV .  Then the generator was tuned to 30 MHz, 
and without adjusting RV , the bridge was balanced by adjusting the trimmer.  Adjustments of RV  at 
2 MHz and the trimmer at 30 MHz were repeated until no further improvement could be obtained 
(only two rounds of iteration were required in practice).  The result was a bridge that balanced with 
the same value of RV  at both 2 MHz and 30 MHz.  Only bridges with no effective secondary 
capacitance can do this. 
     Thus we must observe that, although the Faraday shield is at approximately earth-potential, it 
does not perform the simple screening function that is generally assumed.  If the shield is grounded 
on the load side, the capacitance of the protrusion on the generator side partially neutralises the 
transformer secondary capacitance.  Injecting an additional capacitive current into the free end of 
the shield can give complete neutralisation, thus confirming the displacement-current effect.  It 
follows, that if the shield protrusion is too long, the transformer can appear to have a negative self-
capacitance.
     For the neutralisation experiment described above, the shield protrusion measured 16.5 mm from
the middle of the transformer core (about 1.9 pF). The trimmer was carefully removed after 
adjustment and its capacitance was measured to be 5.6 pF.  Strays across the trimmer body when 
mounted in the test jig were probably about 0.1 pF.  Hence, by this crude method, we would expect 
the effective value of Ci  to be about 7.6 pF with the shield earth on the generator side.
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12. Inductance of the upper voltage-sampling arm 
The quadrature balance condition for Douma's bridge was given in section 3 as:

1

N R0 Rv C2

=
1

Li

- (2πf)² Ci (3.3)

As has been mentioned previously however, this expression contains the assumption that C2 does 
not vary with frequency, i.e., it assumes that there is no inductance in the upper voltage-sampling 
arm.  More realistically, the wiring between the take-off point and the summing point has 
considerable inductance, as does the capacitor itself, and the total must amount to several tens of 
nano-Henries.  This parasitic inductance is represented as a lumped component L2 in the diagram 
below.

We can account for the existence
of L2 by replacing C2 , in equation
(3.3) with a new quantity C2' .  A
definition for C2' is obtained by
working backwards from the total
reactance of the arm, i.e.:

XC2' = XC2 + XL2

Hence:

-1 / ( 2πf C2' ) = [ -1/( 2πf C2 ) ] + 2πf L2

which, upon multiplying both sides by -2πf gives:

1 / C2' = (1 / C2 ) - ( 2πf )² L2 

We will leave the expression in its reciprocal form, because that is how we will need to use it.

Equation (3.3), with the modified definition for C2 becomes:

1 

N R0 Rv

┌
│
│
└

1

C2

- (2πf )² L2

┐
│
│
┘

=
1

Li

- (2πf)² Ci (12.1)

This can be re-grouped:

1

N R0 Rv C2

=
1

Li

- (2πf)²

┌
│
│
└

Ci -
L2

N Rv R0

┐
│
│
┘

(12.2)

Hence, comparing this with equation (3.3) reproduced above, we can see that L2 reduces the 
apparent or 'effective' value of the secondary parallel capacitance.  The adjustment caused by L2 can
be written:
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Cieff = Ci - L2 / ( N Rv R0 ) 12.3

Now note that, if Ci  represents a time delay in the transformer, we would expect L2 to decrease its 
apparent value because a series inductance in the path through the voltage sampling network will 
have the effect of delaying the voltage sample.  It is not so much that L2 stores energy, but that it 
increases the distance that EM radiation has to travel before reaching the summing point.

Expression (12.3) above is perfectly valid for a working bridge, which has a fixed value for Rv .  For
the test bridge however, which is operated by adjusting Rv  to track the changing balance point, it 
causes Cieff  to become frequency dependent.  The result will be a slight deviation from the model 
used for the data analysis technique developed in section 3.  The solution is to correct the y-values 
used in the least-squares fit by subtracting the quantity (2πf )² L2 / (N R0 Rv ); i.e., the linear 
regression formula now becomes:

1 

N R0 Rv

┌
│
│
└

1

C2

- (2πf )² L2

┐
│
│
┘

=
1

Li

- (2πf)² Ci

y = a + x b

In this way, a value for Ci  that is already corrected for L2  is obtained from the fit.  The correction 
has in fact been included in the spreadsheets used for the post-optimisation data analysis (version 
1.00 and above) and a flag is provided so that it can be turned on and off.  For the test bridges 
studied so far, putting in 50 nH as a plausible value for L2  causes a slight decrease in the reduced χ² 
for the fit and increases Ci  by about 0.06 pF.  Hence the small parasitic inductance of the upper 
voltage-sampling arm does not make much difference to the apparent value of Ci , but a more 
substantial difference will be obtained when we later insert an inductor in series with C2 to correct 
the in-phase balance condition for the inductance of the lower potential-divider capacitor (see 
section 17 ). 
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13. Inductance of the secondary load resistor 
In section 11, we wrote down an expression for the reciprocal transfer function of the 'ideal current 
transformer with parallel reactance' model:

V

Vi

= N R0

┌
│
│
└

1

Rieff

+
1

jXLi

 +
1

jXCieff

┐
│
│
┘

(11.1)

This can be used as the basis for working-out all of the parasitic reactance corrections associated 
with the current transformer network; the trick being to include the component and drop the 
"eff(ective)" from the subscripts on Ri and Ci .  Rearranging the new equation into the same form as 
(11.1) allows us to find the correction by comparing terms.

In the circuit on the right, the secondary load resistor has
been allowed to have a finite inductance Lh . Thus the
impedance of the secondary load resistor (ZRi  say)
becomes:

ZRieff = Ri + jXLh

Substituting this into equation (11.1) (and changing XCieff 

to XCi ) gives:

V 

Vi

= N R0

┌
│
│
└

1

Ri + jXLh

+
1

jXLi

+
1

jXCi

┐
│
│
┘

Multiplying numerator and denominator of the first term in square brackets by the complex 
conjugate of its denominator then gives:

V 

Vi

= N R0

┌
│
│
└

Ri - jXLh

Ri² + XLh²

+
1

jXLi

+
1

jXCi

┐
│
│
┘

But Lh is a very small inductance in HF radio engineering terns ( <20 nH if the resistor wires are 
kept short) and so we may reasonably apply the approximation Ri² >>XLh² .  This allows us to delete
XLh² from the denominator of the first term.  Hence:

V

Vi
= N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

-
jXLh 

Ri²

┐
│
│
┘

The term containing XLh has been grouped with the capacitive admittances because an inductance 
divided by a resistance-squared has dimensions of capacitance.  Comparing this with equation 
(11.1) reproduced above, and noting that j=-1/j, we get:
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-2πf Cieff  = -2πf Ci + 2πf Lh / Ri²

i.e.:

Cieff  = Ci - Lh / Ri² 13.1

In the optimised test bridge, the secondary was terminated by a single 49.9 Ω  0.6 W metal-film 
resistor.  It was thought initially that the use of such a component would help to minimise parasitic 
reactance, but suspicions began to arise in the process of reconciling the data from different 
experiments.  Finally, the paint was scraped from one of the units to see what lay beneath, and the 
sorry outcome is shown below.

Low Q current-sheet inductor described in the 
sales literature as a "resistor".
N = 4.5 ,  ℓ = 4.2 mm ,  d = 1.7 mm , 
giving Lbody =11.6 nH . 
R = 49.9 Ω.
For C = 0.4 pF ,  SRF = 2.3 GHz .

We might guess that cutting a helix is cheaper than depositing a thinner film or making a number of 
offset slits.  Whatever the reason for the abomination however, the result is not optimal for RF 
applications.  A current-sheet formula gives the partial inductance of the body as 11.6 nH which, 
with an allowance for the end-caps and the short connecting wires (the distance between the 
terminals was 10.5 mm), makes the total partial inductance contribution up to about 15 ±2 nH.  A 
properly designed resistor of the same body and lead dimensions would have had an inductance of 
6 nH.
     Using equation (13.1), it can be determined that a 49.9 Ω resistor with an inductance of 15 ±2 
nH reduces the apparent secondary capacitance by 6 ±0.8 pF.  Hence, the inductance of the 
secondary load resistor has a large effect on the apparent value of Ci .
     Equation (13.1) also tells us that the secondary capacitance can be neutralised by adjusting the 
series inductance of the secondary load resistor.  This is the basis of an empirical high-frequency 
bridge compensation scheme patented by Will Herzog, K2LB, in 1988 [US Pat. No. 4739515].  
Hence Lh is 'Herzog's inductance', and the subscript h is used here for that reason.  For bridges with 
relatively few turns in the transformer secondary, such as the ones so-far studied, the additional 
inductance required is extremely small; and indeed, it is possible to over-compensate merely by 
leaving long wires on the resistor.

The secondary parallel capacitance can be split into two components:

Ci = Ci' + Cis

Where Ci' is the 'self-capacitance' of the coil and Cis  is the stray capacitance across the winding.  
Hence we can rewrite equation (13.1):

Cieff  = Ci' + Cis - Lh / Ri² 13.2
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Cis  is mainly attributable to the load resistor, and for a typical ½ W metal-film resistor amounts to 
about 0.4 pF.  Hence, in this application, the inductance of the resistor reduces the apparent self-
capacitance to a greater extent than the capacitance of the resistor increases it. 

Notice here that if two resistors in parallel are used for the secondary load, the inductance will be 
halved and the capacitance doubled.  The total contribution from the resistor in the example above 
is: 

-6 + 0.4 = -5.6 pF

but for two ½ W resistors of similar inductance in parallel it would be

-3 + 0.8 = -2.2 pF

Observe also that the resistor provides a neutral termination when:

Cis - Lh / Ri² = 0

i.e., when

Ri = √( Lh / Cis )

This is a transmission-line formula that defines the properties of a perfectly matched terminating 
resistor.  The smaller the values of inductance and capacitance used to match the resistance, the 
higher the self-resonance frequency (SRF) of the resistor.
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14. Mismatch of the main transmission line 
The main transmission line or 'through-line'; passing from the generator port, through the 
transformer core, to the load port; is not correctly terminated.  In particular, the short sections of 
unshielded central conductor before and after the Faraday shield will raise the average characteristic
resistance to be somewhat greater than that of the shield cable.

The impedance transformation due to a lossless transmission line is given by:

Zin = 
Rline [ ZL + jRline Tan(2π ℓ' / λ0 ) ] 

[Rline + jZL Tan(2π ℓ' / λ0 ) ]

where: Rline  is the characteristic resistance (here we use Rline  instead of R0 to avoid confusion with 
the reference load resistor), ZL  is the load impedance, ℓ' is the electrical length of the line, Zin is the 
impedance looking into the line, λ0 is the free-space wavelength, and  2π ℓ' / λ0  is in radians.
     In the test bridge, the distance from the centre of the transformer core to the load terminal is 
about 3 cm.  About 2 cm of that distance lies inside a coaxial cable with PTFE insulation.  PTFE 
has a dielectric constant (εr' ) of about 2.05 , and hence a velocity factor of  1 / √εr' = 0.7 .  Thus the 
total electrical distance ℓ'  is about 1 + 2 / 0.7 = 3.9 cm .  At the high end of the HF spectrum, the 
wavelength is 10 m. Hence Tan(2π ℓ' / λ0 ) = 0.0082 .  If ZL = 50 +j0 Ω , and we guess that the 
average characteristic resistance is about 60 Ω , then the transmission line equation gives 
Zin = 49.994 +j0.151 Ω , which has a phase angle of 0.17°.  This is a very small phase error of 
course; but as we will see, it is actually at least twenty times greater than the resolution of the 
experimental method, and a better understanding of the bridge phase response can be had by taking 
it into account.

The characteristic resistance (or 'surge resistance') of a lossless transmission line is given by:

Rline = √( L0 / C0 )

where L0  is the inductance per unit length and C0  is the capacitance per unit length.  For a short 
length of line, we can treat the distributed inductance and capacitance as lumped components L0 and
C0 .  Hence:

Rline = √( L0 / C0 )

A characteristic resistance higher than the target load resistance implies that the inductance will 
dominate slightly over the capacitance; and as we will now show, the result will be a shift in the 
apparent self-capacitance of the secondary winding.

The capacitance of the transmission line on the load side
of the transformer core is represented in the diagram on
the right.  We can account for it by replacing R0 with 
R0 // jXC0  in equation (11.1).  There is no need to bother
with the rest of the working however, because the situation
is exactly analogous to the effect of the Faraday shield
protrusion capacitance as discussed in section 11.  Hence,
taking the solution from equation (11.3):
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Cieff = Ci - C0 R0 / Ri 14.1

From the sign of the contribution, it is evident that the transformer secondary capacitance can be 
neutralised by placing a capacitor across the load port.

C0  will also have a small effect on the in-phase response of the transformer.  Taking the solution 
from equation(11.2) we get:

Rieff = Ri // [ -Li / ( C0 R0 ) ] // ( XC0 XCi / R0 ) 14.2

In order to account for the transmission-line inductance, we
can replace R0  in equation (11.1) with R0 +jXL0 .  This gives:

V

Vi

= N (R0 + jXL0 )

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

Since we need to put this into a form comparable to equation 
(11.1), we will start by factoring out R0 .  Thus:

V

Vi

= N R0

┌
│
│
└

1 +
jXL0

R0

┐
│
│
┘

┌
│
│
└

1 

Ri

+
1

jXLi

+
1 

jXCi

┐
│
│
┘

Multiplying-out the brackets gives:

V

Vi

= N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

+
jXL0

R0 Ri

+
jXL0 

jR0 XLi

+
jXL0 

jR0 XCi

┐
│
│
┘

and the terms can be regrouped into conductive, inductive and capacitive admittances:

V 

Vi

= N R0

┌
│
│
└

1 

Ri

+
L0 

R0 Li

+
XL0 

R0 XCi

+
1

jXLi

+
1

jXCi

-
XL0 

jR0 Ri

┐
│
│
┘

This allows us to make the identifications:

Cieff = Ci + L0 / (R0 Ri ) 14.3

and

Rieff = Ri // ( R0 Li / L0 ) // (R0 XCi / XL0 ) 14.4
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Now, to obtain the combined effect of the through-line inductance and capacitance on the apparent 
secondary capacitance, we combine equations (14.1) and (14.3):

Cieff = Ci + [ L0 / (R0 Ri )] - C0 R0 / Ri

i.e.:

Cieff = Ci + (1/Ri ) [ (L0 / R0) - C0 R0 ] 14.5

but recall that  Rline = √(L0 /C0 ) , i.e.,

L0 = C0 Rline²

Hence:

Cieff = Ci + (C0 / Ri ) [ (Rline² / R0 ) - R0 ]

or alternatively

Cieff = Ci + [ C0 / ( R0 Ri ) ] ( Rline² - R0² ) 14.6

which tells us that the through-line mismatch adds a fixed component to the apparent secondary 
capacitance, unless  Rline = R0 ,  in which case the contribution is zero.  If  Rline > R0 ,  as is usually the
case, the contribution is positive.
     One conclusion that we can draw here is that the stub of coaxial cable used for the Faraday-
shielded primary should normally have a characteristic resistance that is the same as R0 .  It is also 
advisable to keep the stripped sections before and after the transformer as short as possible, since 
these will raise the average surge-resistance of the through-line and so lower the phase-crossover 
frequency of the transformer output.

The effect of through-line mismatch on the in-phase transformer response is obtained by combining 
equations (14.2) and (14.4).

Rieff = Ri // ( R0 Li / L0 ) // [ -Li / ( C0 R0 ) ] // (R0 XCi / XL0 ) // ( XC0 XCi / R0 )

This is easier to parse when expressed as a series of conductances:

1

Rieff

=
1

Ri

+
L0

R0 Li

-
C0 R0

Li

+
XL0

R0 XCi

+
R0

XC0 XCi

Which can be rearranged thus:

1

Rieff

=
1

Ri

+
1

Li

┌
│
│
└

L0

R0

- C0 R0

┐
│
│
┘

- (2πf )² Ci

┌
│
│
└

L0

R0

- C0 R0

┐
│
│
┘
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and then factorised:

1

Rieff

=
1

Ri

+

┌
│
│
└

1

Li

-(2πf )² Ci

┐
│
│
┘

┌
│
│
└

L0

R0

- C0 R0

┐
│
│
┘

Once again we can use the substitution L0 = C0 Rline² , hence:

1

Rieff

=
1

Ri

+

┌
│
│
└

1

Li

-(2πf )² Ci

┐
│
│
┘

C0

R0

( Rline² - R0² )

As before, the contribution is zero when  Rline = R0 ,  but a frequency dependence is introduced when
there is a mismatch.  The change in the apparent efficiency of the transformer is however very weak
for realistic parameters ( <0.2% ), as can be seen by examining the simulation in the spreadsheet 
mismatch_sim.ods.  It is also similar in form to the effect of the inductance of the lower voltage 
sampling network capacitor, and so its effect on the in-phase balance condition will be absorbed 
into any inductance-balance correction.
     Notice incidentally that the factor  (1/Li ) - (2πf)² Ci  is 1 / Li' ,  which is the reciprocal of the 
apparent secondary inductance as used in the least-squares fitting procedure described in section 3.

One way to show the effect of the transmission-line mismatch is to measure (or attempt to measure)
the apparent secondary capacitance with two different values of load resistor.  This is done in the 
spreadsheets listed below:

testbrg61-12_6.ods 75.5 Ω reference load.  Generator-side shield earth.

testbrg61-12_7.ods 50 Ω reference load.  Generator-side shield earth.

The dominance of the line capacitance for the bridge with the 75.5 Ω load is so great that the 
apparent secondary capacitance is negative.
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15. Correction series for effective transformer-secondary capacitance 
The full menagerie of parasitic inductances and capacitances, or at least the ones that make a 
significant contribution, are shown on the diagram below.

Combining equations (13.1), (12.3), (14.1), (14.3) and (11.3) gives an arithmetic series for the 
apparent secondary capacitance of the current transformer; i.e., the capacitance that, in combination 
with the secondary coupled inductance Li  , determines the phase crossover frequency and the bridge
phase-error at high frequencies.

Cieff = Ci' + Cis -
Lh

Ri²
-

L2

N Rv R0

+
L0

Ri R0

-
C0 R0

Ri

-
Csh R0

Ri

(15.1)

Sec. Load VS network Through-line

It is now possible to see why there has never been a consistent view regarding the importance of 
transformer self-capacitance in determining bridge performance.  If the apparent secondary 
capacitance included in the basic model (section 2) is attributed to self-capacitance alone; then 
bridge designers (should they have a method for measuring it) will find that self-capacitance can be 
either positive, negative, or accidentally zero.  It all depends on the physical layout, the parasitic 
reactances of the components, and the lengths and diameters of the various wires and cables.  While
such issues remain uncontrolled, it will be impossible for one constructor to reproduce the results 
obtained by another.
     It is perhaps relevant at this point to ask whether equation (15.1) is complete (at least with regard
to effects that make a difference of more than about 0.1 pF), and the answer is "not quite".  There is 
nothing in the theory developed so-far that accounts for the fact that the effective velocity for a 
wave travelling in the line from the voltage sampling point to the current-transformer is less than c .
The PTFE dielectric used in the test bridge has a velocity factor of 0.7 .  The small additional delay 
will increase Cieff  slightly, but in terms of the model, it will merely decrease the effective inductance
of the upper voltage sampling arm (i.e, a small delay in the current sampling path is equivalent to a 
small advance in the voltage sampling path).
     In equation (15.1), all of the terms with a (-) sign represent possible methods for neutralising the 
transformer self-capacitance, and there are others.  Neutralisation techniques are explored in section
18.
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16. Bridge performance evaluation 
In normal design practice, component tolerances and uncertainty in the known value of the 
transformer secondary coupled inductance dictate that the LF compensation resistance Rv  should be
made adjustable.  Likewise, a lack of knowledge of the transformer losses and coupling factor and 
the amount of stray capacitance dictates that the voltage sampling network ratio should be made 
adjustable.  As has been demonstrated by the previous experiments however, these two adjustments 
are only sufficient to allow the bridge to be calibrated at a single frequency, and there will be some 
error everywhere else.  A question that needs to be answered therefore is: "If a bridge is calibrated at
some specified frequency, how accurate will it be at other frequencies?" 
     As was mentioned in the introduction, a direct answer to this question can only be had by using a
dummy antenna and some kind of impedance analyser; but we can turn the problem on its head by 
choosing notional 'set' values for the adjustable components and then measuring how far the actual 
components need to differ from the set values in order to balance the bridge.  These parameter shifts
are 'perturbations', which can be applied to the circuit model in order to determine the extent to 
which the load impedance must differ from the target load impedance if the bridge is to balance 
using the set values. 
     The situation that needs to be analysed here is that of a bridge that is calibrated at some 
frequency by adjustment of C1  and RV  as shown in the diagram below.  At the calibration frequency,
the bridge balances when connected to a reference impedance R0 ; but in normal service C1  and RV  
cannot be changed, and so at frequencies other than the calibration frequency, the load impedance 
required to balance the bridge (Zbal ) will differ from R0 .  Our objective is to determine Zbal  at some 
arbitrary frequency by balancing the bridge with R0  connected, measuring C1  and RV , and 
comparing these values with the values (C1set  and RVset  say) that were required at the calibration 
frequency.

The overall balance condition for a Douma bridge was given earlier as:

[ ( jXC1 // jXC2 // RV ) / jXC2 ] [ 1 + Zi / (R0 N² ) ] = Zi / (N R0 )            . . . . . . . . (16.1)

Where:

Zi = Ri // jXi

and in this case

Xi = 2πf Li'

If the bridge is out of balance at the test
frequency because C1set  and RVset  are
used instead of the optimal values, then
equation (16.1) becomes:

[ ( jXC1set // jXC2 // RVset ) / jXC2 ] [ 1 + Zi / ( Zbal N² ) ] = Zi / (N Zbal )         . . . . (16.2)

Hence, the relationship between Zbal  and R0  can be determined by dividing equation (16.1) by 
equation (16.2):

Zbal

R0

=
[ ( jXC1 // jXC2 // RV) / jXC2 ] [ 1 + Zi / (R0 N²) ]

[ ( jXC1set // jXC2 // RVset ) / jXC2 ] [ 1 + Zi / (Zbal N² ) ]
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Now, to make the problem mathematically tractable, we may note that the factors  1 + Zi  / ( R0 N² )  
and  1 + Zi  / ( Zbal N² )  are present only to account for the small difference between V and V' .  
Since these factors are already close to unity, and we do not expect Zbal  to differ greatly from R0 , 
we may reasonably use the approximation:

1 + Zi / ( R0 N² ) = 1 + Zi / ( Zbal N² )

This gives the simplification:

Zbal 

R0

=
jXC1 // jXC2 // RV

jXC1set // jXC2 // RVset

If we also define a new variable:

CV = C1 + C2

and a new parameter

CVset = C1set + C2

then

XC1 // XC2 = XCV

etc..  Hence:

Zbal 

R0

=
RV // jXCV

RVset // jXCVset

Expanding the parallel products gives:

Zbal 

R0

=
j RV XCV ( RVset + jXCVset )

( RV + jXCV ) j RVset XCVset

and recalling that XC = -1 / ( 2πf C )

Zbal 

R0

=
RV CVset ( RVset + jXCVset )

RVset CV ( RV + jXCV )

Now we can multiply the numerator and denominator by the complex conjugate of the denominator 
with a view to putting the equation into a+jb form:

Zbal 

R0

=
RV CVset ( RVset + jXCVset )( RV - jXCV )

RVset CV ( RV² + XCV² )
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Multiplying out:

Zbal 

R0

=
RV CVset [ RV RVset + XCV XCVset + j( RV XCVset - RVset XCV) ] 

RVset CV ( RV² + XCV² )

Thus we obtain the formula for bridge evaluation by perturbation analysis:

Let

U = RV CVset / [ RVset CV ( RV² + XCV² ) ]

where

CV = C1'0 + C1s + C2

CVset = C1set + C2

and let

Zbal = Rbal + jXbal

Then

Rbal = R0 U ( RV RVset + XCV XCVset )

Xbal = R0 U ( RV XCVset - RVset XCV )

|Zbal| = √( Rbal² + Xbal² )

φbal = Arctan( Xbal / Rbal )

16.3

Note that the C1'  required here is the true value (corrected for inductance), i.e., C1'0  ; the point being
that the frequency at which the reference capacitor was calibrated should not have any bearing on 
the outcome of the test.  A definition for C1'0  is given by rearrangement of equation (4.2):

C1'0 = 1 / [ ( 1 / C1'm ) + ( 2πfm )²  L1 ] 

C1'm  being the raw measured value and fm  the measuring frequency.  When the capacitance meter 
operates at 107 radians/sec this becomes:

C1'0 = 1 / [ ( 1 / C1'm ) + 1014 L1 ] 

In practice, this correction is small, but since it can be computed easily it might as well be included.

The value of C1s  does not need to be known accurately.  In the evaluation spreadsheet discussed 
below, C1s  is calculated from the transformer constant, which is defined as:

KT = C1 / C2 = ( N R0 / k Ri ) + ( 1 / N ) - 1
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where

C1 = C1'0 + C1s

but it can be put in directly if so desired.  If the value used is accurate, then the value of C1set  that 
gives optimal performance will be accurate; otherwise, the determined value for C1set  will be 
nominal only.  It is a good idea to ensure that C1s  is plausible, but the chosen value makes little 
difference to the outcome of the analysis.

Notice also that the formula (16.3) contains no current-transformer network parameters.  The details
of the current transformer are irrelevant as far as the evaluation procedure is concerned; the test 
merely determines how well the bridge stays in balance as the frequency is changed.
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16a. Performance of uncorrected bridges 
In sections 10 and 11 we extracted the lumped-component circuit parameters from four datasets, the
raw data and mathematical analysis being given in the spreadsheets listed below:

Faraday shield earth ↓ 500 pF ref. cap. 40 pF ref. cap.

Load side testbrg61-12_2.ods testbrg61-12_3.ods

Generator side testbrg61-12_4.ods testbrg61-12_5.ods

In each case, the data were also subjected to the perturbation analysis developed above, the details 
appearing on sheet 5 of the spreadsheet.
     The most striking outcome in every case is that the graph of phase error in degrees vs. frequency 
is always a straight line; so straight in fact that an additional least-squares routine was written to 
extract the gradient.  The result for the bridge with the Faraday shield earthed on the generator side 
(taken from testbrg61-12_4.ods) is shown below:

A measurement in degrees per MHz is a time.  Specifically it is only necessary to divide the 
gradient by 360 to get a time in microseconds.  The fit to the phase error returned a gradient of 
-0.1461°/MHz , which corresponds to a time of -0.4059 ns (negative because it is a delay).
     The linearity of the graph is a clear indication that the phase error of the bridge is merely an error
of time-coincidence.  This can best be understood by considering the bridge as an optical 
interferometer.  An EM wave enters the bridge and is split into two components.  The two 
components make separate journeys over electrical distances that do not have to be identical, one is 
inverted, and then the waves are combined.  Any difference in the electrical paths results in 
incomplete cancellation.  Much of the error can be accounted for merely by considering the 
distances involved, but the various inductances and capacitances encountered along the way alter 
the apparent propagation velocity in the regions in which they reside.  A series inductance largely 
serves to convolute the path, and the delay can be deduced approximately by unravelling the wire 
and measuring it.  A parallel reactance however acts as a scattering element, by storing energy and 
returning it to the system with a shift of phase.  It is the combination of the incident and the 
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scattered wave that appears to have a velocity that differs from c. 
     What is remarkable is not that the bridge can be understood in terms of time and distance, but 
that the lumped component theory accounts for its behaviour so well.  The only component that 
seems to come from nowhere is the 'self-capacitance' of the transformer Ci ', and although it is 
difficult to control the experiment well enough to prove it exactly, a plausible value, definitely close
to the true one, is obtained by taking the average distance that must be travelled by a wave 
propagating through the transformer.  That distance is half the electrical length of the secondary 
winding wire, plus the electrical distance from the voltage sampling point to the transformer core.
     For the test bridge with the Faraday shield earthed on the generator side, the distance from the 
input port to the middle of the transformer was 28 mm, 12 mm of that being inside a cable with 
PTFE dielectric.  The length of the secondary winding wire was 228 mm.  Assuming an effective 
propagation velocity of c within the transformer, this gives:

Ci' = [ (228 / 2) + 1.6 + 1.2 / 0.7 ]×10-3 / (Ri c) = 0.1173 / (49.9 c) = 7.8 pF

The corresponding time delay is:

0.1173 / c = 0.3913 ns.

This is remarkably close to the gradient of the graph above, but from the discussion in sections 12 
to 15, the agreement is obviously accidental.  In practice, the effective velocity within the 
transformer will be somewhat less than c , and Ci' will be correspondingly increased.
     So, hopefully having laid to rest the idea that the self-capacitance of a coil is due to the 
proximity of adjacent turns, we can now admit that the graph of phase error vs. frequency is not 
perfectly linear.  The deviation is however very small, as can be seen by noting the scale of the y-
axis in the graph below.

There is a slight increase in the phase lag between about 6 MHz and 17 MHz.  This, of course, 
corresponds to the increase in permeability at the onset of a dispersion region in type 61 ferrite 
material, as was discussed in Section 10.  The reason why the peak is inverted in the graph above is 
that an increase in the inductance of a parallel LCR system (i.e., the transformer secondary) gives 
greater dominance to the capacitive arm.  The deviation amounts to about 60 milli degrees, and so, 
if the system is adjusted to absorb it, it limits the ultimate phase performance of transformers using 
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type 61 material to about ±0.03° (and other ferrites are similar).  When the dispersion peak is 
excluded from the fit, the rest of the data (for any of the experiments) can be fitted with an RMS 
deviation of about ±0.0075°,  i.e., 7.5 thousandths of a degree.  This is the phase-resolution of the 
experimental method.

The perturbation method also produces magnitude information.  Shown below are graphs of 
magnitude error, the two curves giving a comparison between the results obtained with the 40 pF 
reference capacitor, which has an effective series inductance of about 80 nH (neglecting L2) ; and 
the 500 pF capacitor, which has an effective inductance of about 62 nH.

The inductance of the 500 pF reference capacitor gives rise to a magnitude error of about 10% at 
21 MHz, i.e., a bridge that should balance with a load of 50 Ω will actually balance when the load is
55 Ω .  In a working bridge, of course, we might minimise this error by keeping the wires short and 
using very small components for C1 ; but the test bridge had a divider ratio of only about 11.6:1  in 
the voltage sampling network.  For a bridge with a larger transformer turns-ratio, or a lower value 
of Ri  (i.e., a larger transformer constant), the asymmetry of the voltage network will be greater and 
so too will be the effect of the parasitic inductance.  The uncorrected test bridge is barely good 
enough for crude SWR measurements using a diode detector.  Many bridges described in the 
literature are a lot worse than this; but on the subject of accuracy, most writers have so far shown a 
tendency to avoid comment.
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17. Voltage sampling network inductance balance 
In order to obtain a flat frequency response from a capacitive potential divider; it is not necessary 
that the arms should be composed of pure capacitance, but only that the two capacitive reactances 
should remain in constant proportion as the frequency is varied.  Consequently, insofar as the non-
ideality of the dominant (i.e., lowest impedance) arm can be represented as a series inductance, a 
flat frequency response can be obtained by placing a balancing inductance in the other arm.

In the potential divider circuit shown right, the impedance marked Z1  is
dominant and is provided by a capacitor with a series parasitic inductance
L1 .  L2  is an adjustable inductance that includes the parasitic inductance of
the capacitor C2 .  The output of the network is given by:

VV = V' Z1 / (Z1 + Z2 )

Hence, working with the reciprocal transfer function:

V' / VV = 1 + Z2 / Z1

i.e.

V'

VV

= 1 +
j( XC2 + XL2 )

j( XC1 + XL1 )

Writing the reactances explicitly gives:

V'

VV

= 1 +
[ -1 / ( 2πf C2 ) ] + 2πf L2 

[ -1 / (2πf C1 )] + 2πf L1

and multiplying top and bottom of the right-most term by -2πf gives:

V'

VV

= 1 +
( 1 / C2 ) - (2πf )² L2 

( 1 / C1 ) - (2πf )² L1

This rearranges to:

[ ( V' / VV ) - 1 ] [ (1 / C1 ) - (2πf )² L1 ] = (1 / C2 ) - (2πf )² L2

Now grouping capacitance on one side and inductance on the other gives:

[ ( V' / VV ) - 1 ] (1 / C1 ) - (1 / C2 ) = [ (V' / VV ) - 1 ] (2πf )² L1 - (2πf )² L2

The frequency dependence of this expression is removed when both sides are made equal to zero, 
i.e. when:

[ ( V' / VV ) - 1 ] L1 = L2
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in which case also:

[ ( V' / VV ) - 1 ] (1 / C1 ) = 1 / C2

i.e.:

[ ( V' / VV ) - 1 ] = C1 / C2

Hence:

L2 = L1 C1 / C2 17.1

The relationship between C1 and C2  for a Douma bridge was given in equation (2.1).  Modified to 
allow for transformer efficiency it gives the transformer constant:

KT = C1 / C2 = (N R0 / k' Ri ) + ( 1/N ) - 1

For a bridge with R0 = Ri  ,  N = 12  and  k' = 0.96 ,  C1 / C2 = 11.58.  If the bridge is constructed so 
that the capacitor C1 has very short wires, the parasitic inductance might be kept down to about 20 
nH.  In that case, the required balancing inductance will be 232 nH.  For the test bridge, due to the 
need to use large variable capacitors, the parasitic inductance is in the 60 nH to 80 nH range, and 
the required compensating inductance is 695 nH to 926 nH.
     Note that there will be a frequency at which the balancing inductance L2  resonates with C2 .  
This, in fact, is the same as the frequency at which C1 resonates with L1 , because L1 C1 = L2 C2 ; but 
whereas resonance of the lower voltage sampling arm will merely result in inaccurate readings, 
resonance of the upper arm will present the generator with a short circuit.  The frequency at which 
this short circuit occurs is: 

fs/c = 1 / [ 2π √( L2 C2 ) ]

If C2  is 10 pF and L2  is 232 nH ,  fs/c = 104 MHz , safely away from the HF region.  If C2  is 10 pF 
and L2  is 695 nH, fs/c = 60 MHz , certainly too close for comfort if the bridge is to operate in the 6 m
band, but acceptable for operation up to 30 MHz.  Hence, for working bridges (as opposed to test 
bridges) it is desirable that the parasitic inductance in the lower voltage sampling arm be kept as 
small as possible.  Observe also, that the bridge used in the example has only 12 turns on the 
transformer.  For less sensitive (high-power) bridges, with more turns or a lower value of secondary
load resistance, the asymmetry in the two arms of the voltage sampling network will be much 
greater, and so will the balancing inductance.  It has to be said that a low-sensitivity bridge with a 
Douma-type voltage sampling network cannot give an acceptably flat amplitude response without 
balance compensation, but might have an unacceptably low fs/c  with it.  Hence, despite the ubiquity 
of Douma bridges with large N (30 or more turns) and no balance compensation, the amplitude 
performance of such bridges is bound to be poor.

The effect of the inductance balance coil on quadrature balance, being an adjunct to the parasitic 
inductance of the upper voltage sampling arm, is given by equation (12.3).  As was mentioned 
before, L2  partially neutralises the 'self-capacitance' of the transformer by increasing the length of 
the electrical path from the voltage sampling point to the summing point.  The contribution is not 
great however, even for a relatively large inductance, as can be seen by differentiating equation 
(15.1):
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∂Cieff / ∂L2 = -1 / (N R0 Rv )

For the test bridge, with N = 12 ,  R0 = 50 Ω  and  Rv = 1455 Ω ,

∂Cieff / ∂L2 = -1.15 pF/μH

 

Voltage sampling network inductance balance coil (7 mm diameter PS former with 
M6-threaded dust-iron slug).  In this case C1 / C2 = 11.58,  and C1  has a parasitic 
inductance L1  of about 62 nH.  Hence the balance coil must make the inductance of the 
upper voltage sampling arm (L2 ) up to 721 nH, i.e., the coil shown has an inductance of 
around 700 nH .

Inductance balance compensation is simple and boringly effective.  A small adjustable inductor, the 
number of turns easily determined by experiment, is all that is required.  For tracking over the HF 
spectrum, the capacitor C1  is adjusted at about 2 MHz, and the balance coil L2  at a frequency a little
below 30 MHz. The adjustments are repeated two or three times until no further improvement can 
be obtained.  Amplitude flatness of better than ±0.4% ( ±0.034 dB) over the 1.6 MHz to 30 MHz 
range is easily achievable, even with the excessively inductive reference capacitors used with the 
test bridge.  If the inductance of the lower voltage sampling arm is kept to a minimum, the flatness 
can be better than ±0.04% (see section 18c).
     There is no point in evaluating the technique separately.  The performance figures given above 
will be corroborated by the experimental data to follow.  An inductance balance coil should not be 
used during model-parameter determinations, because L2  contributes to Cieff , but one should always
be included in a working Douma bridge.
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18: Frequency tracking 
In the next few sections we will look at techniques for neutralising bridge phase error.  Several 
possibilities are obvious from the theoretical considerations of sections 11 to 14, and it is now a 
matter of seeing how well they work in practice.  There are further less-obvious neutralisation 
methods however, and these will be introduced.
     With a balance coil to cancel the effect of the inductance of the lower voltage-sampling network 
capacitor, and some means for neutralising the apparent secondary capacitance, the bridge has 2-
point frequency-tracking capability.  Calibrating the bridge is then a matter of adjusting C1 and RV at
some low frequency such as 2 MHz, and adjusting the inductance balance and phase neutralisation 
at some frequency approaching to the upper limit of the desired working range.  Generally, the low 
and high-frequency settings interact slightly, and so the adjustments have to be repeated a few times
until no further improvement can be obtained.  Two or three cycles of adjustment is usually 
sufficient.
     Achieving the maximum benefit from 2-point tracking is a matter of selecting the optimal upper 
calibration frequency.  After calibration, the bridge is perfect at two frequencies but there will be 
some residual error elsewhere.  Typically, the quadrature balance deviates slightly according to a 
curve that mimics the inverted real-part of the permeability dispersion in the core material.  Apart 
from that, the phase error is proportional to frequency and eminently correctable; consistent with it 
being a timing error in a system that is free from any other significant dispersive effects.  The 
residual error in the in-phase balance condition is a little more complicated however.  It partially 
mimics the inverted imaginary part of the permeability dispersion, but there are other effects caused
by the fact that the inductance of C1 is not perfectly described as a single series component, and by 
the minor approximations inherent in ignoring the frequency-dependent effects of parasitic 
reactances on the apparent efficiency of the transformer. 
     Most of the experimental data given below was obtained using the 8 pF to 48pF reference 
capacitor described in section 6.  This capacitor has an equivalent series inductance of about 85 nH ;
and since it has to be used with a parallel padding capacitor, lumping all of its inductance into a 
single series component does not provide a perfect description.  Consequently, the in-phase 
performance of a bridge using this capacitor is limited to about ±0.2%.  The reference capacitor was
identified as the cause of this limitation by performing a control experiment using a 2.5 pF to 30 pF 
trimmer and padding capacitor with an equivalent series inductance of about 50 nH, i.e., by 
reverting to the method used with the prototype bridge described in section 3.  The business of 
unplugging a capacitor and measuring it on a separate bridge is too laborious for general adoption, 
and the data are not particularly precise (±0.25 pF).  The results are nevertheless accurate, and show
that the in-phase balance tracking is good to within ±0.03% if the inductance in the lower voltage-
sampling arm is kept to a minimum.
     Given that there are bound to be residual errors, the best upper calibration frequency is the one 
that gives approximately equal run-out above and below the target in-phase and quadrature balance 
points over the working range.  For the bridges evaluated below, it lies somewhere in the 20 MHz to
28 MHz region and cannot always be determined prior to the first test-run.  To avoid repeating 
experiments ad-nauseam without gaining any new information, most neutralisation methods are 
tested only once; which means that there may still be room for improvement.  The ultimate 
performance obtainable from a particular neutralisation method is given by the least-squares fit to 
the phase error (see graph of obs-calc on sheet 5); and the optimal upper calibration frequency can 
usually be determined by adjusting the fitting weights for equal run-out above and below zero and 
noting the upper zero-crossing frequency for the error curve.
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18a: Phase neutralisation by load port capacitance 
The most straightforward and obvious method for neutralising the apparent secondary capacitance 
of the transformer is to add some capacitance across the load side of the through-line.  The effect of 
such a capacitance is given by differentiating equation (14.1):

∂Cieff  /∂C0 = - R0 / Ri

A bridge neutralised by this method is shown below.

The bridge was calibrated at 2 MHz and 26 MHz and then evaluated according to the procedure 
outlined in section 16.  The spreadsheet reference and a summary of the outcome is as follows.

Gen. side shield earth.
1.6 MHz to 30 MHz

R0 = 50 Ω , Ri = 50 Ω
Inductance balance coil fitted.

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-1212.ods 6.6 pF across load port ±0.25% ±0.12° (±0.09°)

The magnitude error is mainly attributable to the reference capacitor.  The choice of 26 MHz as the 
upper calibration frequency was not optimal, and the regression line for the overall phase error 
indicates that the run-out can be reduced to ±0.09° by calibrating at 21 MHz.
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The result is, of course, at least an order of magnitude better than for any uncompensated bridge, 
but it is not the best that can be achieved.  Placing capacitance across the through-line in addition to 
the voltage sampling network also adversely affects the generator power-factor; and although this 
problem is sometimes correctable, and does not matter if the bridge is to be taken out of circuit after
use, loading the generator with extra capacitance is not generally desirable.
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18b: Quadrature current compensation 
The effect of the Faraday shield protrusion capacitance in a bridge with the shield earthed on the 
load side was investigated in section 11.  The theory developed there implies that the apparent 
secondary capacitance can be neutralised either by injecting a capacitive quadrature current into the 
shield itself, or into an additional compensation winding.  Connecting the neutralising capacitor to 
the shield is the most economical method if the current is to be delivered from the generator 
terminal, and it is doubtful that the use of a separate winding will make any difference in that case.  
The initial test configuration is shown below; and the results and the filename of the analysis 
spreadsheet are given below that.

Load side shield earth.
1.6 MHz to 30 MHz

R0 = 50 Ω ,  Ri = 50 Ω .
Inductance balance coil fitted.

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-1213.ods 6.7 pF, gen. to shield ±0.4% ±0.25° (±0.23°)
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In the derivation given in section 11, assumptions were made firstly: that no voltage is developed 
between the ends of the Faraday shield; and secondly: that the voltage drop across the transformer 
primary is negligible.  With these simplifications, it was found that the shield capacitance has the 
same effect as placing a capacitance across the load port.  Evidently the two neutralisation effects 
are not the same however, because placing a capacitor across the load port results in better overall 
performance than injecting a current into the shield.
     In a current transformer, the flux-density in the core and hence the primary voltage Vii , is 
controlled by the main secondary load.  Hence the shield, being effectively a secondary winding 
with the same number of turns as the primary, will develop a voltage that is of the same magnitude 
as Vii  ; but since the shield is loaded only by its own inductance, its voltage (Va  say) will be shifted 
+90° in phase relative to Vii .  The voltage Va  must be subtracted from the voltage across the line-to-
shield capacitance in order to establish the exact phase of the (not quite perfect) 'quadrature' current 
injected.

In the original derivation, the shield protrusion displacement current was given approximately as:

Ish = V / ( jXCsh )

Now however, with the notation altered to suit the general context of neutralising currents injected 
into auxiliary windings, we have to admit that it is better described by the expression:

In = ( V + Vii - Va ) / ( jXCn )

the reasoning being illustrated by the diagram below.  Here the vector In (noting that j is on the 
bottom of the fraction and capacitive reactance is negative) lies at +90°, not to the voltage across 
the load, but to the vector V+Vii -Va .  This is the actual neutralisation reference voltage, to which we
will assign the symbol Vref .     
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We can obtain a qualitative idea of how Vref  evolves with
frequency by noting that Vii  is a scaled down version of 
Vi ; where Vi  is the voltage across Zi , and the locus of Zi 

in the Z-plane is a constant-conductance circle mainly
determined by the relative magnitudes of Ri  and XLi .  At
low frequencies, Vii  leads V, but moves into phase with it
as XLi  increases with frequency.  Hence we can draw the
sum of the three vectors that make up Vref  and show that it
is always slightly lagging; and that the lag increases with
frequency.  The result is that the neutralising current, (at
+90° relative to Vref ) is slightly out of true quadrature to V,
with a lag that gets worse as the frequency increases.  The
error is in the same direction as that caused by dispersion
in the ferrite.  The result is that the neutralising current
does not cancel Cieff  to the limit permitted by the
dispersion, but introduces an error in addition to the
dispersive effect.  This error moreover, permits the
neutralising current to affect the in-phase balance
condition, thereby also slightly degrading the bridge
amplitude performance.
     One point that arises from these considerations is that
we do not want the partial neutralising effect that results
from earthing the shield on the load side of the
transformer core.  Hence the shield should be earthed on
the generator side (or perhaps omitted altogether - see section 19).  The subject of current-injection 
neutralisation is far from dead however; firstly because we can change the phase of Va  by loading 
the auxiliary winding; and secondly because, if we use an actual winding instead of the shield itself,
we can connect the neutralisation capacitor to the load terminal instead of the generator terminal.

Consider what happens when a 1 turn auxiliary winding is
resistively loaded with the same number of Ohms per turn
as the main secondary.  If the secondary has (say) 12 turns,
and Ri = 50 Ω , then this involves placing a resistance of 
50 / 12 = 4.2 Ω  across the auxiliary winding.  Now, in
order to calculate Vi , we can consider that the transformer
has 13 turns loaded with 54.2 Ω , and that Vi is obtained by
tapping in at the 12th turn.  From that electrical
equivalence, it should be obvious that Va  is now in phase
with Vi  and hence, to a very good approximation, identical
in magnitude and phase to Vii . The result is that Vref 

becomes equal in magnitude and phase to V, as can be seen
from the vector diagram on the right.  Hence the
neutralising current In will be in true quadrature to V, and
the neutralisation errors will be eliminated.
     There is a problem with this improved neutralisation
technique however, and it is this: If we make Vref  identical to V, then we eliminate the 
approximations from the analysis given in section 11.  This means that the result, in phase 
performance terms, is identical to that of placing a capacitor across the load port.  Hence the circuit 
is made more complicated for no benefit, and furthermore, the transfer efficiency of the transformer
is reduced by a factor of N / (N+1).  Consequently, it is difficult to see why anyone would want to 
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use this method, except perhaps that placing a resistance of  Ri / N  across the ends of a load-side 
earthed Faraday shield will eliminate the deleterious effects of the displacement current.  This might
be useful if the shield is earthed on the load side intentionally (e.g., to allow neutralisation by 
sliding the core along the shield - see notes at the end of this section).

Let us now turn our attention to what happens when the auxiliary winding is connected to the load 
terminal.  The test bridge so configured is shown below, and a summary of the results is given 
below that.
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Gen. side shield earth.
1.6 MHz to 30MHz

R0 = 50 Ω , Ri = 50 Ω .  L-bal. coil.
1-turn I-compensation winding.

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-13_2.ods 3.5 pF to load terminal. ±0.35% ±0.17° (±0.13°)

When the test bridge was neutralised by connecting a capacitor across the load port, or by injecting 
a quadrature current from the generator terminal, the neutralising capacitance required (measured 
after the test) was nearly 7 pF. When the neutralising current is taken from the load terminal 
however, the required capacitance is approximately halved.  The reason for that can be understood 
by inspecting the diagram below, which shows that In  flows through the transformer twice, once 
through the primary winding and once through the auxiliary winding.  This gives the circuit a 
definite advantage over previous configurations, which is that neutralisation can be achieved with a 
reduced penalty in terms of generator power-factor.  It is, of course, possible to reduce Cn  still 
further by adding more turns to the auxiliary winding, but that is not a good idea because it will 
increase the quadrature error.

With regard to overall performance with the neutralisation current taken from the load terminal; it is
better than when the current is taken from the generator terminal but not quite as good as when a 
capacitor is placed across the load port.  The reason for that can be seen in the vector diagrams, 
which show a reference voltage with a residual phase lag that increases with frequency.  This 
supplements the ferrite dispersion effect, as before, but less severely.
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The obvious next experiment is to see what happens when the auxiliary winding is loaded with a 
resistance of about  Ri / N  to bring Va  into phase with Vi .  The test bridge with this addition is 
shown below and the test results are given below that.

Gen. side shield earth.
1.6 MHz to 30 MHz

R0 = 50 Ω,  Ri  = 50 Ω .  L-bal. coil.
1-turn I-comp. winding // 4.26 Ω

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-13_3.ods 3.4 pF to load terminal. ±0.69% ±0.57° (±0.36°)
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The performance of this bridge is relatively poor, being barely an order of magnitude better than 
typical published designs; but it nevertheless has a very interesting property.  The phase deviation 
curve has the opposite sense to that of the bridge with the unloaded auxiliary winding, and is also in
the opposite sense to the deviation caused by the permeability dispersion.  The reason can be 
understood by looking at the vector diagrams below, which show that the neutralisation reference 
voltage moves anti-clockwise with increasing frequency, whereas it moves clockwise when the 
auxiliary winding is unloaded.

If the phase deviation is negative in the middle of the working frequency range when the 
neutralisation winding is unloaded, and positive when it is loaded with a resistance of Ri /N ; then 
logically, there must be an intermediate loading condition that brings the overall phase error to a 
minimum.  To explore this possibility, the bridge was set up with a 100 Ω cermet variable resistor 
for the auxiliary load.  With this modification, the bridge has 3-point frequency tracking for phase 
error and 2-point tracking for magnitude error.
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It was thought initially, that this new arrangement
would be difficult to calibrate, but the task proved to
be surprisingly straightforward.  C1  and RV  were
adjusted at 2 MHz, Cn  and L2 at 26 MHz; and the
loading resistance Rn  was adjusted at 18 MHz,
using C1  for in-phase balance while the latter
operation was being carried out.  The adjustments
were not strongly interactive, and only 3 rounds of
iteration were required.  It was also obvious that
there was now considerable latitude in the choice of
upper calibration frequency, since the bridge barely
went out of balance during the search for maximum
run-out.

Gen. side shield gnd.
1.6 MHz to 30 MHz

R0 = 50 Ω ,  Ri = 50 Ω .  L-bal. coil.
1-turn I-comp. winding // 100 Ω pot.

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-13_4.ods Measured: Cn = 2.95 pF ,  Rn = 21.7 Ω ±0.12% ±0.044° (±0.038°)

There was certainly no need to use the coarse adjustment for RV  during the evaluation of this 
bridge.  The reason is evident from the graph above.  The chosen compromise between the negative 
mid-band run-out given by an unloaded neutralisation winding, and the positive run-out given by a 
heavily loaded winding has reduced the phase error to better than ±0.044°.  Moving the mid-point 
adjustment from 18 MHz to about 17 MHz will reduce it further to about ±0.038° (i.e., it will drag 
the curve onto the zero line at 17 MHz). 
     This level of performance is easily two orders of magnitude better than that offered by typical 
current-transformer bridges; and led the author to the view that the quadrature-current neutralisation
technique is a good candidate for the design of reference instruments.  On that basis, a working 
bridge was constructed14 and, by paying careful attention to layout, grounding, and minimisation of 
inductance in the lower arm of the voltage-sampling network, it was found possible to get the 
maximum phase error down to ±0.025° and the maximum magnitude error down to ±0.04%.  It is 

14 A Self-evaluating precision reference bridge.  D W Knight.  http://g3ynh.info/zdocs/bridges/ .
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doubtful that such performance will hold for long periods without drift, but ±0.05° and ±0.1% is a 
perfectly reasonable expectation over a normal annual calibration interval.

Some additional comments on current-injection neutralisation:

● Impedance bridges are often used reversed (i.e., with the generator and load connections 
swapped) for forward power measurement, or to obtain a forward transmission reference for the 
measurement of SWR.  It should be noted therefore, that current injection neutralisation is 
asymmetric; i.e., the condition required for obtaining perfect balance (minimum reverse power 
reading) is not the same as the condition required for perfect anti-balance (maximum forward power
reading).  In practice however, any neutralisation error in a forward-power bridge will make 
negligible difference to the reading.  The purpose of neutralisation is to produce the rigorous 
conditions required for a null.  Forward reading bridges do not null and so (assuming that the phase 
error is no more than a few degrees) do not need to be neutralised.  Consequently, in an SWR bridge
or directional power meter, neutralisation can be applied to ensure accurate reverse readings, and 
the very minor effect on the forward reading can generally be ignored.

● It was mentioned earlier that the Faraday shield should be earthed on the generator side in order 
to eliminate the uncontrolled neutralising effect of the shield protrusion capacitance.  For practical 
purposes however, the extremes of accuracy demonstrated here are not usually needed.  That being 
the case; there is a property of the load-side earthed shield configuration that might be used to 
eliminate an expensive trimmer capacitor in production bridges.  In a private correspondence15, 
David Stansfield, G0EVV, noted that it was possible to improve the frequency tracking of a bridge 
by sliding the transformer core along the shield.  This action, of course, changes the shield 
protrusion capacitance; and so, with a little slack in the secondary connecting wires, sliding the core
does the same job as adjusting a trimmer.  There is a caveat however, which is that, once calibration 
has been accomplished, it must be ensured that the core will not move if the bridge is bumped or 
dropped.

● The current-injection neutralisation technique developed here is comparable to a method for 
cancelling the parasitic capacitance of power-supply filter inductors described by Neugebauer and 
Perreault16.  In a current transformer, the cancellation can be considered to be referred either to the 
primary or to the secondary winding.

● There are other ways in which multiple frequency-tracking adjustments can be provided in 
bridges using load-port capacitance or current-injection neutralisation. For example: if a small 
adjustable inductor is placed in series with the neutralisation capacitor, the neutralisation 
capacitance will appear to increase with frequency. Such a combination can therefore compensate 
for a situation in which a bridge exhibits a lagging phase error at high frequencies but a leading 
phase error in mid band (such as can be arranged when the current-injection winding is loaded by a 
resistance).

15 David Stansfield, G0EVV, private e-mail communication, 16th Aug. 2007. 
Part of e-mail exchange 2nd May 2007 - 22nd Aug. 2007.

16 Parasitic Capacitance Cancellation in Filter Inductors. T C Neugebauer and D J Perreault. 35th Annual IEEE 
Power Electronics Specialists Conference, 2004.
The parasitic capacitance of a power-supply filter inductor is cancelled by use of an auxiliary winding and a 
capacitor.
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18c. Quadrature voltage compensation
The neutralisation techniques described in the previous two sections all carry a possible penalty in 
terms of generator power-factor; and although it will be difficult to improve on the performance of 
the 3-point tracking method described above, extreme accuracy is not always required. Indeed, a 
bridge that is accurate to within about ±0.5° and ±0.5% is almost certainly good enough for any 
circuit that uses a diode detector.  Hence there is a place for neutralisation techniques that do not 
noticeably alter the characteristics of the through-line.
     As was noted in the previous section, an unloaded auxiliary winding on a current transformer 
produces a voltage that lies at +90° relative to the main secondary voltage.  Hence if a 
potentiometer of high-enough resistance not to constitute a significant load is placed across such a 
winding; it is possible to produce an adjustable quadrature voltage that can be added to the main 
output to cancel the high-frequency phase error.  The principle of the technique is summarised in 
the diagrams below.

Ideally, the locus of the corrected output voltage should lie on a constant-conductance circle if the 
network is to give an accurate simulation of a transformer with no secondary capacitance.  From the
vector diagrams it can be seen that this does not happen in practice, but by adjusting RV  at the low 
end of the working frequency range and |Vq| at the high end, a reasonable compromise can be 
reached.  The test bridge set up for quadrature voltage neutralisation is shown on the next page.

For the first attempt at testing the technique, a single turn compensation winding with a 250 Ω 
cermet potentiometer connected across it was used.  This worked for a bridge with the Faraday 
shield earthed on the load side; but with the shield earthed on the generator side according to later-
discovered best practice, Cieff  is greater and neutralisation could only just be achieved with the pot. 
set somewhere close to maximum.  Since reaching the end-stop of a control interferes with the 
process of searching for nulls and makes calibration difficult to achieve, the compensation winding 
was changed to 2-turns and a 120 Ω resistor was placed in series with the pot..  The purpose of the 
additional resistor was to keep the loading light and bring the adjustment roughly to the middle of 
the available range.
     One idiosyncrasy of quadrature voltage compensation is that it places additional DC resistance in
series with the detector output.  This resistance, which is the parallel combination of the two sides 
of the adjustment pot., will make practically no difference to the performance of a working bridge, 
but it lies in the way of measuring RV via the detector port.  Hence, designating the additional 
resistance Rq , the experimental quantity is  RV + Rq .  For the evaluation experiments listed below, 
Rq  was measured at the end of the test run by shorting RV  with a jumper lead.  An extra column was
then added to the analysis spreadsheet so that Rq could be subtracted from  RV + Rq  to obtain RV .
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Bridge with 2-turn quadrature voltage
compensation winding loaded with a 120 Ω
resistor in series with a 250 Ω pot..  The
adjustable leading quadrature voltage produced is
placed in series with the current transformer
output to cancel the high-frequency phase lag.
     C1' in this case is provided by a 2.5 pF - 30 pF
trimmer in parallel with an 82 pF capacitor.  The
relatively low series inductance of this arm (ca. 
50 nH) keeps the overall in-phase balance error to
about ±0.03%.

Gen. side shield earth.
1.6 MHz to 30MHz

R0 = 50 Ω ,  Ri = 50 Ω . L balance coil.
2-turn V-compensation winding 
with 250 Ω pot + 120 Ω .

Max.
|Z| error

Max. φ error
( ) → best possible

testbrg61-14_2.ods 8 pF - 48 pF ref. cap. with 82 pF padding ±0.35% ±0.14° (±0.11°)

testbrg61-14_3.ods 3 pF - 30 pF trimmer with 82 pF padding. ±0.03% ±0.14° (±0.10°)
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Two experimental runs were performed in this case, one using the 8 pF - 48 pF reference capacitor 
for C1' and one using a 3 pF - 30 pF trimmer.  Padding in both instances was 82 pF. The trimmer had
to be removed and measured at each frequency point, considerably reducing the precision of the C1' 
data, but the smaller assembly had an equivalent series inductance (L1 ) of 50 nH, as opposed to 
85 nH for the larger reference capacitor.  The object of the exercise was to show that reducing L1 
(and also L2 ) improves the magnitude performance without significantly affecting the phase 
performance.
     The phase performance of the quadrature-voltage compensated bridge is very slightly inferior to 
that of the bridge compensated by means of a capacitance across the load port (section 18a); but of 
course, quadrature-voltage compensation has no generator power-factor penalty.
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18d. Phase-shift compensation 
The quadrature voltage compensation method investigated in the previous section places an 
additional resistance in series with the detector port.  This resistance is small in comparison to RV , 
and so does not greatly affect the DC resistance of the network; but it increases the output 
impedance and it cannot be quantified exactly until calibration has been carried out.  It may 
therefore be undesirable in some circumstances.
     An alternative is to place a variable resistor directly across the auxiliary winding and connect the
full output in series with the main secondary output.  When the shunting resistance is set to a high 
value, the auxiliary output will be at +90° relative to Vi ; and when the auxiliary winding is loaded 
with the same number of Ω/turn as the main secondary, the two outputs will be in phase.  By 
choosing some intermediate setting, the phase error can be neutralised at the high-end of the 
working frequency range.  The basic principle is illustrated in the diagrams below.

One drawback with this
technique is that it makes a
noticeable contribution to
the magnitude of Vi' as
well as to the phase.  This
means that the adjustments
for in-phase and
quadrature bridge balance
interact more than they do
with other methods.  The
problem is not particularly
serious in practice
however, and it was
possible to set up the test
bridge (shown right) with
only three rounds of
iteration.
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A single-turn compensation winding was sufficient to
neutralise the test-bridge.
     A 100 Ω cermet pot. was used for Ra because very low-
value non-inductive variable resistors are difficult to obtain
(lower value multi-turn cermet trimpots are available, but
these have a limited operational life and the worm-drive is too
slow for good null-seeking).  This meant that the required
resistance was very close to the minimum setting, making the
adjustment rather fierce.  The solution was to calibrate the
bridge roughly and then place a fixed resistor across the pot.
to bring the adjustment closer to the middle of the range.
Final calibration was accomplished with a 10 Ω shunt resistor,
as shown right, and the resistance of the parallel combination,
measured after the test, was 7.49 Ω.  This is 1.8 × the Ω/turn
of the main secondary winding.
     The test results, summarised below, are comparable to to
the effect of placing a capacitor across the load port (but
without the power-factor penalty), and slightly better than for
quadrature-voltage compensation.

Gen. side shield gnd.
1.6 MHz to 30MHz

Phase-shift neutralisation.
R0 = 50 Ω ,  Ri = 50 Ω. L-bal. coil.

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-13_5.ods Ra = 7.49 Ω. ±0.32% ±0.12° (±0.10°)
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One peculiarity of the current transformer with phase-shift neutralisation is that it is not 
immediately obvious how to count the turns.  In practice, it can be considered to behave either; like 
a transformer with N turns and an efficiency factor ( k' ) of slightly greater than 1; or like a 
transformer with a non-integer number of turns between N and N-1.  The reason that the effective 
number of turns is slightly less than N, rather than greater, is that the circuit gives more output than 
would be expected for a winding of N turns, whereas adding a turn to a normal current transformer 
makes the output level go down.  The transformer constant is irrelevant to the perturbation analysis 
however (except it that can be adjusted to establish a realistic value for C1s ); and the network is 
intended for use in working bridges, not for circuit parameter determination.
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18e. Herzog's HF compensation
The use of an inductance placed in series with Ri  as a means for neutralising the phase error of a 
current-transformer bridge was patented by Will Herzog, K2LB, in 1988 [US Pat. 4739515].  Some
additional qualitative discussion was given in a separate article17. 
     In section 13, it was indicated that the effective secondary capacitance has a large negative 
derivative with respect to the inductance of the secondary load resistor (here known as Herzog's 
inductance and given the symbol Lh ). From equation (13.1):

∂Cieff /∂Lh = -1/Ri²

Thus, for example, if Ri =50 Ω, then ∂Cieff / ∂Lh = -0.4 pF/nH.  The effect is so great that, for the test 
bridge, the apparent secondary capacitance could be made negative merely by soldering the 
secondary load resistor in place without trimming its wires.  Achieving the 7 pF or so of capacitance
cancellation required for neutralisation was therefore not so much a matter of installing an inductor 
as of placing a slug of magnetic material in the vicinity of the resistor.  To that end, and to provide a
degree of adjustment, the resistor was bent into a U-shape over a 7 mm diameter coil former with an
M6 dust-iron slug as shown below.

Gen. side shield gnd..
1.6 MHz to 30MHz

Herzog's neutralisation method.
Max.

|Z| error.
Max. φ error

( ) → best possible

testbrg61-1214.ods R0 = 50 Ω ,  Ri = 50 Ω.  L-bal. coil. ±0.38% ±0.11° (±0.10°)

17 VSWR Bridges, Will Herzog K2LB, Ham Radio, March 1986, p37-40.
Brief review of the pitfalls of SWR bridge design, particularly the problem of phase error.
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The phase performance obtained from the test bridge is fairly typical for a dispersion limited (2-
point tracking) bridge. 
     One slight drawback of the method is the inherent unpredictability of the final physical 
construction.  In an early experiment, with the Faraday shield earthed on the load side, it was found 
that a single 49.9 Ω helical-cut metal-film resistor, looped around a coil-former as shown above, 
provided too much inductance.  The solution in that case was to use two 100 Ω resistors in parallel.  
An unshielded bridge discussed in section 19, on the other hand, having a much larger Cieff  , 
required a whole turn around around the dust-iron core.  The method works well, but some 
experimentation is required in order to get it to work.
     In common with the other compensation methods tested, the amplitude error is largely 
attributable to the 8 pF - 48 pF reference capacitor.  An early experiment, unfortunately invalidated 
by failure to control reciprocity error, gave a maximum amplitude error of ±0.28% when using the 
500 pF reference capacitor.
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18f. Load-side voltage sampling
The voltage sampling network of a Douma bridge constitutes a capacitive load across the generator. 
If the capacitance that would have to be placed across the load port in order to neutralise the bridge 
is within the acceptable limit for the generator (typically <14 pF for a 50 Ω system operating up to 
30 MHz), then the voltage sampling network itself can be used as the neutralising capacitance. 
     The test bridge is shown below configured for load-side voltage sampling by the simple 
expedient of swapping the connections to the current-transformer secondary, reversing the Faraday 
shield, and swapping the generator and load plugs.  The original fixed upper-voltage sampling 
capacitor C2 has also been replaced by a 3 pF - 30 pF multi-turn (beehive) trimmer, the object of the
exercise being to allow the input capacitance of the network to be adjusted to give the required 
degree of neutralisation.

One problem with this configuration is that, in a calibration sequence that involves altering C2 , all 
of the adjustments become highly interactive.  Indeed, it is not possible to distinguish between the 
effects of adjusting C2 and L2 at high frequencies, which means that calibration by observation only 
of bridge balance is effectively a non-convergent process.  The solution used in the case of the test 
bridge was to measure RV  via the detector port in the same way as is done during evaluation, and to 
use this information as a guide for the setting of C2 .  The procedure was as follows:  The bridge was
balanced at 2 MHz using C1  and RV , and at 26 MHz (which was found to be about the optimum 
upper calibration frequency) by adjusting L2 and RV .  An increase in RV  on going to the upper 
frequency is indicative of a positive Cieff , which means that C2 needs to be increased.  A decrease in 
RV  indicates a negative Cieff , which means that C2  needs to be decreased.  The cycle was repeated 
until the change in RV  between the two calibration frequencies fell to less than 1%.  Final 
adjustment required tiny changes to C2 , and calibration would have been extremely difficult using a
half-turn trimmer capacitor (rather than a multi-turn type).
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Gen. side shield gnd..
1.6 MHz to 30MHz

Load-side voltage sampling.
R0 = 50 Ω ,  Ri = 50 Ω .  L-bal. coil.

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-1215.ods C2 = 8.7 pF* ±0.28% ±0.30° (±0.30°)

* The final value of C2  was determined by adjusting it in the least-squares fit to the RV  data to 
reproduce the known value of Li  (8.98 μH).

Notwithstanding the tedious process of calibrating it; in the final analysis, the self-neutralising 
bridge is slightly inferior to to the other configurations tested (although it is still very good).  The 
reason is probably that the voltage sampling network is not a pure capacitance, having a resistive 
component due to RV and an inductive component due to L2 .  It is likely therefore that the 
performance can be improved by minimising L1 (and hence L2 ) and by increasing Li  to give an 
increase in the set value of RV .
     An alternative solution to the problem of how to use the VS network as a neutralising 
capacitance might be to over-neutralise slightly and then place a very small adjustable capacitance 
across the current transformer secondary winding.  If this method is properly engineered, a 
conventional trimmer capacitor will be too large for the job; but a pair of short stiff wires that can 
be moved closer together or further apart (< 2 pF) will doubtless suffice.
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18x. Collected results
The collected results for sections 18a to 18f are summarised below.
 
The common experimental conditions (unless stated otherwise) were:
● Generator side Faraday shield earth.
● Test frequency range: 1.6 MHz to 30 MHz
● Inductance balance coil in series with C2 , adjusted before test. 
● C2 = 10pF ,  R0 = 50 Ω ,  Ri = 50 Ω . N = 12 ,  Core type = FT50-61 ,  Lsec = 9.25 μH .
● Reference capacitor: 8 pF - 48 pF with 82 pF in parallel.  L1 ≈ 85 nH .

Neutralisation method Data and analysis.
Max.

|Z| error.
Max. φ error

( ) → best possible?

Load-port capacitor. testbrg61-1212.ods ±0.25% ±0.12° (±0.09°)

Quadrature current, 2-point tracking testbrg61-13_2.ods ±0.35% ±0.17° (±0.13°)

Quadrature current, 3-point tracking testbrg61-13_4.ods ±0.12% ±0.044° (±0.04°)

Quadrature current, 3-point tracking
C2 = 4.9 pF .  Lsec = 8.15 μH.
3 pF - 30 pF ref cap (L1 ≈ 50 nH).

See separate article18 ±0.04% ±0.03°

Quadrature voltage. testbrg61-14_2.ods ±0.35% ±0.14° (±0.11°)

Quadrature voltage.
3 pF - 30 pF ref cap (L1 ≈ 50 nH).

testbrg61-14_3.ods ±0.03% ±0.14° (±0.10°)

Phase shift testbrg61-14_5.ods ±0.32% ±0.12° (±0.10°)

Herzog testbrg61-1214.ods ±0.38% ±0.11° (±0.10°)

Load side voltage sampling
C2 = 8.7 pF.  8 pF - 48 pF ref. cap. with 
56 pF in parallel.

testbrg61-1215.ods ±0.28% ±0.30° (±0.30°

The best possible phase performance (indicated in brackets) is an estimate of what can be achieved 
if the optimum upper calibration frequency is chosen.  Most of the 2-point tracking bridges are 
similar in this respect, and there is effectively no practical difference between a number of methods.
Generally, those methods that do not carry a generator power-factor penalty are to be preferred 
when extreme accuracy is not required.  3-point tracking gives the best results; but the additional 
circuit complexity is unwarranted for typical working bridges, and particularly if a conventional 
diode detector is to be used. 
     The amplitude performance is limited by the characteristics of the reference capacitor.  It is 
generally best when the inductance of the lower voltage-sampling arm is minimised.  This is 
demonstrated by the results for bridges using a 3 pF- 30 pF beehive trimmer rather than a 
physically-large variable capacitor.
     The results tabulated above are a demonstration of what can be achieved, but not necessarily of 
what has to be achieved.  In practice, anything better than about ±0.5° and ±0.5% (±0.25 Ω in a 
50 Ω system) is fine for a working impedance-monitoring bridge.

18 A Self-evaluating precision reference bridge.  Section 8.  D W Knight.  http://g3ynh.info/zdocs/bridges/ .



87

19. The utility of the Faraday shield
The application of the current transformer to the field of RF measurement was patented by Josef 
Stanek of Siemens and Halske (Germany), the US Patent [# 2134589] being awarded in 1938.  The 
Faraday shield was included in this invention, and its purpose was explained as follows:
     "The metallic coating of the insulating sheath is electrically connected to one terminal of the 
measuring instrument, preferably to that terminal which .. is grounded.   This arrangement serves 
the following purpose.  In the case of high-frequency, a transformer is also to be regarded as a 
condenser, the primary conductor .. forming the one and the secondary conductor forming the other 
electrode..   Therefore a capacitive displacement current could flow from the primary conductor to 
the secondary circuit and impair the measurement.  The grounded coating however carries off this 
displacement current and makes it ineffective."
     Since that passage was written, the need for the shield has become an article of faith among 
radio engineers; and others have gone on to say that the purpose of the shield is not to minimise the 
transmission-line mismatch but to provide electrostatic screening.  In section 11 however, we 
showed that the shield upsets the forward and reverse symmetry of the transformer phase 
performance, and in section 18b we showed that it can slightly degrade the frequency-tracking; i.e., 
at a subtle level, perhaps not relevant in 1938, it can cause the type of problem that it is supposed to 
prevent.  Moreover, it does help to minimise the through-line mismatch; but since that can also be 
done in other ways, the utility of the shield is open to question.

An unshielded version of the test bridge was assembled as shown in the photographs below: 

The through-line is a 0.9 mm diameter silver-plated wire, and the transformer core is spaced away 
from it by means of a stub of polyethylene honeycomb insulator as used in 75 Ω UHF TV-antenna 
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cable.  To prevent the polyethylene from melting during the soldering to the BNC sockets, the heat 
was shunted away by attaching to the wire a small pair of pliers with a rubber band around the 
handles.  Sliding the insulator away from the point being soldered also helped.
     In a jig designed for shielded transformers, it is obvious that the the through-line is a lot longer 
than it needs to be.  That does not pose a problem analytically, but it raises the point that doing 
without the shield is an aid to miniaturisation.  In fact, the transformer core could simply be placed 
on the back of the load-port socket, in which case the mismatch of the load-side line would be 
negligible.

The investigation was begun by acquiring two datasets as listed below:

No Faraday shield No compensation. 12 turns, FT50-61, Ri = 50 Ω . Cieff

testbrg61-12_8.ods 50 Ω reference load. 12.1 pF

testbrg61-12_9.ods 75.5 Ω reference load. 1.4 pF

An obvious feature of the data for the uncompensated bridge with the 50 Ω load connected is that 
that the apparent secondary capacitance is higher than for a shielded bridge.  This might seem anti-
intuitive to those who see the shield as a distributed capacitance across the coil, but since the 
average characteristic resistance of the through-line is now somewhere around 300 Ω, equations 
(14.3) or (15.1) tell us that at least some of this increase must be due to the mismatch.  Other 
features are that the stray capacitance across the voltage sampling network is reduced, and the value
of the upper voltage sampling capacitor C2  has to be increased by about 0.7 pF in order for the Rv 
data to reproduce the known value of Li (8.97 μH).  The increase is, of course, partly due to stray 
capacitance between the line and the summing point (i.e., the voltage-sampling network end of the 
transformer secondary).
     In the case of the uncompensated bridge with the 75 Ω load, agreement with the model 
developed in section 2 is not so good.  One reason for that is that the bridge with the 50 Ω load has 
a phase crossover frequency of 15.3 MHz and the data only go up to 14.5 MHz, whereas with a 
75 Ω load, the apparent secondary capacitance is reduced and the data go up to 30 MHz .  With this 
extra coverage, it can be seen that the quadrature balance data are somewhat more divergent from 
theory at high frequencies than for shielded bridges.  Also, the value of L1  returned from the in-
phase balance data is too large by about 30%, the reduced χ² is about 6, and the graph of residuals 
shows a distinct curvature. 
     In fact, we should expect the data do deviate from the model; and we should expect the deviation
to be worse with a 75 Ω load than it is with a 50 Ω load because the ratio of voltage to current is 
increased with increasing load impedance, i.e., the relative output of the current transformer goes 
down.  This gives greater influence to the principal suspect, which is the stray capacitance between 
the line and the detector port.  If C2  appears to have increased by 0.7 pF, then this capacitance must 
be of the same order.  Hence a more accurate model for the unshielded bridge is as in the diagram 
below.
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Since the voltage at the detector is zero when the bridge is balanced, the stray capacitance Cx  passes
its current into a virtual earth.  Therefore Cx  is effectively across the load, and as we know from 
equation (14.1), one of its effects will be to reduce the apparent secondary capacitance.  In this 
sense its presence is beneficial, because it reduces the mismatch of the through-line, but there is a 
greater issue (N times greater it will transpire) regarding the current injected into the detector port.
     In the absence of Cx , the bridge balances when VV = Vi . When Cx  is included however, the 
balance point is skewed such that the voltage VV = Vi  produces a current Id that is equal and 
opposite to the injected current Ix .  The magnitude of the voltage difference needed to counteract Ix  
depends on the source impedance of the Thévenin-equivalent generator producing it.  This 
impedance is the sum of the output impedances of the voltage sampling network and the current 
sampling network, these being:

Zv = Rv // jXC1 // jXC2

and 

Zi = Ri // jXLi // jXCi

Thus we can draw an equivalent circuit that allows us to determine the balance condition.

The balance condition is Id = -Ix .  Written explicitly this is:

VV - Vi

Zv + Zi

=
-V

jXCx

(19.1)
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Expressions for VV and Vi were given in section 2.  Modified to allow for the capacitance Cx in 
parallel with the primary load, these become:

Vv = V

┌
│
│
└

1 +
Zi

N² (R0 // jXCx )

┐
│
│
┘

Zv

jXC2

and

Vi  =
V Zi

N (R0 // jXCx )

Substituting these into equation (19.1), cancelling the voltages and rearranging gives the 
dimensionless balance relationship:

Zv

jXC2

┌
│
│
└

1 +
Zi

N² (R0 // jXCx )

┐
│
│
┘

-
Zi

N (R0 // jXCx )
=

-(Zv + Zi )

jXCx

which can be regrouped:

Zv

jXC2

┌
│
│
└

1 +
Zi

N² (R0 // jXCx )

┐
│
│
┘

+
Zv

jXCx

=
Zi

N (R0 // jXCx )
-

Zi

jXCx

Now, multiplying XC2  into top and bottom of the last term on the left-hand side, and noting that 
XC2 / XCx = Cx / C2 ;  and also factoring Zi / N  from the right-hand side and noting that 
1/(a//b) = (1/a) + (1/b) :

Zv

jXC2

┌
│
│
└

1 +
Zi

N² (R0 // jXCx )
+

Cx

C2

┐
│
│
┘

=
Zi

N

┌
│
│
└

1

R0

+
1 - N

jXCx

┐
│
│
┘

Inverting this expression and rearranging gives:

jXC2

Zv

=
N [ R0 // jXCx / (1-N) ]

Zi

┌
│
│
└

1+
Zi

N² (R0 // jXCx )
+

Cx

C2

┐
│
│
┘

and hence:
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jXC2

Zv

=

┌
│
│
└

1 +
Cx

C2

┐
│
│
┘

N [ R0 // jXCx /(1-N) ] 

Zi

+
R0 // jXCx / (1-N) 

N (R0 // jXCx )
(19.2)

Taking the right-most term on its own and expanding it gives:

R0 // jXCx / (1-N)

N (R0 // jXCx )
=

j R0 XCx / (1-N)

N [ R0 + jXCx / (1-N) ]

┌
│
│
└

1

R0

+
1

jXCx

┐
│
│
┘

Now factoring 1/ (1-N)  from the denominator and cancelling, then multiplying numerator and 
denominator by the complex conjugate of the denominator, we obtain:

R0 // jXCx / (1-N)

N (R0 // jXCx )
=

j R0 XCx [ (1-N) R0 - jXCx ]

N [ (1-N)² R0² + XCx² ]

┌
│
│
└

1

R0

+
1

jXCx

┐
│
│
┘

Here we can make an approximation by noting that for the test bridge, with N = 12 ,  R0 = 50 Ω and 
Cx  no greater than 1 pF (actually 0.33 pF as it turned out), the term (1-N)² R0² = 302500 ,  whereas 
XCx² ,  at its lowest (at say 2×108 radians/sec), will be >25 million.  Hence the error in deleting 
(1-N)² R0²  from the denominator will be <1% at the high end of the HF spectrum and negligible at 
the low end.  Hence:

R0 // jXCx / (1-N)

N (R0 // jXCx )
=

j R0 [ (1-N) R0 - jXCx ]

N XCx

┌
│
│
└

1

R0

+
1

jXCx

┐
│
│
┘

And after putting the first factor into a+jb form (and noting that j² = -1):

R0 // jXCx / (1-N)

N (R0 // jXCx )
=

R0

N

┌
│
│
└

1+
j (1-N) R0 

XCx

┐
│
│
┘

┌
│
│
└

1

R0

+
1

jXCx

┐
│
│
┘

Multiplying out:

R0 // jXCx / ( 1-N)

N (R0 // jXCx )
=

1

N

┌
│
│
└

1 +
(1-N) R0²

XCx²
+

R0

jXCx

-
(1-N) R0

jXCx

┐
│
│
┘

We can now make another approximation, less serious than the previous one, which is that the 
second term of the series can be deleted because XCx² >> (1-N) R0² .  The error in this case is 
<0.05%  for the test bridge at the high end of the HF spectrum, i.e., truly negligible.  Now noting 
that 1-(1-N) = N  and  1/j = -j,  we get:
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R0 // jXCx /(1-N)

N (R0 // jXCx )
=

1

N
-

jR0

XCx

                                                (19.3)

Substituting this back into equation (19.2) and rearranging the terms gives:

jXC2 

Zv

-
1

N
+

jR0

XCx

=

┌
│
│
└

1 +
Cx

C2

┐
│
│
┘

N [R0 // jXCx / (1-N) ]

Zi

(19.4)

The 1/N term is of course part of the transformer constant in the in-phase balance condition.  Since 
this is a small correction to allow for the difference between V and V' caused by the insertion 
impedance, and N is generally >10, the <1% error introduced earlier is <1% of <10%, i.e., <0.1%, 
and is therefore harmless.

Now, taking the right-most factor on its own and expanding it (also recalling that 
Zi = Ri // jXLi // jXCi ) gives:

N [R0 // jXCx / (1-N) ]

Zi

=
j N R0 XCx / (1-N)

R0 + jXCx / (1-N)

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

One again factoring 1/(1-N) from the denominator and cancelling, then multiplying numerator and 
denominator by the complex conjugate of the denominator, gives:

N [R0 // jXCx / (1-N) ]

Zi

=
j N R0 XCx [ (1-N) R0 - jXCx ]

(1-N)² R0² + XCx²

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

Again we can use the approximation that XCx² >> (1-N)² R0² .  This time however, the <1% error 
will slightly affect the goodness of fit to the model; potentially incurring a frequency-dependent 
curvature that will be small but possibly visible above the experimental noise.  Thus:

N [R0 // jXCx / (1-N) ]

Zi

= N R0

┌
│
│
└

1 +
j (1-N) R0

XCx

┐
│
│
┘

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

┐
│
│
┘

Multiplying out:

N [R0 // jXCx / (1-N)]

Zi

= N R0

┌
│
│
└

1

Ri

+
(1-N) R0

XCx XLi

+
(1-N) R0

XCx XCi

+
1

jXLi

+
1

jXCi

-
(1-N) R0

jXCx Ri

┐
│
│
┘

Now observe that XCx XLi = -Li / Cx .  For the test bridge, with N = 12 ,  R0 = 50 Ω ,  Cx < 1 pF and 
Li =9 μH ,  the second conductance term will be <0.00006 Siemens, i.e., it corresponds to a 
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resistance of >16.7 kΩ in parallel with Ri .  It represents a minor frequency-independent adjustment 
to the apparent transformer efficiency, which will be lost in the uncertainty of the efficiency factor 
and can therefore be dropped. 
     If we take Ci  to be about 10 pF ,  and the maximum frequency to be 2×108 radians/sec, the third 
conductance term will be <0.00022 Siemens, i.e., it corresponds to a resistance of >4.5 kΩ in 
parallel with Ri  and can be dropped with the proviso that there will be an additional frequency 
dependent deviation from the model of <1% in the in-phase response.

Hence:

N [R0 // jXCx / (1-N) ]

Zi

= N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCi

-
(1-N) R0

jXCx Ri

┐
│
│
┘

(19.5)

The additional capacitive susceptance term, of course, gives rise to a shift in the apparent value of 
Ci  in exactly the same way as did the other parasitic effects analysed in sections 11 to 14 and 
summarised in section 15.  To quantify the effect we can introduce a new parameter  Cix'  to 
represent the apparent secondary capacitance (the parameter is given a prime because there is 
another small contribution to be added later).  Noting that -(1-N) = N-1 ,  Cix'  is defined by the 
relationship:

1

XCix'
=

1

XCi

+
(N-1) R0

XCx Ri

i.e.:

-2πf Cix' = -2πf Ci - 2πf (N-1) Cx R0 / Ri

Thus: 

Cix' = Ci + (N-1) Cx R0 / Ri (19.6)

Comparing this with equation (15.1) (cf. the effect of C0 ), we can see that this represents  N Cx  of 
shift for the current injected into the detector port, minus Cx of shift for the extra capacitance across 
the line.  Overall, the lack of a Faraday shield has made a significant positive contribution to the 
apparent secondary capacitance.  If Cx  is 0.33 pF ,  R0 = Ri , and N = 12 ,  it amounts to 3.6 pF.  This
is in addition to the positive contribution caused by having a through-line characteristic resistance 
greater than R0.  There is nothing yet to imply that the situation is uncorrectable however.

Substituting equation (19.6) into (19.5):

N [R0 // jXCx / (1-N) ]

Zi

= N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCix'

┐
│
│
┘

and substituting this back into equation (19.4):
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jXC2

Zv

-
1

N
+

jR0

XCx

=

┌
│
│
└

1 +
Cx

C2

┐
│
│
┘

N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCix'

┐
│
│
┘

Now we can see that the term jR0 / XCx  is also in a form that causes it to contribute to the apparent 
secondary capacitance.  Moving it to the right hand side and moving j to the denominator shows 
that it is a positive contribution.  It becomes part of the secondary admittance series when the 
denominator is multiplied by  (1+ Cx / C2 ) N R0 .  Hence:

jXC2

Zv

-
1

N
= (1 + Cx /C2 ) N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCix'
+

1

j (1+Cx / C2 ) N XCx

┐
│
│
┘

(19.7)

Now we can define a new parameter Cix , without the prime, such that:

Cix = Cix' + Cx / [ (1+Cx /C2 ) N ]

Also notice that  (1+ Cx / C2 ) = (Cx +C2 ) / C2 .  Hence:

Cix = Cix' + Cx C2 / [ (Cx + C2 ) N ]

The new contribution to the apparent secondary capacitance is 1/N times the capacitance of the 
series combination of Cx and C2 .  For the test bridge it amounts to about 0.03 pF, and so it is not 
very important, but it might as well be included for completeness.  Combining this result with 
equation (19.6) gives:

Cix = Ci + [ (N-1) Cx R0 / Ri ] + Cx C2 / [ (Cx + C2 ) N ] 19.8

and substituting this into equation (19.7) gives:

jXC2

Zv

-
1

N
= (1 + Cx / C2 ) N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCix

┐
│
│
┘

Zv  is, of course, Rv // jXC1 // jXC2 , and so, noting that XC2 / XC1 = C1 / C2 ,  the first term can be 
expanded giving:

-XC2

jRv

+
C1

C2

+ 1 -
1

N
= (1 + Cx / C2 ) N R0

┌
│
│
└

1

Ri

+
1

jXLi

+
1

jXCix

┐
│
│
┘

(19.9)
Balance condition
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Equating reals:

C1

C2

=
(1 + Cx / C2 ) N R0

Ri

- 1 +
1

N
       (19.10)

Upon deletion of the factor  (1+Cx / C2 ) ,  this expression is the same as equation (2.1) for the 
shielded bridge.  Hence, apart from the approximations made earlier, the introduction of Cx  merely 
causes a small reduction in the apparent transformer efficiency (about 3% for the test bridge). 

If we modify equation (19.10) by including the transformer efficiency factor k', we obtain a more 
general expression for the transformer constant introduced in section 5a:

KT =
C1

C2

=
(1 + Cx / C2 ) N R0

k' Ri

- 1 +
1

N

(19.10a)
Transformer constant

Equating imaginaries:

-XC2

Rv
= (1 + Cx / C2 ) N R0

┌
│
│
└

1 

XLi

+
1 

XCix

┐
│
│
┘

The frequency dependent apparent secondary inductance is now slightly different from the the 
quantity  Li'  introduced in section 2, because it involves Cix  instead of Ci , but since the apparent 
value of Ci  is disturbed by almost every parasitic reactance in the system, there seems little point in 
generating a new definition.  Hence, by analogy with what was done previously, we will use:

Xi = 2πf Li' = XLi // XCix

Hence:

1

2πf C2 Rv

=
(1 + Cx / C2 ) N R0

2πf Li'

i.e.:

Li' = C2 (1 + Cx / C2 ) N R0 Rv

i.e.:

Li' = (C2 + Cx ) N R0 Rv 19.11

Notwithstanding a few small approximations, which are slightly more serious than the 
approximations used in deriving the perturbation series for the other parasitic effects (equation 
15.1); the only difference between this and the quadrature balance condition for a shielded bridge 
(equation 2.2) is that C2 has been replaced by (C2 + Cx ) .
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As can be noted from all of the derivations in the preceding sections, the secondary coupled 
inductance Li  is a strongly conserved parameter; and so for a given transformer, the quantity 
(C2 + Cx ) can be determined from the original model as the value to which "C2" must be adjusted to 
reproduce the value of Li  obtained when a Faraday shield is present.  For the test bridge illustrated 
above, "C2" for the fit had to be increased by about 0.7 pF, but this difference should not be 
identified as Cx .  If removing the shield introduces stray capacitance between the through-line and 
the detector port, then there must be an almost equal amount of stray capacitance between the 
through-line and the summing point (i.e., the other end of the transformer winding).  Hence we 
should expect the difference to be the sum of Cx  and the additional stray capacitance across C2 ,  
i.e., if the shift is 0.7 pF, then Cx  is 0.35 pF. 
     And so, after the analytical challenge of finding the balance condition, it transpires that the 
spreadsheet template for data analysis can be modified to include unshielded bridges simply by 
labelling "C2" as "C2 + Cx", multiplying the first term of the transformer constant by  1 + Cx / C2  
(equation 19.10a), and amending the series for apparent secondary capacitance.  Deleting the 
shield-protrusion capacitance term from equation (15.1), then combining it with (19.8) gives:

Cieff = Ci' + Cis  -
Lh

Ri²
-

L2 

N Rv R0

+
L0

Ri R0

-
C0 R0

Ri

+
(N-1) Cx R0

Ri

+
Cx C2

N (Cx + C2) 
(19.12)

Sec. Load VS network Through-line Direct pickup

Note incidentally, that the introduction of the 'direct pickup' capacitance Cx  also provides a model 
for very-near-field coupling between the generator and detector.  It explains an effect that was 
observed during the process of experimental optimisation, which was that the phase crossover 
frequency of the prototype bridge increased slightly when a nickel-plated connector and an RG58 
cable at the receiver input were replaced by a silver-plated connector and a Belden 9880 cable 
(section 8).

So now we return to the question of whether or not it is necessary to use a Faraday shield.  To that, 
the answer is probably 'yes' if the circuit designer makes no attempt to correct for the apparent 
secondary capacitance, and probably 'yes' if the transformer has a large number of turns or a low 
value for Ri .  This can be understood by differentiating the penultimate term of equation (19.12) 
above:

∂Cieff  / ∂Cx ≈ (N-1) R0 / Ri

Then again, there are effects, such as the inductance of the secondary load resistor, that can make 
the apparent secondary capacitance negative; and given the practice of describing bijou 
inductorettes as 'resistors', we might be glad of something to push it the other way.  An issue 
therefore is: 'how severe is the curvature introduced by the approximations used in deriving the 
model?', i.e., 'how correctable is the direct pickup effect?'  An attempt to answer that question was 
made by correcting the bridge in various ways and analysing its performance using the method 
described in section 16.  The datasets for experiments carried out on the test jig are given in the 
spreadsheets listed below.  The results for a working bridge using quadrature-current-injection 
neutralisation are discussed in a separate article (reference is given in the table).
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No Faraday shield
1.6 MHz to 30 MHz

R0 = 50 Ω ,  Ri = 50 Ω .
Inductance balance coil fitted.

Max.
|Z| error.

Max. φ error
( ) → best possible

testbrg61-1210.ods Capacitor across load port a. ±0.43% ±0.19° (±0.11°)

testbrg61-1211.ods Herzog compensationb. ±0.14%. ±0.11° (±0.10° )

testbrg61-13_1.ods Phase-shift compensationc. ±0.63% ±0.66° (±0.47°)

testbrg61-14_1.ods Quadrature voltage compensationd. ±0.35% ±0.05° (±0.05°)

see separate article19 Current injection, 3-point tracking. ±0.04% ±0.033° (±0.025°)

Notes:

a) By placing a trimmer capacitor across the load port, adjusting Rv and C2 at 2 MHz and adjusting 
the inductance balance coil and the trimmer at 24 MHz, the bridge gave a phase error less than 
±0.2° and a magnitude error less than ±0.5% over the 1.6 MHz to 30MHz range.  Significant 
improvement could have been obtained by moving the upper calibration frequency to 27 or 28 
MHz.  The amplitude performance is not as good as was obtained from the shielded version of the 
bridge (section 18a) but is nevertheless perfectly acceptable.

b) Using Herzog's compensation method, calibrating at 2 MHz and 26 MHz, the phase error was 
within ±0.11° and the magnitude error within ±0.14%.  The amplitude performance is better than 
that obtained from the shielded version (section 18e), possibly indicating partial cancellation of 
system non-idealities.

c) The phase shift compensation method (section 18d) did not work properly for this test.  In 
particular, neutralisation could only be achieved by having less Ω/turn across the auxiliary winding 
than across the main secondary.  This was not known until the resistance was measured at the end of
the test run.  Increasing the auxiliary winding to 2 turns would probably have fixed the problem, but
the experiment was not repeated.  The interesting point about this result however, is that 
neutralisation can be achieved with the secondary and auxiliary loading ratios reversed.  The reason 
is that the vector sum Va + Vi  has its smallest lead in relation to the primary current when both 
windings have the same Ω/turn.  The phase swings positive again when if the resistance shunting 
the auxiliary winding is further reduced.

d) Quadrature voltage compensation (section 18c), using a 2-turn winding with a 250 Ω pot. across 
it, gave a phase error within ±0.05° and magnitude error within ±0.35%.  The remarkable phase 
performance in this case is possibly (but not necessarily) due to cancellation of system non-
idealities, i.e., it might be difficult to reproduce (but then again, it might not).

19 A Self-evaluating precision reference bridge. Section 8.  D W Knight.  http://g3ynh.info/zdocs/bridges/ .
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Unshielded bridge with Herzog HF compensation coil in series with the secondary load resistor.
Phase error better than ±0.11°, magnitude error better than ±0.14%, from 1.6 MHz to 30 MHz 
(testbrg61-1211.ods).

Unshielded bridge with phase-shift neutralisation (see section 18d).  The auxiliary voltage is 
provided by a 1 turn winding shunted by a 100 Ω Cermet variable resistor (testbrg61-13_1.ods).  
The auxiliary load resistance, measured after the test, was 3.34 Ω .
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Unshielded bridge with quadrature voltage
compensation.  A 2-turn lightly-loaded winding
produces an output at approximately +90° relative
to Vi .  A 250 Ω cermet pot. across the winding
adjusts the output level, the resulting quadrature
voltage being added to the current transformer
output.  Maximum phase error of this bridge is
±0.05° over the 1.6 MHz to 30 MHz range, close
to the ±0.03° performance limit for type 61 ferrite
and 2-point frequency tracking (testbrg61-
14_1.ods). 
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The greatest potential for phase accuracy is, of couse, given by the 3-point
tracking scheme described in section 18b.  Rather than evaluating this
method on the test jig; a working bridge was constructed in order to improve
the circuit layout and minimise the inductance of the lower voltage-sampling
arm.  The result was a bridge with no Faraday shield showing a maximum
phase error of ±0.03° and a maximum amplitude error of ±0.04% over the 
1.6 MHz to 30MHz range; i.e., more than two orders of magnitude better
than most of the impedance-monitoring bridges reported elsewhere prior to
this work.  The device is described in detail in a separate article.  A Faraday
shielded version gave practically identical results.

In summary we may note that, although the unshielded bridge has a larger effective secondary 
capacitance than its shielded counterpart, the correction process is no less effective.  Whether the 
shield is redundant however, must remain moot. The following points should be considered when 
making a decision:

● The shield eliminates the direct pickup signal, improving the phase performance of uncorrected 
bridges and bridges with a low transresistance (i.e., a low value for  Ri / N ).

● The shield reduces the average through-line characteristic resistance.

● The circuit model for the unshielded bridge requires additional parameters, which are difficult to 
determine unless measurements are also made on a shielded version; i.e., the shielded bridge is 
easier to simulate.

● The shield gives rise to asymmetry in forward and reverse phase performance (a problem that 
might be solvable by using a two-hole core and earthing the shield at its mid point).  Since forward-
power bridges do not normally require neutralisation however, this is probably not important.

● The shield increases the physical length of the transformer assembly.
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20. Final comments
The test procedures, theory and data-analysis techniques described in this article were developed 
without prior knowledge of the experimental conclusions.  Consequently, the test-jig used was a 
Heath-Robinson affair and had plenty of scope for improvement.  The temptation to redesign it 
from scratch part-way through the work was resisted in the interests of comparability between the 
various results. 
     A particular suspicion arose during the course of the work, to the effect that the parasitic 
inductances of the components in the lower voltage-sampling arm were limiting the achievable 
magnitude performance.  This network has several equivalent-series-inductances; that of the 
variable capacitor, that of the padding capacitor, and that of the pair of variable resistors in series.  
These do not combine into a single frequency-independent equivalent series inductance for the 
whole arm, and consequently cannot be balanced-out perfectly by a single coil in the upper voltage-
sampling arm.  In the working bridge described in the article to follow, this shortcoming is 
addressed by miniaturisation and attention to layout, and results in substantial improvement.
     A fairly obvious improvement to the experimental technique can also be had by building the 
bridge into a metal box and screwing the lid down tightly before calibrating and testing.  This 
makes the bridge immune to the positions of the operators hands and the various tools and cables 
lying around, thereby improving the accuracy of calibration and reducing the amount of scatter in 
the evaluation data.  The bridge described in the follow-on article is essentially a boxed version of 
the test bridge used here, and suggests an altogether better way of doing things in the event that 
anyone should wish to repeat or extend this work. 
     Whenever a mathematical derivation is carried out for the first time, the resulting exposition is 
not usually the most elegant.  During the work described here, the pressure was to deal with the 
insurgence of an ever-increasing number of subtle effects, all of which had somehow to be crammed
into the model.  The resulting analysis template is consequently a bit of a mess.  It did its job 
however, which was to establish and quantify all of the factors that affect bridge resistance and 
reactance balance to a level of about 1 part in 1000 or better.  With hindsight, i.e., by knowing in 
advance all of the things that are important, it is possible to simplify the analysis by factoring it into
separate parts, and to dispense with the need for certain approximations and difficult-to-estimate 
parameters.  The work stands however, there is little point in repeating the data analysis; and the 
true test of its worth is to see whether it can inform the design of future bridges.
     By following the working given in section 19, it is possible to write down a general balance 
condition for bridges that have been neutralised and corrected for voltage-sampling network 
inductance, i.e.:

C1

C2

+ 1 +
jXC2

RV

-
1

N
= (1+ Cx / C2 ) N Z0

┌
│
│
└

1 

k' Ri

-
j 

XLi

┐
│
│
┘

(20.1)

This is obtained from equation (19.9) by substituting Z0  in place of R0 , inserting a transformer 
efficiency factor ( k' ), and deleting the term for apparent transformer-secondary capacitance.  There
is no need to include the inductances of the voltage-sampling capacitors, because the inductance-
balance correction cancels them out.  Likewise, there is no need to include a long series of terms to 
account for the numerous causes of high-frequency phase error, because a phantom neutralisation 
term cancels them all out.  The result, as is evident from the neutralisation experiments, is an 
extremely accurate model; which even accounts for the differences between Faraday-shielded and 
unshielded transformers (when a Faraday shield is used, Cx = 0 ).  It separates cleanly into 
frequency-independent expressions for resistance and reactance balance provided that Z0  is purely 
resistive, and it can be used for circuit component-value calculations insofar as k, Li  and various 
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stray capacitances can be estimated.
     Equation (20.1) might look like an obvious conclusion of this work, or even the outcome of a 
naive derivation based on the idea that capacitors don't have inductance and coils don't have 
capacitance.  It contains a subtle distinction however, which unravels the problem of bridge 
evaluation by perturbation analysis.  The trick (being discovered in one of the author's 'why didn't I 
think of this before' moments) is that the bridge can perfectly well be balanced when the load 
impedance is not purely resistive.  Hence we can generalise the balance condition by replacing R0 
with Z0 = R0 + jX0 .  The point of the perturbation analysis is to convert deviations of C1  and RV  
from their calibration settings, into equivalent deviations of load resistance and reactance in the 
event that the calibration is left untouched.  All that is needed for that is the rate of change of R0  
with respect to C1  (i.e., ∂R0 / ∂C1 ) and the rate of change of X0  with respect to RV  (i.e., ∂X0 / ∂RV ).  
With the reactance error X0  appearing explicitly in the balance equation, the required derivatives 
are easily obtained without the need for further approximations; and it transpires that there is no 
need to try to estimate the strays across C1 .  This simplified method of bridge evaluation is 
developed and used in the follow-on article.

DWK
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