
1

Current Transformer Efficiency Factor 
By David Knight

Version 1.00, 20th Feb. 2014.
© D. W. Knight, 2014.
This is an updated version of an HTML article that was first published in 2007.  
Please check the author's website to make sure you have the most recent version of this document 
and the accompanying spreadsheet file: http://www.g3ynh.info/ .

Preface 
If the secondary network of a current transformer can be represented as a set of impedances in 
parallel, and the apparent secondary capacitance can be neutralised, then there will exist a 
frequency-independent solution for the balance condition of a bridge that uses the transformer as a 
current-sampling element and a potential-divider as the voltage-sampling element.  The purely-
parallel model can not, of course, offer a rigorous representation of the network, because both 
leakage inductance and winding loss are strictly in series with the output; but if these quantities are 
relatively small, the effect of neglecting them can be absorbed into the other parameters.  If that is 
the case, then the shortfall in output that results from losses and incomplete coupling can be 
modelled by including a resistance in parallel with the secondary load resistance, and by allowing 
the effective secondary inductance to be slightly less than the measured secondary inductance.  This
semi-empirical modification of the 'ideal transformer with secondary inductance' model has been 
used by the author in the design of transmission-line bridges offering magnitude accuracy of better 
than 0.1% and phase error of < 0.1º over at least 5 octaves1.  This article gives the experimental 
justification for the model.
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1.  Introduction
A reasonably good description of a tightly-coupled current transformer is given by using an ideal 
transformer model with parallel secondary reactance.  The relationship between output voltage and 
input current for that model is given by the expression:

Vi = I Zi  / N

where N is the turns ratio and Zi  is the parallel combination of the secondary load resistance and the
secondary reactance, i.e.:

Zi = ( Ri  // jXLi  // jXCi )

A potential problem here however is that various transformer non-idealities, particularly core loss, 
winding resistance and leakage inductance, have been partially neglected.  This means that the 
actual output voltage of the transformer is always slightly less than that predicted by the model.  
The discrepancy is often of little consequence because it is small in engineering terms; but it is 
necessary to keep track of it, and if possible to quantify it, when calculating the balance condition 
for a bridge, or when calibrating an accurate power meter or ammeter. 
     One way of accounting for the output shortfall is to include an empirical frequency-independent 
transfer efficiency factor in the input-output relationship.  The justification for dealing with the 
problem in this way is that the relative frequency response of the transformer is well described 
when only parallel reactance is included 2 ; the reason being that, although the losses and inductance
leakages are frequency dependent, the dependence is weak in comparison to the major non-
idealities and so can be absorbed into the parallel reactance parameters.  Hence we might modify 
the transfer relationship in one of two ways:

Either        Vi = k' I Zi / N        Or        Vi = I ( k' Ri  // jXLi // jXCi  ) / N

In the first approach, we simply multiply the predicted output voltage by a factor k' ,  which is 
slightly less than one.  In the second approach, we multiply the load resistance by a factor k' , in 
which case we can consider k'  to have come about as a result of a parasitic parallel resistance Rk 
(say) defined such that:

k' Ri  =  Ri  // Rk  =  Ri Rk  / (Ri + Rk )

i.e:

k' = Rk / ( Ri + Rk )

and by rearrangement:

Rk = k' Ri  / ( 1- k' )

Note that the empirical factor k' is not the same as the transformer coupling coefficient k, hence the 
prime.
     There is little difference between the two approaches, except that the first slightly modifies the 
effective parallel reactances in the process of reducing the output voltage, whereas the latter does 
not.  In other experiments performed by the author, it was found that the value of secondary 

2 Amplitude response of conventional and maximally-flat current transformers.  D W Knight. 
http://g3ynh.info/zdocs/bridges/
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inductance obtained by direct measurement was always slightly greater than the inductance 
obtained by linear regression analysis of a set of frequency response measurements3.   Multiplying 
the measured inductance by a realistic k value brings the two values into agreement, but since the 
frequency response method gives a very accurate inductance value there seems to be little merit in 
linking its value to an empirical amplitude correction factor.  The difference between directly 
measured secondary inductance (total inductance) and the value of inductance required to fit the 
frequency response curve (coupled inductance) is, of course, most closely related to the secondary 
leakage inductance (about 1% of the total).  Hence it seems sensible to define Li  as the coupled 
secondary inductance.

2.  Measuring transfer efficiency
Described below is a procedure for measuring the transfer efficiency of current transformers; 
followed by various measurements made using that procedure.  For the purpose of these tests, 
transfer efficiency is defined as follows:

Transfer efficiency  =  k'  =
|measured output voltage|

|predicted output voltage|

where the measured voltage is a magnitude (a meter reading) and the predicted output voltage is 
defined as:

|Vi (theoretical)| = |I| |(Ri' // jXLi // jXCis )| / N

and  Ri'  is the parallel combination of the secondary load resistance and the voltmeter (detector) 
input resistance.
     Notice that the secondary shunt capacitance is given as Cis .  Only stray capacitance is included, 
and the 'self-capacitance' of the coil is ignored for the purpose of calculating magnitudes.  The 
reason for that is that none of the transformers tested had more than 20 turns on the secondary, and 
amplitude frequency-response measurements indicated that all of the transformers were operating in
a completely flat region of the frequency response at the measurement frequency of 30 MHz.  Had 
the coil 'self-capacitance' been taken into account, this would have predicted a slight roll-off at 
30 MHz, but no such roll-off occurs in practice.  The explanation is that 'self-capacitance' is largely 
fictitious.  It is merely a lumped-component representation for the time delay that occurs due to the 
finite velocity of electromagnetic waves propagating along the winding wire4.  The transformer 
secondary is effectively a transmission line, and although unlikely to be terminated exactly in its 
characteristic impedance, the principal effect of the time delay is to shift the phase of the output 
without affecting the magnitude.  Including a fictitious capacitance in the model would shift the 
phase of the theoretical output voltage and also reduce its magnitude, inflating the apparent 
efficiency in some cases to more than 100%.  The fact that current transformers do not have gain 
must advise our choice of model in this case.
     The secondary inductance, on the other hand, is a perfectly good lumped parameter.  Hence it 
has been included, even though its effect on the output amplitude at 30 MHz is small.  Note that, 
since the resulting correction is small, the effect of any uncertainty in the measured inductance is 
negligible.

3 Amplitude response of conventional and maximally-flat current transformers  (DWK, Already cited).
Also: Evaluation and optimisation of current transformer bridges.  (DWK, Already cited), section 3.

4 Evaluation and optimisation of current transformer bridges.  as above,  section 16a.
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Using a standard expression for the magnitude of an impedance in parallel form5 ,  |Zi| can be 
written:

|Zi| = Ri' / √[ 1 + ( Ri' / Xi )² ]

where:

Xi = XLi // XCis

Hence (and also shortening "theoretical" to "theor"):

|Vi(theor)| = |I| Ri' / { N √[ 1 + ( Ri' / Xi )² ] }

By expressing the voltage magnitude in this form, the reactive contribution to the output is 
separable as a correction factor:

1/√[ 1 + ( Ri' / Xi )² ]

which is intentionally made close to unity by adopting 30 MHz as the measurement frequency, i.e., 
by choosing a frequency at which the reactances of the secondary inductance Li and the 'true' 
parallel capacitance Cis  approximately cancel.

3.  Measurement method
The main experimental problem is that of how to establish an accurately defined RF reference 
current in the transformer primary and make concomitantly accurate measurements of output 
voltage and load resistance.  Since transformer efficiency is normally very high, systematic errors of
a few percent in any of those quantities will make nonsense of the results.  The author's solution, 
using the attenuator, load and diode detectors shown below, was to calibrate the current detector by 
connecting a DC power supply in place of the generator, setting the meter to read FSD for a direct 
current equal to the peak RF current that flows when a generator is delivering 10 W into 50 Ω .  
Tests were then conducted on a variety of current transformers, with several different secondary 
load resistors; each time setting the generator output to give FSD of the meter monitoring the input 
current, and then setting the output level meter to read FSD by adjusting its series resistor.  After 
setting, the output detector was then transferred to a DC power supply, and the voltage giving FSD, 
being equivalent to the peak value of the RF output voltage, was determined.

5 See, for example, AC Electrical Theoy,  D W Knight.  http://g3ynh.info/zdocs/AC_theory/  .  Formula 18.3.
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Fig 1.  Early version of the test setup. In the final experiments, 10-turn potentiometers were used 
for the detector sensitivity adjustments and two AVO model 8 meters on their 50 μA ranges were 
used as indicators.  The AVO 8 has a large accurately-linearised scale with an anti-parallax mirror.

Fig 2.  Establishing the reference current.

The initial current calibration step is illustrated in fig. 2 above.  The point in delivering direct 
current into the entire load assembly in this way is that it automatically takes into account the diode 
forward voltage drop and the tolerances of the resistors in the T-attenuator and the terminator.  All 
we are interested in is the input current, and we do not care if the load presented to the transmitter is
not exacly 50 Ω .  The RMS current that flows when a generator is delivering exactly 10 W into 
exactly 50 Ω  is:

|I| = √( P/R ) = 447.2 mA .  

The equivalent peak current is:

447.2 √2 = 632.4 mA 

and so this is the direct current that should be injected as accurately as is possible when setting the 
detector to read full-scale.  Note however that typical bench power-supplies have a  0 - 30 V  output
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range, whereas it requires  31.6 V  to give  632 mA into a  50 Ω  resistance.  The solution to this 
problem is to put two power supplies in series (the author used a 13.8 V PSU in series with a  
0 - 30 V PSU), having first checked that the terminals of the most positive power supply in the stack
are floating with respect to ground.  A further trick is to cook the whole assembly at an input current
of  447 mA  for 10 minutes or so, to raise its temperature to that which will be encountered during 
the RF measurements, and then briefly ramp the current to 632 mA for the setting of the meter 
series resistor.  In this way the effect of thermal variations in resistance and diode forward voltage 
drop are minimised. 
     For the purpose of establishing the DC input current, the author had available two 3½ digit 
multimeters of different make but in a known good state of calibration.  Consequently, although 
only one ammeter is shown in series with the PSU, both meters were placed in series so that the 
average could be taken.  Fortuitously, the meters read  632 mA  simultaneously, which gave 
confidence in both an emotional and a statistical sense.  Both meters had a stated accuracy of  
±0.5% ±1 mA  on the ranges used, i.e., ±4.16 mA (the numbers after the decimal place are not 
significant), but by averaging the readings the uncertainty is reduced by a factor of 1/√2 .  Hence the
estimated standard deviation of the peak current setting was:

4.16 / √2 = 2.9 mA

The peak current must of course then be divided by √2 to find the RMS current during the RF 
measurements, and the estimated standard deviation is scaled down accordingly.  This gives an 
equivalent RMS input current of 446.9 ±2.1 mA.  Finally, with much tapping of the case to jog the 
bearings, and careful use of the anti-parallax mirror, it was estimated that the detector current meter 
could be set to within ±0.2% of FSD.  This corresponds to ±0.9 parts in 447 ,  and so it was 
established that RF measurements were made with a reference input current of  446.9 ±3 mA RMS.

Fig 3.  Setting the output detector meter series resistor.

The RF part of the procedure was conducted with the transformer under test installed as in the 
diagram above.  In each case, the carrier level of the generator (radio transmitter) was turned up to 
give FSD of the input current meter, the output meter was set roughly to FSD by adjusting its series 
resistor, and the whole assembly was allowed to cook for about 10 minutes. With the system in 
thermal equilibrium, and much tapping of both meters to jog the bearings, the carrier level was then 
set exactly, and the series resistance of the output level meter was given its final adjustment.  
Precise adjustment of the transmitter carrier control was made possible by the use of an auxiliary 
reduction drive as shown in fig 4. below.
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Fig 4.
Temporary reduction drive fitted to a transmitter
carrier level control.  Accurate setting of the power
level is all but impossible without such an
attachment.  A 6:1 friction drive is shown coupled to
the (outer) carrier control knob of a Kenwood
TS930S HF transceiver by means of a short length of
PVC tubing (warmed to soften it and then pushed
on).  An improvised stay for the reduction-drive
body is attached to a lower cover retaining screw.

The immediate priority after switching off the transmitter was to measure the resistance of the 
transformer secondary load resistor before it had a chance to cool down.  This was accomplished by
having a DMM set to the correct range and ready with a good clean silver-plated BNC to 4 mm  
adapter installed.  It was found possible to obtain a resistance reading within 3 seconds of switching
off the RF input, and none of the resistances were seen to change on that timescale.  This step was 
necessitated by the discovery that preliminary experiments had been invalidated by thermal 
variation of about 2% in some of the load resistors used.  The meter used for the measurement had a
stated accuracy of  ±0.8% ±0.1 Ω  on the range used.  It gave the following readings when used to 
measure various 0.1% precision resistors mounted on good quality BNC plugs:

Reference resistor: Short circuit 21.30 ±0.021 42.00 ±0.04 100.0 ±0.1

Meter reading: 0.1 21.4 42.1 100.15

(the meter flickered between 100.1 and 100.2 when reading the 100 Ω resistor, so the last digit is 
given in italics to indicate that it was deduced).  Evidently the accuracy of the meter was better than 
specified, but there is a need to subtract 0.1 Ω from all of its readings.  The corrected resistance 
readings were assumed to have a standard deviation of no worse than  ±0.2 Ω .

Fig 5.  Reading the detector sensitivity to determine Vi(peak)

The final step in making a measurement was to determine the DC input voltage corresponding to 
FSD of the current transformer output detector, as shown in fig. 5 above.  The voltage obtained 
corresponds to the peak value of the current transformer output under RF conditions and will be 
given the symbol Vi(peak) .  The DVM used for the measurement has an input resistance of 10 MΩ 
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and gave the voltage of a Weston Standard Cell at 20°C to be 1.019 V on its 2 V range (exactly 
correct for an instrument of its resolution), and flickered between 1.01 V and 1.02 V on the 20 V 
range used.  Its accuracy was therefore also better than specified, and the voltage measurements 
obtained were assumed to have a standard deviation no worse than ±0.02 V.  To this however, must 
be added the resetting uncertainty of the detector meter, which was about  ±0.2%  for the RF setting 
step and  ±0.2%  for the DC measurement step, giving 0.3% overall.  Hence detector voltage 
measurements were made with an uncertainty of ±0.02 V ±0.3% ,  the two sources of error being 
uncorrelated 6.  This uncertainty is scaled down by a factor of  1/√2  when we convert from peak to 
RMS values.
     Some readers might question the need to read the output voltage by applying DC to the detector, 
since it is 'obvious' that the voltage can be read by connecting a DVM across the smoothing 
capacitor while the transmitter is running.  It was found however, that DVM readings in the 
presence of an operating radio transmitter could not be trusted.  The author saw readings that were 
in error by a factor of as much as  2.2  (reading  22 V  instead of  10 V ) when this was tried.  This 
problem might be solved by feeding the DVM via an efficient low-pass filter, but apparent 
plausibility of the readings is the only measure of success in such a case.  The DC method also takes
the diode forward voltage drop into account automatically, whereas a direct reading must be 
corrected.  Hence, any improvement in accuracy engendered by a direct reading will be partially 
negated by uncertainties in the diode model used.  Any error in the diode correction will moreover 
be systematic (i.e., it will introduce bias into all of the results obtained), whereas the setting and 
resetting errors of a properly zeroed moving-coil meter are largely random. 
     As mentioned previously, the need to control random errors very carefully arises because 
transformer efficiency is high.  We must also be aware however, that there might be residual 
systematic errors; one being due to the possibility that there might be detector inefficiency beyond 
that associated with the diode forward voltage drop under static (DC) conditions.  The issue here is 
that when a diode conducts under dynamic conditions, the current occurs in pulses that are 
considerably larger than the average current.  Thus there might be a greater effective diode forward 
drop than has been allowed for by making DC settings and measurements.  The author's partial 
solution to this problem was to load the detectors lightly by using  50 μA FSD meters, and to choose
some of the test transformer and load resistor combinations to give output voltages comparable to 
the voltage applied to the input current detector.  The point in the latter case is that when the RMS 
voltages applied to the two detectors are about the same, the effects of detector inefficiency are 
cancelled.  In the event that the voltages at the two detectors are widely different however, we must 
be aware of detector inefficiency as a possible additional source of error. 

4.  Detector loading
The output voltage detector requires a small amount of power to drive it.  Consequently, the 
effective current transformer load resistance is very slightly lower than that obtained by measuring 
the resistor.  The power consumed by the detector is the same as that which is required to deflect the
meter to full-scale when a DC supply is connected to it, i.e., it is given by:

Pdet = Vi(peak) × Ifsd

This power can be converted into an equivalent parallel load resistance  Rdet  using:

Pdet = |Vi(meas)|² / Rdet

6 See, for example, Scientific Data Analysis, D W Knight,   http://g3ynh.info/zdocs/math/data_analy.pdf  .
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where  |Vi(meas)|  is the 'measured' RMS transformer output and is given by:

|Vi(meas)| = Vi(peak) / √2

Hence:

Rdet = |Vi(meas)|² / ( Vi(peak) Ifsd )    

Rdet = ( Vi(peak) / √2 )² / ( Vi(peak) Ifsd ) 

Rdet = Vi(peak) / (2 Ifsd )

The effective current-transformer load resistance is thus:

Ri' = Ri // Rdet 

Hence:

Ri' = 1 / [ (1/Ri ) + (2 Ifsd / Vi(peak) ) ]

For the nominal 50 μA meter used,  Ifsd  was measured to be 52.0 ±0.36 μA.  Hence:

Ri' = 1 / [ (1/Ri ) + (0.000104 / Vi(peak) ) ]             [Ohms] 1

Rdet  is always much larger than Ri .  Hence the contribution to the uncertainty in  Ri'  from the 
uncertainty in  Rdet  will be negligible in comparison to the contribution from the uncertainty in  Ri . 
Hence the estimated standard deviation of  Ri'  can be taken to be the same as that of  Ri  
(i.e., ±0.2 Ω ).  In practice, the use of  Ri'  in place of  Ri  is a minor correction, increasing the 
calculated efficiencies by between  +0.0004 and +0.0020  in this study, but the adjustment is 
nonetheless worthwhile.

5.  Data analysis
As was discussed above, the output voltage of a current transformer, according to the 'ideal 
transformer with secondary reactance' model, is given by the expression:

|Vi (theor)| = |I| Ri' / { N √[ 1 + ( Ri' /Xi )² ] }         [Volts] 2

This form was chosen because it has a separable reactance correction factor 1/√[ 1 + (Ri' / Xi )² ] ,  
which is very close to unity at 30 MHz.  We will include this factor when calculating theoretical 
values, but since its contribution is small, we can ignore it when determining the uncertainty in the 
calculated |Vi| due to the uncertainties in the values of  |I|  and  Ri' .  Hence, for the purposes of 
estimating the standard deviations of the calculated |Vi| values:

|Vi (theor)| = |I| Ri' / N
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The way in which the errors in two or more variables combine to determine the error in the output 
of a formula using those variables is explained elsewhere7.  Two methods for estimating the 
standard deviation of the output quantity are available, one (numerical) involving parameter 
shifting, the other (analytical) involving calculus.  Here we will use the analytical method because it
will simplify things greatly if we have the error function as an algebraic expression.  Since the 
errors in  |I|  and  Ri'  are uncorrelated, the error in  |Vi (theor)|  is given by the orthogonal vector sum 
of the rate of change of the formula with respect to  |I|  multiplied by the uncertainty in  |I|  and the 
rate of change of the formula with respect to  Ri'  multiplied by the uncertainty in  Ri' , i.e.:

σvi theor = √{  [ σ|I|  ∂|Vi (theor)| / ∂|I|  ]² + [ σRi  ∂|Vi (theor)| / ∂Ri'  ]²  }

where σ represents the estimated standard deviation of the quantity indicated by its subscript, and ∂ 
indicates a partial differential (i.e., differentiation of one quantity with respect to another with all 
other variables held constant is implied).  The differentiations are trivial in this case:

∂|Vi (theor)| / ∂|I| = Ri' / N

∂|Vi (theor)| / ∂Ri' = |I| / N 

Hence:

σvi theor = √[ ( σ|I| Ri' / N )² + ( σRi |I| / N )² ]

which simplifies to:

σvi theor = (1/N) √[ ( σ|I| Ri' )² + ( σRi |I| )² ]       [Volts RMS]

From the previous discussion we have:  |I| = 0.4469 A ,  σ|I| = 0.003 A ,  and σRi = 0.2 Ω.   The other 
quantities vary between experiments.  Hence our error function is:

σvi theor = (1/N) √[ ( 0.003 Ri' )² + ( 0.2 × 0.4469 )² ]        [Volts] 3

The object of the exercise is to measure the transformer efficiency, as defined by the expression:

k' = |Vi (measured)| / |Vi (theor)|

Previously, we determined the uncertainty of the measured RMS output voltage to be 
±0.02/√2 V ±0.3/√2 %  from two uncorrelated error sources.  To use these numbers, we must first 
convert the percentage into Volts, and then combine them as orthogonal vectors.  Hence 
(abbreviating "measured" to "meas"):

σvi meas = (1/√2)√[ 0.02² + (0.003 |Vi (meas)| )² ]                   [Volts] 4

Now, having estimated standard deviations for both the measured and the theoretical values of |Vi|, 
and assuming them to be uncorrelated, we have:

σk' = √{  [ (σvi meas ∂k' / ∂|Vi (meas)|  ]² + [ (σvi theor ∂k' / ∂|Vi (theor)|  ]²  }

7 See, for example AC Electrical Theory (DWK, already cited), section 39,  or Scientific Data Analysis (DWK, 
already cited).
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where:

∂k' / ∂|Vi (meas)| = 1/ |Vi (theor)|

and:

∂k' / ∂|Vi (theor)| = -|Vi (meas)| / |Vi (theor)|²

hence:

σk' = √{ [σvi meas / |Vi (theor)| ]² + [σvi theor |Vi (meas)| / |Vi (theor)|² ]² }               [dimensionless] 5

Fig 6.

Current transformers with 1, 2, 3 and 4
turn primary windings used in the 
transfer efficiency tests described in 
the text.  For a toroidal transformer, 
one turn is equivalent to one pass 
through the hole.  All transformers are 
wound on Amidon (Fair-Rite) FT-50 
½" (12.7 mm) diameter beads.
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6.  Measurements
Detais of the calculations can be found in the open-document spreadsheet Itr_k.ods.  Shown in the 
screen-capture image below are the results of measurements made on five different current 
transformers with load resistances ranging between 90 Ω  and 25 Ω .  The generator frequency was 
30 MHz in all cases.  Column A is the test transformer identified by its core material and turns 
(Npri : Nsec ) .  Column B is the turns ratio, defined as N = Nsec / Npri .  Column C is the secondary 
inductance in μH measured at 1.5915 MHz.  Column D is the secondary parallel capacitance, 
assumed to be about  2 pF  for the input capacitance of the 1N5711 detector diode, plus 2 pF for the 
short length of unmatched transmission line leading to the detector.  Altering this capacitance by 
±3 pF affects only the 4th decimal place of the calculated efficiency, and so its exact value is not 
important.  Column E is the load resistance measured within 3 seconds of switching off the RF 
power.  Column F is the effective load resistance given by equation (1).  Column G is the theoretical
output voltage given by equation (2), and column H is its estimated standard deviation (ESD) given 
by equation (3).  Column I is the measured peak value of the output voltage obtained by applying 
DC to the detector.  Column J is the 'measured' RMS value obtained by dividing the peak value by 
√2 ,  and column K is its ESD as given by equation (4).  Column L is the transfer efficiency k', and 
column M is its ESD calculated using equation (5).  Note that there are two measurements on the  
1:12  transformer with an  89.5 Ω  load.  One of these was performed early in the experimental run, 
and one was performed towards the end as a test of reproducibility.
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7.  Interpretation
As mentioned earlier, one possible source of systematic error is detector inefficiency.  If such an 
experimental defect were present, it would manifest itself as a tendency to produce pessimistic 
estimates of transformer efficiency whenever the voltage at the output detector is low in comparison
to the voltage at the input current detector.  For the purpose of examining this possibility, a plot of 
transformer efficiency against measured secondary voltage is shown below:

It might appear at first glance that there is an upward trend in the efficiency as the output voltage 
increases.  The behaviour is however, also chaotic, and were we to fit the graph to a regression line 
and use the resulting function to correct the data, it would have the unfortunate consequence of 
making some of the transformers appear to be more than 100% efficient.  More reasonably we 
should note that it is the transformers with low turns ratio which give the greatest output, which 
means that a tendency for the efficiency to fall as the turns ratio increases would produce a similar 
correlation.  The scatter diagram shown below examines this alternative.
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Here there is an ordered trend.  There are also sound physical reasons for expecting the efficiency to
improve as the turns ratio is reduced, which is that there will be a relative reduction in primary 
leakage inductance.  Hence we should reject the detector inefficiency hypothesis and conclude that 
low-ratio current transformers are more efficient than high-ratio ones.

Now consider the two transformer models shown below in relation to the plot of transformer 
efficiency versus load resistance shown below them:

Fig 9. Candidate current transformer models with less than 100% transfer efficiency.

Series loss component.
Efficiency increases as Ri  increases.

Parallel loss component.
Efficiency decreases as Ri  increases.

Unfortunately, there are insufficient data to permit a clear statistical distinction to be made between 
the two models, but if the plot is considered as a scatter diagram there is an apparent downward 
trend as the load resistance increases.  There is also a sound physical reason for favouring the 
parallel loss model, which is that the loss resistance is identifiable in part with the core loss referred 
to the transformer secondary.  Hence, bearing in mind that any simplification applied to a 
component model reduces its accuracy, we can conclude that it is reasonable to account for the 
shortfall in output of an 'ideal current transformer with secondary reactance' by invoking a parasitic 
parallel resistance Rk ,  which is defined as:

Rk = k' Ri / (1 - k' )
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The experimental results produced during this investigation are summarised below.  The broad 
conclusion is that small RF current transformers wound on ferrite beads have transfer efficiencies in
the region of 95 to 99%.  Transformers of low turns ratio are more efficient than transformers of 
high turns ratio.  Provided that the winding resistance is low, the transfer loss can be considered to 
be due to a parallel parasitic resistance.

Measured efficiency (k') factors for a selection of RF current transformers.
Standard deviations are expressed in brackets after the number as uncertainty in the last digit.

Core Type Turns Li  / μH
Load resistance Ri  / Ω

25 50 75 90

FT50-61 1:12 8.45 (21) - 0.959 (11) 0.959 (9) 0.951 (8)

FT50-61 1:8 4.07 (10) - 0.973 (10) 0.974 (8) 0.970 (8)

FT50-67 2:20 7.50 (19) - 0.956 (10) 0.978 (9) 0.971 (8)

FT50-61 3:12 8.95 (22) - 0.976 (9) 0.985 (8) 0.978 (7)

FT50-61 4:9 5.20 (13) 0.978 (12) 0.987 (8) - -

DWK  2007, 2014
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