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Analysis of Herzog's LF compensation method for current-transformers1

By David Knight

Abstract
A Low-frequency phase compensation scheme for RF current-transformers described in 
US Patent No. 4739515 (1988) is analysed.  Part of the transformer secondary load resistance is 
placed in series with a capacitor, and this serves to 'unload' the transformer at low frequencies.  The 
method gives an improvement in phase performance but degrades amplitude performance, leading 
to unnecessary low-frequency balance-point error in reflectometer applications.  

Herzog's LF compensation method
In the design of current-transformer bridges for RF applications, it is conventional to correct for the 
falling reactance of the current-transformer secondary winding at low frequencies by modifying the 
voltage sampling network.  It is feasible however, that compensation might be obtained by 
modifying the current-transformer secondary loading network; particularly by shunting the 
transformer output with two resistors in parallel and placing a capacitor in series with one of those 
resistors.  As the reactance of the capacitor increases with diminishing frequency, the magnitude of 
the load impedance rises, thereby causing the output voltage to increase.  This 'unloading' method 
was patented by Will Herzog in 1988 [US Pat. No. 4739515], and further background information 
is given in a contemporary article2.  How to choose the component values for the secondary network
is not a straightforward matter however, and neither of Herzog's documents offer a design 
procedure.  Here however it will be shown that the best compensation is achieved when the circuit 
exhibits a condition known as critically-damped resonance.

For the purpose of low-frequency analysis, we will neglect the propagation delay and secondary 
parasitic capacitance of the current transformer.  Thus, in the circuit shown in fig. 1, the current 
analog Vi  is given by:

Vi = ( I/Ni )[ Ri // jXLi // (Rh + jXCh ) ]

and when the generator is loaded with a resistance R0 :

I = V / R0

and so:

Vi = ( V / Ni R0 )[ Ri // jXLi // (Rh + jXCh ) ]

If we define the transfer function as:

ηi = Vi / V

then:

1 Version 1.00, 19th Feb. 2014.  © D. W. Knight, 2014.  Derived from an HTML article first published  in 2007.
Please check the author's website to make sure that you have the most recent version of this document and its 
accompanying spreadsheet file:  http://g3ynh.info/zdocs/bridges   .

2 VSWR Bridges,  Will Herzog (K2LB),  Ham Radio, March 1986, p37-40.
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ηi = [ Ri // jXLi  // (Rh + jXCh ) ] / Ni R0

The network impedance inside the square brackets of this expression is cumbersome when 
expanded, and so we will work with the reciprocal transfer function and treat it as an admittance, 
i.e.:

1/ηi = Ni R0 [ (1/Ri ) + (1/jXLi ) + 1/(Rh + jXCh ) ]

Multiplying numerator and denominator of the rightmost term by the complex conjugate of its 
denominator then gives:

1/ηi = Ni R0 [ (1/ Ri ) + (1/jXLi ) + ( Rh - jXCh ) /( Rh² + XCh² ) ]

which, remembering that  1/j = -j ,  can be separated into real and imaginary parts:

1/ηi = Ni R0 { (1/Ri ) + [ Rh /( Rh² + XCh² ) ] -j[ (1/XLi ) + XCh /( Rh²+XCh² ) ] } 1

Now observe that at infinite frequency,  XLi → ∞  and  XCh → 0 ,  hence the imaginary part of the 
function vanishes and the real part reduces to:

1/η∞ = Ni R0 { (1/Ri ) + (1/Rh ) }

from which it can be seen that at infinite frequency, the current transformer load is simply Ri // Rh .  
Thus, when designing a bridge, it is Ri //Rh ,  rather than Ri  on its own that must be used when 
determining the ratio of the voltage sampling network impedances.  Hence, if a voltage sampling 
network is to be pre-chosen, we might, for example, decide to impose the condition  Ri // Rh = 50 Ω .
This gives us a link to standard design procedure, but before we can determine the actual resistor 
values we must explore the conditions under which circuit resonance can occur.

The current transformer secondary inductance Li  will resonate with the compensation-network 
capacitance Ch  if the imaginary part of equation (1 ) can go to zero at some finite frequency, i.e., 
when:

(1/XLi ) + XCh / ( Rh² + XCh² ) = 0

This expression can be expanded and rearranged thus:

[ 1/( 2πf Li ) ] - 1/[2πf Ch ( Rh² + XCh² ) ] = 0

1/Li = 1/[ Ch ( Rh² + XCh² ) ] 

Rh² + XCh² = Li / Ch

XCh² = (Li /Ch ) - Rh²

XCh = ±√[(Li /Ch ) - Rh² ]

Since capacitive reactance is negative, the negative sign of the square-root is appropriate, hence:
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1/(2πf0 Ch ) = √[ (Li /Ch ) - Rh² ] 

f0 = 1/{ 2π Ch √[ ( Li /Ch ) - Rh² ] }

Multiplying Ch  into the square-root bracket puts the expression into a form similar to the standard 
resonance formula:

f0 = 1/{ 2π √[ Li Ch - ( Rh Ch )² ] }

This is a resonance condition that can have imaginary solutions.  Imaginary resonance3 is a situation
in which the phase angle of the impedance of a network can never cross the zero axis.  In this case, 
imaginary resonance occurs when  Rh² > Li /Ch ,  and real resonance can occur when Li /Ch > Rh² .  
What we want however is the critically damped condition, between these two operating regions, this
being the choice that will keep the phase angle close to zero over the widest possible frequency 
range.  Thus critical damping occurs when:

Li / Ch = Rh² 2

Hence, for a given current transformer with a secondary inductance  Li ,  the choice of  Rh  
determines Ch .  This still leaves us with the problem of how to choose  Rh ,  but we can settle that 
matter by performing some calculations.  We should be suspicious however; of the fact that the 
parallel resistance  Ri  does not appear in equation (2), and that its value can therefore be set 
arbitrarily.  This suggests that  Ri  is redundant.

In order to evaluate Herzog's LF compensation scheme, we can imagine that the transformer is used
in a bridge that, if it were to operate ideally, would have a current transfer function at balance:

η∞ = ( Ri // Rh ) / Ni R0

Since it does not operate ideally, it has an actual transfer function:

η0 = [ Ri // jXLi // (Rh + jXCh ) ] / Ni Zbal

where  Zbal  is the actual load required in place of  R0  in order to balance the bridge.  Note that this 
transfer function is real, and numerically identical to the ideal case transfer function, because the 
process of adjusting  Zbal  to balance the bridge will give  Zbal  the same phase angle as the current 
transformer secondary network impedance  [ Ri // jXLi // ( Rh + jXCh ) ] .  The ratio of two 
impedances having the same phase angle is scalar4.  Hence, equating the ideal and actual transfer 
functions:

( Ri // Rh ) / Ni R0 = [ Ri // jXLi // (Rh + jXCh ) ] / Ni Zbal

which gives:

Zbal = [ R0 /( Ri  // Rh ) ] [ Ri  // jXLi  // (Rh + jXCh ) ]

3 AC Theory, D W Knight.  www.g3ynh.info/zdocs/AC_theory/      See section 21.
4 AC Theory  (cited above), section 24.8.
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Notice that if we choose  R0 = 50 Ω  and  Ri // Rh = 50 Ω ,  then the factor  R0 / (Ri // Rh )  is unity.  
Notice also that we have already expanded the network impedance in the second square bracket 
during the process of obtaining equation (1), and so we can re-write the the expression above:

Zbal = [ R0 /( Ri // Rh ) ] / { (1/ Ri ) + [ Rh /( Rh² + XCh² ) ] - j[ (1/XLi ) + XCh /( Rh² + XCh² ) ] }

The way in which Zbal  changes with frequency characterises the bridge, because the ratio  |Zbal| / R0 
gives the magnitude error in the balance condition, and the phase of  Zbal  gives the phase error.  
Hence, what we need to do now is to obtain expressions for the magnitude and phase of  Zbal  and 
calculate these quantities for various values of  Ri  and  Rh .  To that end we can write:

Zbal = k / (G +jB)

where:

k = R0 /( Ri // Rh )

G = (1/Ri ) + Rh /( Rh² + XCh² )

and

-B = (1/XLi ) + XCh /( Rh² + XCh² )

Hence:

Zbal = k ( G -jB ) / ( G² + B² )

which gives:

|Zbal| = k [ √( G² + B² ) ] / ( G² + B² )

i.e.,

|Zbal| = k / √(G² +B²)

and the phase angle is:

φ = Arctan(-B/G)

Now, setting up a spreadsheet (Herzog_LF.ods) with columns for  Log(f) , f , G , -B , |Zbal| and φ ,  
we can create graphs and tables that show how  |Zbal|  and  φ  change with frequency.  Shown below 
are the results of calculations performed for a current transformer with  Li =10 μH ,  and a secondary
load at high frequencies ( Ri // Rh ) of 50 Ω .  The characteristic resistance  R0  is also 50 Ω ,  making
k = R0 / (Ri // Rh ) = 1 .  The capacitance  Ch  is calculated using the critical damping condition 
(equation 2), and the required values for various combinations of  Ri  and  Rh  are given in table 1.  
Also given are the required capacitances when Li = 20 μH ,  showing that they scale in proportion to

Fig. 2
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the inductance.  It transpires that if the transformer secondary inductance is multiplied by some 
factor, then the frequency at which a given phase or magnitude error occurs is divided by the same 
factor.  Consequently, the graphs for the 10 μH case can be made to serve for the 20 μH case (say) 
by drawing a new frequency scale with all of the numbers divided by 2.

Table 1.  Compensation capacitance for various choices of  Ri  and  Rh

Ri

/ Ω
Rh

/ Ω
Ch = Li / Rh²
( Li =10 μH )

Ch = Li / Rh²
( Li =20 μH )

50 ∞ 0 0 Uncompensated

100 100 1000 pF 2000 pF

150 75 1778 pF 3555 pF

300 60 2778 pF 5556 pF

1300 52 3698 pF 7396 pF

∞ 50 4000 pF 8000 pF Maximum LF boost.

Fig 3.  Phase error of bridges with Herzog compensation and critical damping of the current 
transformer secondary network resonance.  Upper frequency scale is for Li = 10 μH , lower 
frequency scale is for Li = 20 μH.  The dotted line at  7° represents an arbitrarily chosen limit for 
'acceptable' phase performance.
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Fig. 4.  Magnitude error of bridges with Herzog compensation and critical damping.  
Upper frequency scale is for Li = 10 μH , lower frequency scale is for Li = 20 μH. 
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Ri = 50 Ω
Rh → ∞
Ch = 0

Ri = 100 Ω
Rh = 100 Ω
Ch = 1 nF

Ri = 150 Ω
Rh = 75 Ω

Ch = 1778 pF

Ri = 300 Ω
Rh = 60 Ω

Ch = 2778 pF

Ri =1300 Ω
Rh = 52 Ω

Ch = 3698 pF

Ri → ∞
Rh = 50 Ω
Ch = 4 nF

f  / MHz |Zbal| φ |Zbal| φ |Zbal| φ |Zbal| φ |Zbal| φ |Zbal| φ

1.00 39.1 38.5 58.2 41.7 65.2 37.6 70.2 32.2 72.5 28.0 72.9 26.7

1.12 40.8 35.3 61.2 35.4 66.9 30.2 69.9 24.6 70.7 20.7 70.8 19.6

1.26 42.3 32.3 63.0 29.3 66.9 23.6 68.2 18.3 68.0 15.0 67.8 14.2

1.41 43.6 29.4 63.6 23.6 65.8 18.0 65.8 13.5 65.1 10.8 64.8 10.1

1.58 44.7 26.7 63.3 18.6 64.1 13.5 63.3 9.75 62.4 7.72 62.1 7.21

1.78 45.6 24.1 62.3 14.4 62.1 9.94 61.0 7.02 60.1 5.49 59.8 5.12

2.00 46.4 21.7 61.0 10.9 60.2 7.27 59.0 5.03 58.1 3.90 57.8 3.63

2.24 47.1 19.6 59.5 8.16 58.4 5.27 57.3 3.59 56.5 2.77 56.3 2.57

2.51 47.7 17.6 58.0 6.05 56.9 3.81 55.8 2.56 55.2 1.96 55.0 1.82

2.82 48.1 15.8 56.7 4.44 55.6 2.74 54.7 1.82 54.1 1.39 54.0 1.29

3.16 48.5 14.1 55.5 3.24 54.5 1.96 53.7 1.29 53.3 0.98 53.2 0.91

3.55 48.8 12.6 54.5 2.35 53.6 1.40 53.0 0.92 52.6 0.70 52.5 0.65

3.98 49.0 11.3 53.7 1.69 52.9 1.00 52.4 0.65 52.1 0.49 52.0 0.46

4.47 49.2 10.1 53.0 1.22 52,3 0.71 51.9 0.46 51.6 0.35 51.6 0.32

5.01 49.4 9.02 52.4 0.87 51.9 0.51 51.5 0.33 51.3 0.25 51.3 0.23

5.62 49.5 8.06 51.9 0.62 51.5 0.36 51.2 0.23 51.0 0.18 51.0 0.16

6.31 49.6 7.19 51.5 0.45 51.2 0.26 51.0 0.16 50.8 0.12 50.8 0.11

7.08 49.7 6.41 51.2 0.32 50.9 0.18 50.8 0.12 50.7 0.09 50.6 0.08

7.94 49.8 5.72 51.0 0.23 50.8 0.13 50.6 0.08 50.5 0.06 50.5 0.06

8.91 49.8 5.10 50.8 0.16 50.6 0.09 50.5 0.06 50.4 0.04 50.4 0.04

10.0 49.8 4.55 50.6 0.11 50.5 0.06 50.4 0.04 50.3 0.03 50.3 0.03

11.2 49.9 4.06 50.5 0.08 50.4 0.05 50.3 0.03 50.3 0.02 50.3 0.02

12.6 49.9 3.61 50.4 0.06 50.3 0.03 50.2 0.02 50.2 0.02 50.2 0.01

14.1 49.9 3.22 50.3 0.04 50.2 0.02 50.2 0.01 50.2 0.01 50.2 0.01

15.8 49.9 2.87 50.3 0.03 50.2 0.02 50.2 0.01 50.1 0.01 50.1 0.01

17.8 50.0 2.56 50.2 0.02 50.2 0.01 50.1 0.01 50.1 0.01 50.1 0.01

20.0 50.0 2.28 50.2 0.01 50.1 0.01 50.1 0.01 50.1 0.00 50.1 0.00

22.4 50.0 2.04 50.1 0.01 50.1 0.01 50.1 0.00 50.1 0.00 50.1 0.00

25.1 50.0 1.81 50.1 0.01 50.1 0.00 50.1 0.00 50.1 0.00 50.1 0.00

28.2 50.0 1.61 50.1 0.01 50.1 0.00 50.0 0.00 50.0 0.00 50.0 0.00

31.6 50.0 1.44 50.1 0.00 50.1 0.00 50.0 0.00 50.0 0.00 50.0 0.00

Table 2.  Magnitude and phase error of Herzog LF-compensated bridges (data used for the 
preceding graphs, as obtained from the spreadsheet calculation Herzog_LF.ods).  
Li = 10 μH ,  R0 = 50 Ω ,  Ri // Rh = 50 Ω  (this model does not include propagation delay).  The 
phases and magnitudes for any other transformer secondary inductance Li' can be obtained by 
multiplying the entries in the frequency column by Li / Li' , (where Li =10 μH). The  Ch  values at the
heads of the columns can be multiplied by  Li' / Li  to find the corresponding capacitance.
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Discussion

When a current transformer bridge with no LF compensation is used to monitor the adjustment of 
an impedance matching network, the result is a transmitter load impedance that is too low in 
magnitude at low frequencies, a situation that is particularly damaging for transistor power-
amplifiers5.  The situation when Herzog's LF compensation is applied is an improvement, in that the
load impedance magnitude obtained by balancing the bridge rises as the frequency is reduced (until 
the point at which the falling reactance of the transformer secondary coil begins to dominate); and 
although the bridge can not be considered to be accurate at low frequencies, the error incurred is 
harmless in that it will merely cause a small reduction in transmitter output power.  Loading a 
transmitter with 60 Ω instead of 50 Ω will not be noticeable to the operator, and will have little 
effect in terms of signal strength at the receiving station; and so we might regard a magnitude error 
of +20% as acceptable.  This implies an SWR of 60/50 = 1.2 on any 50 Ω cable between the 
transmitter and the bridge, which is not serious.  The point with which we might take issue however,
is that the resulting bridge is inaccurate, whereas bridges compensated by modification of the 
voltage sampling network can be engineered for near-perfect performance6.
     With regard to the phase performance (refer to fig. 3), we might observe that critical damping of 
the current transformer secondary network is very effective at bringing the load phase angle close to
0° over a wide frequency range.  If we adopt the criterion recommended by Underhill and Lewis7, 
that a phase error of 7° or less is inoffensive to the generator, we see that an uncompensated bridge 
with a 10 μH transformer secondary and a 50 Ω secondary load is unsatisfactory at frequencies 
below about 7 MHz, whereas the maximally-boosted Herzog-compensated bridge (Rh = 50 Ω , 
Ri  omitted) gives acceptable performance down to about 1.7 MHz.  We can also note that the 
maximally-boosted circuit gives the best compensation overall; an outcome that we might have 
expected given that Ri  does not appear in the condition for critical damping (equation 2).  It is 
probable that the reason why Herzog used partial LF-boost (finite values for both Ri  and Rh ) in his 
patent is that he needed Ri  to be present so that he could place a small inductor in series with it in 
order to compensate for the propagation delay or parasitic parallel secondary capacitance of the 
current transformer.  In fact, he could have placed such an inductance in series with Rh  without 
significantly affecting the LF compensation, but he perhaps did not realise this.  Herzog's HF phase 
compensation method is analysed and tested experimentally in a separate article8.
     The principal advantage of Herzog's LF compensation scheme is that it can be used when 
modification of voltage sampling network is either difficult or undesirable; and results in a bridge 
that, although inaccurate, behaves in a way that will not reduce the life-expectancy of any transistor 
power amplifier connected to it.  Given that it is already possible to make accurate bridges by 
adjusting the voltage sampling network to have the same frequency dependence as the current 
sampling network, it appears to have little merit it in its intended form; but as is so often the case, 
what the inventor had in mind is not the reason why the circuit is interesting.  Since no theoretical 
analysis was given in the original references, it is difficult to know how thoroughly the circuit had 
been investigated when the patent was written; but the simple view that the series capacitor reduces 
the loading on the current transformer at low frequencies does not do justice the actual circuit 
behaviour.  When the compensating capacitor is chosen to give best phase accuracy, there is a 
substantial increase in current transformer output voltage as the frequency is reduced, which 
suggests that we might connect to the network in a different way in order to counteract this 

5 See discussion of power-transfer efficiency given in AC Theory (previously cited) section 34.
6 Evaluation and optimisation of RF current-transformer bridges.  D W Knight.

http://g3ynh.info/zdocs/bridges/  .
7 Automatic Tuning of Antennae.  M J Underhill (G3LHZ) and P A Lewis, SERT Journal, Vol 8, Sept 1974, p183-

184.  Reprint of paper in Mullard Research Labs Annual Review, 1973.  Gives criteria for achieving 1.2:1 SWR, i.e.,
45 ≤ R ≤ 56 Ω , 17.5 ≤ G ≤ 22.5 mS , -7° ≤ φ ≤ +7°.

8 Evaluation and optimisation of RF current-transformer bridges (cited above). Sections 13 and  18e.



9

tendency.  This leads to a circuit rearrangement (not covered by Herzog's patent) that is useful for 
the construction of precision RF ammeters, and is referred to by this author as the "maximally-flat 
current-transformer" (fig. 5).  A maximally-flat amplitude response (which is what matters for 
scalar ammeters) can be obtained by placing a suitably-chosen capacitor in series with the 
secondary load resistor and measuring the magnitude of the voltage across the resistor (rather than 
across the secondary coil) 9 10.  The phase performance of the resulting network is however inferior 
to that of the conventional current-transformer.

Fig. 5.
Maximally-flat current transformer network.

Condition for maximal amplitude flatness is obtained when:
Ri² - 2Li /Ch = 0

DWK  2007, 2014.

█

9 The maximally-flat current transformer,  D W Knight,  www.g3ynh.info/zdocs/bridges  .
10 Amplitude response of conventional and maximally-flat current transformers,  D W Knight,  

www.g3ynh.info/zdocs/bridges  .


