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It sometimes occurs that in the course of an antenna simulation in 4nec2 it is necessary 
to include elements with electrical characteristics which must vary according to how 
the antenna is tuned or otherwise optimised.  A very simple example is the use of a 
loading coil in a vertical HF quarter wave antenna in order to be able to shorten the 
monopole to a manageable size.  The loading coil has an rf resistance which varies 
according to the total inductance of the coil and the working frequency, but although 
it is possible to have the 4nec2 optimiser adjust the coil inductance for resonance, the 
rf resistance cannot be adjusted automatically in due proportion.

In order to make the process more realistic, simple polynomial approximation can be 
employed so that 4nec2 produces automatic correction for the dependent variable, 
here the rf resistance of the coil.  I will assume familiarity with 4nec2 and nec2.

First, I used ON4AA Rik Stroobandt’s online inductance calculator1 to obtain a table 
of inductance versus rf resistance for some arbitrary coil sizes on the 160m, 80m and 
40m bands.  I then used Mathematica to plot the rf resistance values against 
inductance and performed a curve fit to a simple polynomial.  

For example, the 160m coil rf resistance vs. inductance graph is shown below:

The fits for each of the above bands were:

160m:

† 

r = 0.0618595 + 0.0166301L - 0.0000156626L2 + 0.10281LogL
80m:

† 

r = 0.0957032 + 0.0305569L - 0.0000753327L2 + 0.0857773LogL



40m:

† 

r = 0.0537283 + 0.033388L -0.0000597368L2 + 0.0577913LogL

where r is the rf resistance in ohms, L is the coil inductance in microhenries and Log is 
the natural logarithm to base e.  Maximum inductance values were 300µH on 160m, 
112µH on 80m and 35µH on 40m.

It is now possible to create a 4nec2 model with one of these equations and use it to set 
the rf resistance of a coil automatically whilst the optimiser is adjusting the coil 
inductance for the best SWR.  I have included some nec2 input files as examples.  For 
the 160m monopole which is 5m tall with a simple capacity hat and base loading coil, 
the key lines are:

SY seg2Linp=150
SY seg2Lvar=abs(seg2Linp)+0.3
SY seg2L=abs(seg2Lvar/1E6)
SY rco1=0.0518595+0.01
SY rco2=0.0156301+0.001
SY rco3=(1.46626E-5)+(0.1E-5)
SY rco4=0.10181+0.001
SY seg2R=abs(rco1+(rco2*seg2Lvar)-
(rco3*seg2Lvar^2)+(rco4*Log(abs(seg2Lvar))))

and

LD 0 100 2 2 seg2R seg2L

The first line enters a guess for the correct loading coil inductance, which will be 
applied to the second segment of the antenna, seg2Linp=150 i.e. the guess is 150µH.  
Unless the optimiser is constrained to give positive answers, all manner of problems 
can occur, so the next line uses the abs function to ensure the inductance is always 
positive and adds 0.3µH to set the minimum of the loading coil inductance range.

The next statement seg2L=abs(seg2Lvar/1E6) converts the 150 (µH) input value to 
henries.

The four following lines specify the four coefficients for the polynomial.  Note that 
each has to be entered as a sum of two values so that the 4nec2 optimiser will not 
treat the four coefficients as variables.  Note also that rco3=(1.46626E-5)+(0.1E-5) has 
to be written with both sets of brackets in place because of a bug in the 4nec2 parser 
which Arie Voors is aware of and may have fixed by now.  Until the bug is fixed, 
entering rco3=1.46626E-5+0.1E-5 will generate an error.

The final assignment is the value of the polynomial approximation to the rf resistance 
of the coil, seg2R=abs(rco1+(rco2*seg2Lvar)-(rco3*seg2Lvar^2)+ 
(rco4*Log(abs(seg2Lvar)))).

Lastly, these two loading values are inserted into the appropriate location:
LD 0 100 2 2 seg2R seg2L



This file, 160m loaded vertical 5m variload.nec can now be run in the 4nec2 
optimiser with the single variable seg2Linp selected.  After a few iterations, the 
optimiser will have found a good match and will produce something like 160m loaded 
vertical 5m variload-opt.nec which is also included with this document.

If the optimised version is examined it will be seen that the key line specifying the 
inductive load on segment 2:

SY seg2Linp=161.7633

has been updated with the correct value of tuning/loading inductance.  Looking at the 
last nec2 input file to 4nec2, or alternatively the symbol conversion will also show 
what value was last calculated for the rf resistance of the coil, about 2.9 ohms.

This is the simplest application of polynomials to antenna modelling in 4nec2.

• • • • • •

A much more useful and correspondingly more complicated use of polynomials is to 
accelerate greatly the simulation of Yagi-Uda beam antennas.

The Yagi-Uda beam can be specified in terms of a table of element lengths and 
spacings, and this results in a list of N element lengths and N-1 element spacings.  For 
an N element beam, the 4nec2 optimiser would therefore have to step through 2N-1 
variables on each iteration cycle.

Except for the smallest arrays, this is unnecessary and wasteful of effort!

Let us assume that a simple polynomial will provide a close approximation to the 
“optimisation hypersurface” [/Dr. Evil impersonation], i.e. that the element lengths 
can be modelled effectively by one polynomial, and the element separations by another 
polynomial.  

As an example I will consider a 70 element beam for the 23cm band.  Normally, it 
would be impossible to get such a thing to run in a reasonable time, but on a ten year 
old computer with 1.6GHz processor, this will optimise in half an hour from scratch.  
Ordinarily, such an array would demand 70 element lengths and 69 element spacings, 
each to be specified as an independent variable.  Not only does cycling through so 
many variables take forever, but there is a gargantuan multitude of local minima in 
which the program can be trapped.  By using a simple polynomial expression for each 
of the element lengths and spacings, the total number of variables can be reduced from 
139 to just nine and the propensity of getting stuck in a local minimum is greatly 
reduced because of the tendency of simple polynomials to follow gentle curves instead 
of sharp discontinuities.

These variables are coefficients in the following polynomials.  For element lengths 
there are four coefficients (N is simply the element number in both polynomials.) 

† 

Len(N) = LenCo1- (LenCo2 ¥ N) + (LenCo3¥ N 2) - (LenCo4 ¥ N 3)



and for spacings, five coefficients:

† 

Sep[N] = Sep[N -1]- SepCo1+ (SepCo2 / N 2) - (SepCo3 / N) + (SepCo4 ¥ N) - (SepCo5 ¥ N 2)

The separation of element 1 is taken as zero by default, and each subsequent element 
spacing is cumulative upon the previous element spacing, Sep[N]=Sep[N-1] plus 
polynomial approximation involving SepCo1 to 5.  I initialised these coefficients by 
taking a 2m antenna design, scaling it and adding more elements, and performed a 
simple curve fit in Mathematica.  I should mention that I am only using Mathematica 
because I have an old version to hand, and there are probably free programs which 
can do the simple things required.

Using the Yagi70_1296.nec file, the following lines set up the nine coefficients:

SY SepV1=125012.8
SY SepV2=225716.4
SY SepV3=312172.9
SY SepV4=358423.1
SY SepV5=141009.7 'All separation variables done.
SY LenV1=541301
SY LenV2=732643
SY LenV3=161489
SY LenV4=134215 'All length variables done.
SY SepCo1=abs(SepV1/1000.0)
SY SepCo2=abs(SepV2/1000.0)
SY SepCo3=abs(SepV3/1000.0)
SY SepCo4=abs(SepV4/1000000.0)
SY SepCo5=abs(SepV5/10000000.0) 'All separation variables converted to 
coefficients.
SY LenCo1=abs(LenV1/10000.0)
SY LenCo2=abs(LenV2/1000000.0)
SY LenCo3=abs(LenV3/10000000.0)
SY LenCo4=abs(LenV4/1000000000.0) 'All length variables converted to 
coefficients.

Note that the number of symbols used by 4nec2 must be increased in order for the 
example file to run.  I set this to 512 symbols.  You will need to restart 4nec2 after 
doing this.

The next lines calculate the sixtynine element separations:

SY Sep1=0.0+abs(SepCo1+SepCo2-SepCo3+SepCo4-SepCo5)
SY Sep2=Sep1+abs(SepCo1+(SepCo2/4.0)-(SepCo3/2.0)+(SepCo4*2.0)-
(SepCo5*4.0))
SY Sep3=Sep2+abs(SepCo1+(SepCo2/9.0)-(SepCo3/3.0)+(SepCo4*3.0)-
(SepCo5*9.0))

• • •
SY Sep67=Sep66+abs(SepCo1+(SepCo2/4489)-(SepCo3/67)+(SepCo4*67)-
(SepCo5*4489))



SY Sep68=Sep67+abs(SepCo1+(SepCo2/4624)-(SepCo3/68)+(SepCo4*68)-
(SepCo5*4624))
SY Sep69=Sep68+abs(SepCo1+(SepCo2/4761)-(SepCo3/69)+(SepCo4*69)-
(SepCo5*4761))

Having converted the separation coefficients to spacings, there are 69 lines converting 
millimetres to metres and then seventy lines which calculate the element lengths:

SY Len1=abs(LenCo1-LenCo2+LenCo3-LenCo4)
SY Len2=abs(LenCo1-(LenCo2*2)+(LenCo3*4)-(LenCo4*8))
SY Len3=abs(LenCo1-(LenCo2*3)+(LenCo3*9)-(LenCo4*27))

• • •
SY Len68=abs(LenCo1-(LenCo2*68)+(LenCo3*4624)-(LenCo4*314432))
SY Len69=abs(LenCo1-(LenCo2*69)+(LenCo3*4761)-(LenCo4*328509))
SY Len70=abs(LenCo1-(LenCo2*70)+(LenCo3*4900)-(LenCo4*343000))

These are also converted from millimetres to metres, following which all the calculated 
values are specified in standard nec2 format with 15 segments per element:

GW 1 15 0 -Len1s 0 0 Len1s 0
0.00150
GW 2 15 Sep1s -Len2s 0 Sep1s Len2s 0
0.00150
GW 3 15 Sep2s -Len3s 0 Sep2s Len3s 0
0.00150

• • •
GW 30 15 Sep67s -Len68s 0 Sep67s Len68s 0
0.00150
GW 30 15 Sep68s -Len69s 0 Sep68s Len69s 0
0.00150
GW 30 15 Sep69s -Len70s 0 Sep69s Len70s 0
0.00150

The file is then completed in standard nec2 format for element resistivity 
corresponding to aluminium and free space simulation at 1296MHz:
GE 0
LD 5 1 0 0 2.88E+07
LD 5 2 0 0 2.88E+07
LD 5 3 0 0 2.88E+07
LD 5 4 0 0 2.88E+07
LD 5 5 0 0 2.88E+07
LD 5 10 0 0 2.88E+07
LD 5 20 0 0 2.88E+07
LD 5 30 0 0 2.88E+07
GN -1
EK
EX 0 2 8 0 1.00E+00 0 0 0
FR 0 0 0 0 1296.0 0
EN



The result of running this input file is Yagi70_1296-opt.nec and this was obtained in 
half an hour using the following optimiser settings:

SWR 30
Gain 100
F/B 10
F/R 10
R 10
X-in 100
Rad 5

Resolution 10 degrees.

The characteristic impedance was set as 20Ω.

There are other possible tweaks for such an input file, for example 4nec2 has an 
autosegmentation feature which can keep the number of segments proportional to the 
element length.  Alternatively this can be implemented directly, by specifying that the 
driven element has e.g. fifteen segments and calculating each element’s segment 
number from the element lengths given by the polynomials.

It is of course possible to comment out or delete lines from the included example and 
shift the frequency if required.  If major changes are desired, I have found that 
reducing the array to half a dozen elements and changing the frequency 50MHz at a 
time usually leads pretty smoothly to the desired result.  Elements can then be 
uncommented/restored to obtain the number of elements desired at the new working 
frequency.

The polynomials specified seem to do an adequate job, and though I have tried more 
complicated expressions, little seems to be gained.  Logarithmic polynomials may be 
an obvious choice and they do work, but are very “picky” and can be difficult to get 
to convergence.  I found that when using log polynomials I had to reduce the array to 
three elements when making drastic frequency changes.  It feels very much like 
playing with a phase-locked loop, as there is a definite range over which the 
polynomial coefficients will “track” and outside of which “lock” cannot be obtained.

This article is the end result of four years’ experimentation and the only array which 
has so far defied all attempts at fully automatic optimisation is the Landstorfer-Sacher 
array.  This has been something of a bête noir for me and has occupied me on and off 
since the late 1990s.  I did send my interim results to the late L.B. Cebik, W4RNL, 
who kindly put them on his website - but he forgot my name and callsign in the 
process!  The L-S array is still a pain to model and an even bigger pain to optimise 
and unfortunately I think it unlikely that a satisfactory result can be obtained with the 
above methodology.

However, simple polynomials can greatly increase the range of simulations accessible 
and make more effective use of the amateur’s time and computing resources.



1. ON4AA Rik Stroobandt’s inductance calculator is available at 
http://hamwaves.com/antennas/inductance.html last accessed 4/10/13.


