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Introduction
Most people who work with electricity are aware that the RMS of a sinusoidal voltage or current 
waveform is 1/√2 times the peak value.  After that however, knowledge tends to become a little 
hazy.  Design and measurement errors due to an incorrect understanding of the RMS can lead to 
expensive and sometimes dangerous failures in power supplies, amplifiers and transmission 
equipment.  This article attempts to clarify the issue.

The heating effect of a sinusoidal voltage or current 
Let us begin by considering a pure sinusoidal voltage.  The RMS average of the wave is the 
equivalent DC voltage that, when connected across a resistance (R say), will produce the same 
heating effect. The heating effect is the average energy delivered per unit-of-time, i.e., the average 
power, which is given by:

Pav = Vrms² / R         . . . .     (1)

The alternating voltage is described by the expression:

V = Vpk Sinφ

Where Vpk is the peak or maximum instantaneous voltage magnitude, and φ=2πft is the time-
varying phase angle.  If the voltage is applied to a resistor, the instantaneous power will be:

P = V² / R 

i.e.:

P = Vpk² Sin²φ / R

but, using the standard trigonometric identities:

Sin²φ = 1 - Cos²φ     

and     
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Cos(2φ) = 2Cos²φ - 1

i.e.,

Cos²φ = [ 1 + Cos(2φ)] / 2

we obtain the substitution:

Sin²φ = 1 - [ 1 + Cos(2φ) ] / 2 

          = [ 1 - Cos(2φ) ] / 2

Hence the instantaneous power function is:

P = Vpk² [ 1 - Cos(2φ) ] / ( 2 R )

This is a sinusoid at twice the frequency of the voltage wave, with an offset so that it just touches 
zero and is always positive.  The average of a pure sinusoid is zero, and so the average power is 
obtained simply by deleting the cosine term:

Pav = Vpk² / ( 2 R )

comparing this with (1) we have:

Vrms² / R = Vpk² / ( 2 R )

i.e.

Vrms = Vpk / √2

Also, by a similar argument using

Pav = Irms² R

it can easily be shown that

Irms = Ipk / √2

The square-Root of the Mean of the Squares 
Finding the average power delivered by a pure sinusoidal voltage or current is easy; but we also 
need a general method that works for any waveform.  Without it we cannot even calculate the power 
ratings for the resistors in simple narrow-band amplifiers, because the combination of a direct and a 
sinusoidal current is no longer purely sinusoidal.  It turns out that the required technique is 
analogous to the method used to calculate the standard deviation of a set of measurements. 
     First square the voltage (or current) waveform to obtain a time-varying function proportional to 
the instantaneous power.  Now sample that power function at a large number of equally spaced 
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intervals over a whole cycle. Add the sample values together and divide by the total number of 
samples.  This gives a quantity proportional to the mean (i.e., average) power. Now take the square 
root to get back to the original units of voltage (or current).  The voltage (or current) obtained is the 
square-Root of the Mean of the Squares, commonly known as the RMS.
     To find the RMS with perfect accuracy, of course, we need to take an infinite number of samples. 
The summation used to obtain the average thus becomes an integral.  We need to take the average 
over the repetition interval of the waveform, so if we use φ as our relative measure of time, we need 
to integrate over the interval between 0 and 2π radians (i.e., over 360°).  The interval between 
samples is the infinitesimal dφ, and so the (infinite) total number of samples is defined as 2π/dφ.  
Hence, dividing the infinite sum by the infinite total number of samples, we have:

Vrms² =
1

2π

2π

∫
0

V² dφ (2)

Of course, this doesn't look quite as easy as the rule we know for dealing with pure sine waves, but 
this will not prove to be a serious problem.  As anyone who has ever used a radio receiver ought to 
have noticed, and J B J Fourier discovered long before spectrum analysers were invented, an 
arbitrary waveform can always be represented as a sum of sinusoids plus a constant.  Squaring a 
series can be a messy business, but it turns out that the cross-terms generated by squaring a Fourier 
series cancel in the integration process.  The physical reason is that a resistive load is a linear 
network.  The various components of the signal do not mix, and so can be considered to exist 
independently.

The RMS of a pure sine wave
Before complicating matters, let us first check that the general method really works for the case for 
which we already know the answer.  A pure sinusoidal voltage is given by the expression:

V = Vpk Sinφ

Substituting this into (2) gives:

Vrms² =
1

2π

2π

∫
0

Vpk² Sin²φ dφ

Earlier on we obtained the identity:

Sin²φ = [ 1 - Cos(2φ) ] / 2

and so we have:

Vrms² =
Vpk²

4π

2π

∫
0

[ 1 - Cos(2φ) ] dφ
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Now, as any good book of standard integrals will tell you:

∫Cos(ax)dx = (1/a) Sin(ax) + c

and so the solution is:

Vrms² =
Vpk²

4π

┌
│
│
└

φ - (½) Sin(2φ)

┐
│
│
┘

2π

0

i.e.:

Vrms² =
Vpk²

4π
[ (2π - 0) - (0 - 0) ]

Hence:

Vrms = Vpk / √2

The RMS of an offset sine wave
Now let us consider the case when a sinusoidally varying voltage is added to a constant (i.e., DC) 
voltage.  In this case the instantaneous voltage can be written:

V = Vdc + Vpk Sinφ

where Vpk is defined as the peak value of the sinusoidal component on its own, not the peak value 
of the total. Substituting this into (2) gives:

Vrms² =
1

2π

2π

∫
0

( Vdc + Vpk Sinφ )² dφ

Which can be multiplied out:

Vrms² =
1

2π

2π

∫
0

( Vdc² + 2 Vdc Vpk Sinφ + Vpk² Sin²φ ) dφ

Now we have produced a cross-term; but since the phrase "linear network" has already cropped-up, 
we must suspect that there will be no interaction between the components in the final reckoning.  
So, of course, we notice that the cross-term is a sinusoid, and all sinusoids average to zero over an 
integer number of cycles.  Hence, provided that the integration is carried out over the repetition 
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interval of the waveform, any first-order (i.e., not squared) sine and cosine terms can simply be 
deleted. The mathematical reason is that, for integer n:

Sin(2nπ) = 0    ,    Sin(0) = 0    and    Cos(2nπ) = Cos(0) = 1

Hence, deleting the first-order sine term, and substituting for Sin²φ as before:

Vrms² =
1

2π

2π

∫
0

{ Vdc² + Vpk² (½) [1-Cos(2φ)] } dφ

Now the Cos(2φ) term dies out in the averaging process, and the solution of the integral is simply a 
matter of multiplying the remaining terms by a factor of 2π, which cancels with the 1/2π before the 
integral symbol. Hence:

Vrms² = Vdc² + Vpk²/2

But now let us define a voltage Vac that is the RMS value of the AC component on its own.  Then, 
using the definition for the RMS of a pure sinusoid, we have:

Vac² = Vpk²/2

Hence:

Vrms² = Vdc² + Vac²

When an alternating voltage (or current) with a DC offset is applied to a resistance, the total power 
is given by calculating the power for the AC and DC components separately and adding the results .

The fact that a DC component combines with an AC component to increase the RMS is one reason 
why half-wave rectification should be avoided when building DC power-supplies.  A half-wave 
rectified supply not only needs more smoothing than a full-wave supply, it also adds a DC 
component to the current drawn from the mains transformer.  This increases the dissipation in the 
loss resistance of the transformer winding, and increases the core loss by introducing a static 
component into the magnetic field.
     Some years ago, there was a period when certain power-hungry items of consumer electronic 
equipment (large colour-TV receivers in particular) were a serious fire-hazard.  This problem was 
associated with conventional transformer power-supplies and half-wave rectification, but not in an 
obvious way.  It is often said that the more pernicious the error, the more slavishly it is copied, and 
this is a case in point.  The power-supplies in question used bi-phase (i.e., two-diode, centre-tapped 
winding) full-wave rectification, which is fine; but someone had come up with the idea of fitting a 
fuse in series with each diode to protect against diode short-circuit failure.  The problem is that 
fuses are stressed by switch-on surges; and if one of the fuses fails, half-wave rectification occurs, 
and the equipment carries on working while the mains-transformer overheats.  The correct way to 
design a bi-phase power-supply is to arrange things so that the primary-side fuse blows if a diode is 
connected across the transformer secondary.
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The RMS of an arbitrary waveform
An arbitrary waveform can always be written as a Fourier series. This has the form:

V = Vdc +
∞

∑
n=1

[ Vc,n Cos(nφ) + Vs,n Sin(nφ) ]

Here we use the series to represent a voltage, but it can represent a current just as well.  If we want 
to find the RMS of such a series we have to square it.  This operation will generate a shower of 
cross-terms, but they must somehow vanish in the subsequent integration.  Firstly, we have already 
seen that the cross-terms produced by multiplying the DC component with a sinusoid are of first-
order, and so they average to nothing.  The DC component does not interact with any of the AC 
components.  Secondly, consider the following well-known trigonometric identities:

Sin(a) Cos(b) = (½)[ Sin(a+b) + Sin(a-b) ]

Cos(a) Sin(b) = (½)[ Sin(a+b) - Sin(a-b) ]

Cos(a) Cos(b) = (½)[ Cos(a+b) + Cos(a-b) ]

Sin(a) Sin(b) = (-½)[ Cos(a+b) - Cos(a-b) ]

Whenever two components of different frequency are multiplied together, they will produce a pair 
of first-order terms.  Therefore all of the cross-terms will average to zero in the integration.  None 
of the components interact.  Hence the square of the RMS voltage comes out as:

Vrms² = Vdc² + 
1

2π

2π

∫
0

┌
│
│
└

∞

∑
n=1

[Vc,n² Cos²(nφ) + Vs,n² Sin²(nφ)]

┐
│
│
┘

dφ

We obtained the substitutions needed to solve this integral earlier.  They are:

Cos²φ = [ 1 + Cos(2φ) ] / 2     and     Sin²φ = [ 1 - Cos(2φ) ] / 2

When we make these substitutions, the first-order cosine terms will, of course, average to zero. 
Hence:

Vrms² = Vdc² + 
1

2π

2π

∫
0

┌
│
│
└

∞

∑
n=1

[(½)Vc,n² + (½)Vs,n²]

┐
│
│
┘

dφ

Each remaining term in the summation, upon evaluating the integral, will come out multiplied by 
2π, which will cancel with the 1/2π before the integral symbol.  Thus:

Vrms² = Vdc² +
∞

∑
n=1

[(½)Vc,n² + (½)Vs,n²]
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The voltage coefficients after the summation symbol are, of course, peak values.  If we replace each 
one with its RMS, then we lose the factors of ½. Hence:

Vrms² = Vdc² +
∞

∑
n=1

[Vc(rms),n² + Vs(rms),n²]

In general, if a voltage (or current) waveform is made up of an arbitrary combination of components 
of different frequency, each having an RMS value Vn (or In ) when considered on its own, the true 
RMS of the combination is given by:

Vrms = √
┌
│
└

Vdc² +
∞

∑
n=1

Vn²
┐
│
┘

When a voltage is connected across (or a current is passed through) a resistance, the power in the 
resistance is given by the sum of the powers due to the individual frequency components.

The RMS of a floating square wave
We don't always have to know the Fourier coefficients in order to find the RMS.  Notwithstanding 
the fact that we can use an electronic integrator circuit to find the mean of the squares (that's how a 
true-RMS meter works), there are some waveforms that can easily 
be integrated piecewise.  The most obvious example is the square 
wave, which is also an important special case.
     Represented on the right is a voltage square-wave of arbitrary 
mark-space ratio that is AC-coupled to a resistive load.  The mark 
interval as a proportion of the whole cycle is defined as m; so that 
over the course of one cycle, the wave is positive for 2πm radians, 
and negative for 2π(1-m) radians.  The peak positive and negative 
voltages are V1 and V2 respectively, and since V2 is by definition 
negative, the peak-to-peak voltage is defined as:

Vpp = V1 - V2

Because the voltage contains no DC component, its average is zero.  Hence we can find the values 
of V1 and V2 relative to Vpp by taking the integral of the voltage between 0 and 2π and setting its 
value to zero, i.e.:

2πm

∫
0

V1 dφ  +

2π

∫
2πm

V2 dφ = 0

Thus:

[ 2πmV1 - 0 ] + [ 2πV2 - 2πmV2 ] = 0 
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i.e.:

m ( V1 - V2 ) = -V2           . . . . (3)

but

Vpp = V1 - V2

therefore

V2 = -m Vpp           . . . . . . . . . (4)

also

V2 = V1 - Vpp

which can be substituted into (4) to give:

V1 = (1-m) Vpp          . . . . . . . (5)

The RMS value of the waveform can be obtained by piecewise integration of the square of the 
instantaneous voltage:

Vrms² =
1 

2π

2πm

∫
0

V1² dφ +
1

2π

2π

∫
2πm

V2² dφ

Which gives:

Vrms² = [m V1² - 0] + [V2² - m V2²]

i.e.:

Vrms² = m (V1² - V2²) + V2²  =  m (V1 + V2) (V1 - V2) + V2²

Using (3) as a substitution gives:

Vrms² = -V2 (V1 + V2) + V2²

i.e.:

Vrms² = -V2 V1

This is one simple form for the RMS of a floating square-wave that does not require prior knowldge 
of m (note that Vrms² is positive because one of the voltages on the right-hand side has to be defined 
as negative).  We obtain a more informative definition however by using equations (4) and (5) as 
substitutions:

Vrms² = m Vpp (1-m) Vpp
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i.e.:

Vrms² = m(1-m) Vpp²

The factor m(1-m) has the property that it is zero when m = 0 or 1 (infinitely narrow pulses contain 
no energy) an is at its peak when m = ½.  This tells us that, for a given peak-to-peak voltage, 
assuming that the waveform is floating (i.e., contains no DC component), the RMS value of a 
square-wave is at a maximum when the mark-space ratio is unity, i.e., when m/(1-m)=1. 
     When a square wave is symmetric,  V1= -V2 , and so the peak voltage is half the peak-to-peak 
voltage, i.e.:

Vpp = 2 Vpk

Hence, for symmetric square waves only, i.e., when m(1-m)=¼ :

Vrms² = (2Vpk)² / 4

i.e.:

Vrms = Vpk

The RMS of a floating symmetric square wave is √2 times greater than that of a sine wave.
     The spectrum of a symmetric square-wave contains only the odd harmonics of the fundamental 
repetition frequency.  This is by no means the richest possible spectrum in terms of harmonics 
present, but it gives rise to the AC waveform that conveys the maximum amount of energy for a 
given peak magnitude, i.e., it achieves the limiting condition  Vrms/Vpk →1 .  The RMS can be 
increased still further however, by adding a DC component.

The RMS of a zero-based square-wave
Given the ubiquity of logic circuits, the most commonly encountered type of square-wave is the 
zero-based or clamped variety.  The effect of clamping one extreme of the voltage excursion to zero 
is to introduce a DC component equal to the extent to which the wave would have crossed over the 
zero line had it not been clamped.  Thus the DC component is -V2 from the previous section, which 
is given by equation (4) as:

-V2 = m Vpp

Hence the RMS of a zero-based square wave is given by:

Vrms² = m(1-m) Vpp² + m² Vpp²  =  Vpp² [ m - m² + m² ]

i.e.:

Vrms² = m Vpp²
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Vrms = Vpp√m

We can also obtain exactly the same result by integration over the part of the cycle corresponding to 
the 'on' or 'mark' period:

Vrms² =
1 

2π

2πm

∫
0

Vpp² dφ = m Vpp²

Notice that when the mark and space intervals are equal (m=½), the zero-based waveform has twice 
the RMS of the floating waveform.  The maximum RMS for the zero-based waveform however 
occurs when m=1; but this just means that maximum power is delivered to a resistive load when the 
generator is producing a constant output of Vpp, i.e., when the generator is stuck in the 'on' position.

The RMS of a noise spectrum
In the previous derivations, it has been convenient to assume that there is a harmonic relationship 
between all of the AC components of a waveform.  This ensures that , if we integrate over the 
fundamental repetition interval, all of the components to be averaged will be sampled for an integer 
number of cycles.  This is the analytical (i.e., mathematical) RMS; but it is also possible to 
determine a statistical or experimental RMS, which tends towards the true RMS when the 
measurement is repeated several times and the results are averaged.
     For the statistical RMS, there is no need to synchronise the sampling interval to the period of the 
waveform.  It is sufficient to sample the square of the voltage or current for a time that is long 
enough to to capture a few cycles of the lowest alternating component of significant magnitude.  If 
the sampling interval is randomly related to a sinusoidal component, there will be a maximum, error 
of ±½ of a cycle.  Hence sometimes the result will come out a little too high, sometimes it will 
come out a little too low, but the average of many measurements will tend towards the true value.  
Furthermore, the error incurred by the lack of synchronisation will become smaller as the number of 
cycles captured in the sampling window increases; which means that accurate measurements can be 
made by sampling over a relatively long period. 
     It follows, that by a process of electronic integration, we can determine the RMS of a voltage or 
current consisting of a set of harmonically-unrelated frequency components; i.e., it is possible to 
define and measure the RMS of pure noise.
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