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Abstract
This article addresses the subject of RF signal detection from the point of view of those who design 
and calibrate impedance matching bridges and other measuring instruments operating in the HF and
VHF radio ranges.  The principal discussion relates to the simple diode peak-detector; and covers 
the different possible circuit configurations, the associated theory, and the numerical methods 
needed for data analysis.  Circuit techniques used to linearise the diode detector output are to be 
discussed in a separate document.  
     Analysis of the detector transfer characteristic for sinusoidal input shows that the AC-induced 
error term involves the zero-order modified Bessel function of the first kind (I0).  This result is not 
new, but it is often disregarded.  The dynamic contribution is quite unlike the error that occurs for 
DC input, regardless of any compensatory modification of circuit parameters; which means that 
linearity correction schemes using a reference diode to produce a DC amplifier with a 
complementary gain law can never be perfect.  It is also shown however, that the AC error is 
independent of frequency provided that the smoothing capacitor is 'large'.  This means that the 
tracking detector system, which involves automatic self-calibration against a low-frequency 
precision rectifier, is theoretically sound.
     By considering the power dissipated in the detector, it is shown that the input impedance can be 
calculated using first and zero-order modified Bessel functions of the first kind (I0 and I1).  This 
allows the determination of detector transfer-functions that take source impedance into account.  
When this facility is combined with the ability to calculate the dynamic component of the peak 
detection error, a measurement of DC output taken with a calibrated voltmeter can be converted into
a measurement of AC input without the need for an AC reference.  The computation procedures 
required are not simple, but they are described in detail and given as Basic algorithms readily 
adaptable to any programming environment.
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Note on detector modelling routines
The program routines given in the text are available from the accompanying spreadsheet file:  
det_models.ods.  To access, edit or copy the code, open the file using Apache Open Office3 and 
select the top menu item: ' Tools / Macros / Organise Macros / OpenOffice Basic '.  Then navigate to
the library ' det_models.ods / Standard / detector_funcs '.  
     See the OO Basic Guide4 for a description of the programming language.  The StarOffice Basic 
programming guide5 can also provide useful additional detail because it relates to the language from
which OO Basic evolved.

3 http://www.openoffice.org/
4 https://wiki.openoffice.org/wiki/Documentation/BASIC_Guide
5 http://web.mit.edu/soffice_v8.0/pdfdoc/staroffice-BASIC.pdf
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Introduction
The diode detector finds widespread use as a high-frequency voltmeter; its principal advantage, 
apart from the simplicity of the circuit, being the ability to provide a bandwidth of several hundred 
MHz with minimal attention to physical layout.  This property means that detectors can be 
connected directly to the output ports of bridges and other measuring devices, thereby eliminating 
the need for down conversion or high-speed sampling.  The essential preconditions are that the 
signal amplitude should be tailored to lie somewhere in the range from about 0.1 V to 10 V RMS, 
and that the source network should have a moderate load-driving capability.  
     The difficulty with the diode detector however, is that there is a big difference between using it 
to make a crude RF level indicator, and using it to make an accurate measuring instrument.  This is 
primarily because the circuit behaves in an extremely non-linear manner for small signals and 
becomes only approximately linear as the signal voltage approaches the point at which the diode 
will be destroyed.  Correction is not straightforward, and widely-used linearisation schemes 
involving a DC amplifier with a complementary gain law are not completely successful because the 
behaviour under AC excitation is not the same as under static conditions.  The matter of turning the 
diode detector into an accurate broadband voltmeter is nevertheless well worth pursuing; not least 
because the perfect solution, an active rectifier or 'superdiode' circuit, is typically restricted to an 
upper frequency limit of about 50 kHz.
     In this article, we will consider the diode detector on two ways: firstly, as a measuring device in 
its own right; and secondly, as a circuit module for inclusion in more elaborate instruments.  In the 
latter case, we will assume that the implementation involves linearisation (or some other re-
mapping) of the rectified output, using either digital or analogue methods.  It is, of course, obvious 
that any correction process is dependent on a detailed knowledge of detector behaviour, and so the 
first part of the study is a necessary precursor to the second.
     The archetypical diode detector is the series half-wave rectifier, either driven by a transformer, or
having an RF choke as a DC short-circuit across its input.  This can be analysed on the basis that the
choke or transformer is perfect, and results in the principal mathematical relationship that governs 
the detector's dynamic behaviour.  The solution for the DC output (involving the modified Bessel 
function of the first kind in zero order), although discussed in the academic literature6 7 8, is 
evidently unfamiliar to the majority of commentators.  A step-by-step analytical treatment therefore 
given in section 12.1.  The insight it gives is central to the matter of voltage measurement, but it is 
not sufficient to solve the overall problem.  
     The first issue is that the prototype detector to which the analysis relates is not necessarily the 
best circuit to use.  There are numerous rectifier configurations, with different properties and 
idiosyncrasies, and the variants should be considered carefully before making a choice.  This is the 
material covered in sections 1 - 5.  An important subtext to those considerations is that, in 
maximising the bandwidth of the diode voltmeter, it is a good idea to eliminate inductive devices.  
Doing that in a way that maximises the available input voltage range introduces resistance into the 
detector DC return path, and the resulting reduction in efficiency must be taken into account. 
     In sections 6 - 11, we take a look at the subject of diodes.  The main point is to make the reader 
aware of the various types and their characteristics; although a considerable amount of background 
material is included, for context, and to contradict historical misinformation.  From all of that, the 
best type of diode for a particular signal measurement applications should be clear.
     The mathematical analysis leading to the DC output of the prototype detector is given in section 
12.  This is set out with all of the logical steps explained, so that it should be accessible to anyone 

6 Theory of the diode voltmeter, C B Aitken, Proc. IRE, 26(7), July 1938. p859-876.  [Analysis of the thermionic 
(valve / tube) diode detector].  

7 Polynomial economization of envelope detector static characteristics, Z Cvetković and A Marković, IEEE Trans.
on Consumer Electronics, 35(4), Nov. 1989. p876-881.

8 Diode power detector DC operating point in six-port communications receivers.  S M Winter, H J Ehrn, A 
Koelpin, R Wiegel, Proc. 37th European Microwave Conf. Oct. 2007. p795-798.
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with some knowledge of calculus (although it is possible to skip to the result in each subsection).  
The principal transfer function has already been mentioned; but in addition, it is necessary to derive 
expressions for the detector input impedance.  Only then does precision measurement become 
generally possible, because knowledge of the input impedance allows the output reduction due to 
source loading to be determined. 
     Once we have an accurate knowledge of the detector transfer function, including loading effects,
the detector qualifies as an absolute AC voltage measuring instrument; at least in the limited sense 
that an accurate DC measurement at the output can be converted into the peak value of a sinusoidal 
input, all without recourse to an AC voltage reference.  The next problem however, is that the 
computational procedures are not purely analytical; which means that there is little to report in the 
way of handbook formulae.  The solution is given in section 13, in the form of a library of 
numerical routines.  This turns out  to be a sizeable collection, most of which is involved with the 
calculation of modified Bessel functions and the circumvention of their argument-range restrictions.
For the purpose of modelling detectors however, or for converting raw data into measurements, we 
can simply pass parameters to a main program, which uses the rest of the library as a collection of 
service routines.
     After all of that, we still only have an accurate knowledge of the behaviour of the simple 
detector.  Mercifully however, it transpires that we can take more realistic detectors, having source 
DC resistance,  parasitic reactances, diode leakage and series resistance; and aggregate the 
parameters so that they can be passed to the simple detector programs.  The necessary 
transformations are described in section 14.
     Although, in section 12, we have described the detector transfer function in terms of modified 
Bessel functions, it is also possible to solve the integrals for average current and average power 
numerically.  This allows analytically intractable variants of the of the detector problem, such as 
finite time constant (ripple), and diode parasitic resistance, to be included at the integration stage.  
In particular, it transpires that while diode parallel resistance can be separated analytically, diode 
series resistance ( Rds ) cannot.  Therefore, in section 15, we set up the numerical integration method
for diodes with finite ohmic series resistance and compare it with the transformation method of 
section 14.
     Note that the use of truncated series approximations is avoided in this treatment.  Instead, we 
avail ourselves of the processing power of the modern personal computer, and use calculation 
methods capable of arbitrary precision within the limitations of computer floating-point arithmetic.  
In general, most of the routines are not noticeably slow to complete, even when implemented in 
interpreted Basic, except when there is a need to solve problems by numerical integration.  For an 
alternative approach, capable of producing accurate closed-form analytical approximations of the 
more intractable variants of the detector problem, see the work of Xavier Le Polozec and Robert G 
Harrison9 10 11 12 13 14.

9 Full nonlinear analysis of detector circuits using Ritz-Galerkin Theory, R G Harrison, IEEE MTT-S 
International Microwave Symposium Digest, 1992, (Cat. No.92CH3141-9).  [Harrison 1992]

10 Nonsquarelaw behaviour od diode detectors analyzed by the Ritz-Galérkin method, G Harrison, X Le Polozec, 
IEEE Trans. on microwave theory and techniques, 42(5) 1994.  [Harrison - Le Polozec 1994]

11 A full-range nonlinear diode detector model defined with the Ritz-Galerkin method, X Le Polozec, R G 
Harrison. 2013, DOI: 10.13140/RG.2.1.2593.4248.  Available from 
https://www.researchgate.net/profile/Xavier_Le_Polozec (Accessed 31st Jan 2015).

12 Input impedance of series Schottky diode detector at low and high power, X Le Polozec. DOI: 
10.13140/RG.2.1.4530.9600.  Available via ResearchGate, as above.

13 Power conversion efficiency and sensitivity of diode detector calculated with the Ritz-Galerkin method, X Le 
Polozec, R G Harrison, 2015, DOI: 10.13140/RG.2.1.5044.8808. Available via ResearchGate, as above.

14 A full-range nonlinear nodel of the Latour's detector defined with the Ritz-Galerkin method, X Le Polozec, 
DOI : 10.13140/RG.2.1.3753.3600. Available via ResearchGate, as above.
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1.  Series-diode half-wave rectifier 
The simplest and best known RF detector circuit is the half-wave series-diode rectifier.  Despite its 
familiarity however, the exact details of its operation are often poorly understood; not least because 
it is frequently subject to the casual presumption that the DC resistance looking back into driving 
network is irrelevant.  It must be understood that the detector will not work if the source is a DC 
open circuit (although there may be a weak response due to diode reverse leakage current); and the 
AM demodulator on which the text-book explanation is usually based  is driven by an IF or RF 
transformer, which is effectively a DC short-circuit.  In voltage-sampling applications, there is often
a significant DC resistance, and this reduces the measured output.  Therefore, in the circuit below, 
the source network is depicted in a manner that gives an analytical separation between the DC 
resistance (Rport ) and the output impedance (Zout ).  Of course, in practice, the electrical components 
involved will be common to both quantities, but separation for the purpose of predicting the circuit 
behaviour is usually trivial.  The symbol Rport  is used incidentally, because it is often the DC 
resistance of an RF sampling port on an item of test equipment, such as an impedance bridge.

1.1  Circuit behaviour and basic design principles 

The source produces an on-load voltage Vin~  on its side of a hypothetical perfect coupling capacitor,
and this has no DC component.  Vin~  is also the voltage that will be measured using an AC-coupled 
probe at the input to an actual detector.  It will be approximately sinusoidal provided that the input 
resistance of the detector is large relative to the magnitude of the output impedance of the generator,
|Zout|.  A DC offset is however added to the source voltage on the detector side of the hypothetical 
capacitor, so that the actual input voltage is:

Vin = Vin~ - Vbk 

where, presuming that the diode polarity is chosen to give a positive output;  Vbk , the backoff 
voltage, is negative relative to the ground rail shown.  The backoff voltage arises because the 
average diode current (Iav ) that gives rise to the DC output (measurement) voltage Vm  must also 
flow through Rport .  Thus the DC signal produced by the rectification process is shared between the 
output load resistance RD  and the port resistance in proportion to the relative values of those 
resistances.  This means that the backoff voltage reduces Vm ,  for which reason Rport  is shown below
the ground rail in the diagram.  Vbk can be measured at the input terminal by placing an RF choke in
series with a high-input-resistance multimeter (assuming that the choke is properly chosen to have a
high impedance at the generator frequency).  In some AM radio receivers also, an RF-decoupled 
resistance is deliberately introduced in series with the final IF transformer output winding, so that 
the backoff voltage can be used for automatic gain control (AGC). 
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To calculate the detector output for a sinusoidal input, we can define:

Vin~ =  Vp sinφ

where Vp is the peak voltage, and  φ = 2πf t  is the time-varying phase angle.  By this definition, Vin~

is the RMS of a sinusoidal voltage, so that:

Vp = Vin~ ×√2 

The output of the detector is then:

Vm = Vp - Vf  - Vbk

where Vf  is the effective diode forward voltage drop under
dynamic conditions.  For a semiconductor diode, Vf  varies
approximately logarithmically with the average forward
current, but it also has a contribution given by the logarithm
of the the peak-to-average current ratio.  The problem of
calculating Vf  is investigated in detail in section 12; but as
a rule of thumb, it is worth remembering that in signal detection circuits involving average diode 
currents in the region of 100 μA to 1 mA  it is about 0.2 V for germanium point-contact diodes, 
about 0.35 V for high-inverse silicon-metal Schottky diodes (such as the 1N5711), and about 0.6 V 
for silicon P-N junction diodes (see section 6.3).  

Another way of considering the detector is to say that the total detected voltage is the sum of the 
output and the backoff voltage.  Thus:

Vm + Vbk = Vp - Vf  = √2 Vin~ - Vf 

When the port resistance is zero, the input voltage no longer has a DC component, and this 
becomes:

Vm = Vp - Vf  = √2 Vin - Vf 

which is the more familiar expression for the output of a half-wave detector.  Note that the output in
this case can approach the peak value of the input voltage, provided that Vin  is large relative to Vf .  
For this reason, rectifying detectors are often referred to as a peak detectors, even though the error 
in the measurement is large in the absence of some form of linearity correction.  

In the circuit diagram given earlier, the output load resistance RD  is shown as being separate from 
the meter, and the meter is assumed to be a perfect voltmeter, i.e., of infinite input resistance.  In 
practice, RD  is often the finite input resistance of a voltage measuring or sampling device, or the 
parallel combination of an input resistance and a load resistor.  In a passive circuit, RD  might be the 
resistance of a voltmeter constructed by placing a resistor in series with a moving-coil 
microammeter.  For example, a 100 μA meter padded-up to 100 kΩ by means of a series resistor 
makes a 10 V FSD (full-scale deflection) voltmeter.  
     The smoothing capacitor CD should be chosen so that the time-constant CD × RD  is at least 10 
times the period (1/f ) of the lowest frequency at which measurements will be made.  If the lowest 
frequency is to be, say, 1 MHz and RD = 10 kΩ, then we want CD × RD  to be greater than 10 μs, i.e., 
CD  >1 nF.  If a meter is used as the indicator, it makes no practical difference if the capacitor is 
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somewhat larger than the minimum required, and so 0.1 μF (ceramic disk) is a typical choice; but 
very large capacitors will damp the meter response in a manner that depends on the driving network
output impedance.  A slow response can be desirable if the signal is jittery, but in some applications,
such as finding the null point when adjusting a measuring bridge, a fast response is needed.  'Fast', 
on a human timescale,  implies a time constant of less than about 10 ms (i.e., < 1 μF for a 10 kΩ 
load, < 0.1 μF for a 100 kΩ load, etc.).
     The effect of the time constant on output frequency response when the detector is used for AM 
demodulation is discussed in section 1.8.

1.2  Diode peak inverse voltage 
The minimum safe reverse voltage rating for the detector diode (VRM ) is most easily determined by 
starting with Rport = 0.  In that case, for large inputs, CD  is charged to a constant voltage approaching
Vin √2 ,  whereas the most negative instantaneous voltage appearing at the detector input is 
approximately -Vin √2 .  Hence the diode must have a VRM  of at least 2√2 (i.e., 2.82) times the 
maximum possible RMS input voltage.

Half-wave rectifier:  Diode VRM > Vin (max) × 2√2

Now if we allow Rport to be > 0, the output voltage Vm is reduced by an amount Vbk ,  but then a 
quantity -Vbk  is added to the most negative excursion of the input waveform.  Hence the peak 
inverse voltage to which the diode is subjected is not affected by the port resistance.  
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1.3  Input chokes 
The loss of sensitivity that results from having a finite port resistance can sometimes be a drawback,
and the traditional solution to this problem (assuming that transformer coupling is not to be used) is 
to place an RF choke across the input to the detector.  The choke should have a reactance that is 
high in comparison to the detector load resistance at the lowest frequency of operation.  In HF radio
applications, for example, 3.5 mH chokes are often used, and these have a nominal reactance of 
about +40 kΩ at 1.8 MHz.  The practicalities of obtaining such a large inductance will however 
result in substantial self-capacitance; and this will resonate with the inductance at some frequency, 
and make the reactance of the choke capacitive at frequencies above that15.  This leads some 
commentators to assume that RF chokes should not be used above the self-resonance frequency 
(SRF), but this rule is misleading.  The SRF is actually the fundamental parallel resonance of the 
inductor, and corresponds to the frequency at which the impedance becomes extremely large in 
magnitude.  Hence, from an AC point-of-view, the choke disappears at the SRF and so does not 
shunt the network.  It also matters little whether the off-resonance reactance of the choke is positive 
or negative, the necessary criterion being only that it should have a large impedance magnitude in 
comparison to the other impedances in the network.  Things go horribly wrong however at the first 
series-resonant frequency.  This occurs at approximately twice the SRF, and corresponds to the 
point at which the length of the wire in the coil is one electrical wavelength.  At this frequency, and 
for a range either side of it depending on the Q, the choke acts as a short-circuit and the output of 
the network is seriously reduced.
     The potentially idiosyncratic behaviour of the DC bypass choke is not necessarily an issue if the 
inductor is well designed and the frequency-range is restricted, but spurious resonances cannot 
always be ruled-out without practical verification.  In general, insofar as the use of chokes cannot be
avoided, an RF choke composed of multiple segments (pie-wound) gives the highest first series-
resonance and so is to be preferred.  For a given length of winding wire also, a choke with a ferrite 
core gives more inductance than a non-magnetically-cored coil, and so will have a higher set of 
resonance frequencies.  Many designers however, prefer to eliminate the choke wherever possible 
(they are expensive, as well as troublesome), and accept the loss of sensitivity.  If the source is a 
complete DC open-circuit, the most basic solution is to place a resistor across the port; but this 
shunts the RF signal and it is sometimes better to place resistance across other elements in the 
network.  A good design outcome is that which gives a port-resistance considerably smaller than the
detector load resistance.

1.4  Large signal input impedance 
Both port resistance and diode forward voltage drop are sources of error requiring correction in 
precision measuring applications; but there is a third cause of error that must also be considered.  
This is the detector input impedance, which will obviously load the source network and cause its 
output to droop.  
     At first glance, the problem of calculating the input impedance seems intractable; because the 
diode does not obey Ohm's law and so the input resistance varies during the course of a cycle.  For a
single-frequency component of the signal however (this being what we must consider when 
determining impedance for the purpose of calculating the frequency response), it is sufficient to 
have an average picture of the input impedance.  This can be obtained by considering the power 
delivered to the resistive elements in the network.
     The AC excitation causes a direct current to circulate, and this causes the voltages Vm , Vf  and 
Vbk  to develop.  These are related to the peak voltage by definition (because Vf  is actually defined 
as the voltage error that occurs in peak detection).  Thus:

15 RF Chokes, their performance above and below resonance, Courtney Hall, Ham Radio, June 1978, p40-42.
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Vp  =  Vin~ √2  =  Vm  + Vbk + Vf 

where Vin~ is the AC component of the input
waveform considered in isolation from the
DC offset caused by Vbk .  Also, in the likely
event that there is no physical separation
between the AC source network and Rport , it
is the voltage that would be measured using
an AC-coupled probe.  

Now let us define the total resistance around the loop as Rtot ,  i.e.:

Rtot = RD + Rdiode + Rport

where, to a fairly good approximation (which we will examine in detail in section 12.3):

Rdiode ≈ Vf / Iav   

Neglecting energy loss due to the circulating harmonic currents produced by the rectification 
process; the total power delivered to the detector is:

Pin = ( Vm  + Vbk + Vf  )2 / Rtot 

Thus:

Pin = ( Vin~ √2 )2 / Rtot 

i.e.:

Pin = 2 Vin
2 / Rtot 

Now, if the input impedance is defined as RZin , we also have:

Pin = Vin
2 / RZin 

so that:

RZin = Rtot / 2

Thus, assuming that harmonic generation is a lesser aspect of the behaviour of the lightly-loaded 
(voltage sampling) RF detector16, the input resistance for AC signals is half the total DC resistance.  
This result might seem surprising, but it can be understood by thinking of the detector as a kind of 
voltage transformer. The RMS average of a DC signal is the same as its ordinary average, and so in 
the process of converting from AC to DC, the RMS level has been transformed-up by a factor of √2.
Thus the detector is a 1:√2 voltage transformer, and hence a  1:√2²  (i.e., 1:2) impedance 
transformer.

16 This assumption does not cause significant discrepancies in data analysis when making measurements using lightly-
loaded detectors.  Also, the AC component of the effective diode forward voltage drop, as derived in section 12, 
must account for the dissipation of most of the harmonic energy.
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It should be noted however that the detector input impedance is highly variable, depending on drive 
level.  This is made obvious by substituting for Rtot  in the expression above:

RZin = ( RD + Rdiode + Rport ) / 2

The variable term is Rdiode , which is not a resistance in the normal sense, but a quantity related to the
average power dissipation in the diode (this is obtained by integrating the product of instantaneous 
diode voltage and current over a cycle of the input waveform).  If the detector input voltage is large 
in comparison to Vf   however, then we have:

RZin ≈ ( RD + Rport ) / 2

This is the limiting input impedance under large signal conditions (neglecting parasitic reactances); 
and if Rport  is zero due to the use of a choke or a coupling transformer, it reduces to:

RZin ≈ RD / 2

The limiting AC input resistance is a reasonable measure of the input impedance when the detector 
is driven hard, for best linearity.  It is therefore useful for gaining an idea of the worst-case source 
loading.  As the drive level is reduced however, due to the non-linear relationship between voltage 
and current, Rdiode will increase and eventually come to dominate.  Thus the input impedance 
increases as the drive is reduced,  becoming very large (practically an open-circuit) when Vin = 0.  In
order to model the small-signal input impedance accurately, it is first necessary to develop a theory 
that describes the dynamic forward conduction characteristic.  That matter is discussed from section
12 onwards.

The limiting 1:2 impedance transformation rule applies to all non-voltage-multiplying detectors.  In 
the case of the bridge rectifier (section 4), the limit is harder to approach because the detector 
places two diode forward voltage drops in series with the output.  In the case of the bi-phase full-
wave rectifier (section 5) the limit is slightly easier to approach, because the average diode current 
is shared between two diodes. 

Note that an idiosyncrasy of half-wave rectification is that, since Rport  is part of the source network, 
the rectification process causes power to be dissipated in the source network.  This is usually of 
little consequence in signal-processing circuits; but it can be (or should be) an important 
consideration in the design of power-supplies. 



12

1.5  Separation of port resistance and source impedance 
There is no hard and fast rule for the analytical separation of the generator output impedance and 
the port resistance, save to say that is will usually be obvious.  Take, for example, the circuit shown 
below, which is Douma's bridge17, widely used for monitoring HF transmission lines and measuring 
reflection coefficient.  

In the circuit on the left, the generator is typically a radio transmitter, and the impedance Z is an 
antenna system.  The bridge combines a voltage sample, obtained from the capacitive potential 
divider C1 , C2 , RV , and the output of a transformer in series with the line, which produces a voltage 
proportional to the current.  The circuit parameters are calculated so that the bridge gives no output 
when the impedance Z is equal to the design load resistance of the transmitter.  This balance 
condition can be maintained over a relatively wide frequency range by correct choice of the 
resistance Rv , which compensates for the falling reactance of the current-transformer secondary 
winding at low frequencies.  Rv  is typically a few kΩ.  Thus, since the DC resistance of the current 
transformer secondary winding will be very small by comparison, it should be obvious that  Rport  is 
equal to Rv .
     The output impedance at the generator frequency requires a little more consideration, but not 
much.  Generally, the bridge is designed so that it abstracts only a very small amount of energy 
from the line.  Thus the generator will hardly notice its presence, and its output will not droop 
significantly as a result of the additional loading.  We can therefore assume that the output 
impedance of the generator is effectively zero.  With that assumption; the output impedance of the 
voltage sampling network (by Thévenin's theorem) is given by the parallel combination of its 
resistance and reactances.  The total output impedance is then obtained by placing the parallel 
combination of the current transformer load resistance and secondary reactance in series with the 
output impedance of the voltage sampling network.  Thus18:

Zout = ( RV // jXC1+C2 ) + ( Ri // jXLi )

This can be converted to R+jX form using the standard parallel-to-series transformations19.

17 Directional apparatus for use with high-frequency transmission lines.  T Douma, US Pat. No. 2808566, 1957 
(filed 1953).

18 The parallel impedance ( // ) operator is defined so that:  a // b = a b / (a + b)  ,  where both a and b can be complex.
19 See for example: AC electrical theory.  D W Knight..  http://www.g3ynh.info/zdocs/AC_theory/  .  Section 18.
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1.6  Actual input voltage 
Frequently, the RF design considerations for an item of test equipment lead to the relationship 
between some quantity to be measured and the open circuit (off-load) voltage of an output port.  
Since the port has a finite output impedance however, and the detector has a finite AC input 
resistance; the detector will not see that voltage.  Instead, the detector input voltage is the output of 
a potential divider formed by  Zout  and  RZin .  Thus, if  VS is the open-circuit source voltage:

V in =
VS  RZin

(Zout+RZin)
 

The voltages and impedances in this expression are,
of course, phasors; but since the detector does not
conserve phase information, all phasors that appear as factors can be replaced by their magnitudes.  
Thus, if we use the convention that a voltage not written in bold is a magnitude ( i.e.: V = |V| ):

V in=
VS  RZin

∣Zout+RZin∣
 

Now, if we have computed  Zout  in the R+jX (series) form, so that (say):

Zout  = RS + jXS

then we can add the input resistance to it and work out the magnitude of the denominator in the 
expression for Vin .  Thus:

V in=
VS  RZin

√(RS+RZin)
2
+XS

2  

This equation is primarily a statement of the obvious, in that if we want to avoid error due to source 
loading, it will be necessary to make RZin as large as possible and |Zout| as small as possible.  Such 
choices are not always available however; there being, for example, an issue when using a Douma 
bridge to drive a moving-coil panel meter, because the bridge has a large capacitive reactance 
component in its output impedance at low frequencies, and the meter will typically require 100 μA 
of drive for full-scale deflection (FSD).  The only small consolation is that the source loading will 
be reduced at low drive levels, because of the increase in the detector input resistance (as discussed 
earlier).  This unloading effect will partly offset the inherent non-linearity of the diode detector, it 
might even be used as the basis for partial linearity compensation if the source impedance is mainly 
resistive; but in general it will be frequency-dependent and hard to exploit to any advantage.

We have, in the preceding discussion, uncovered a number of potential sources of error affecting the
use of the simple half-wave rectifier for absolute RF voltage measurement.  They are, so far, 
quantifiable, and largely correctable; but they demonstrate that the behaviour of the detector is not 
quite as simple as many circuit designers seem to assume.
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1.7  Inductively loaded AM detector
Although the principal subject of this article is AC voltage measurement; introducing the 
relationship between detector load and input impedance provides an opportunity to identify a 
widespread design error that occurs when a detector used as an AM demodulator is operated with an
inductive load.  This mistake typically occurs when a magnetic transducer, such as a telephone 
earpiece or a pair of headphones, is driven by a detector, either directly or through a step-down 
transformer.  The issue is that the stated 'impedance' of the transducer is not the same as its DC 
resistance.  Typically, the nominal impedance will be the impedance magnitude at some mid-band 
audio frequency, such as 1 kHz, whereas the DC resistance is likely to be smaller by a factor of 
between about 1/5 and 1/20.  
     Thus, for example, if we were to connect a pair of 10 kΩ high-impedance headphones to a 
detector, it might turn out that the DC resistance of the 'phones is about 800 Ω; in which case the 
large signal input impedance of the detector will be about 400 Ω instead of 5 kΩ.  The effect, 
assuming a finite source impedance, will be to introduce excessive audio distortion by preventing 
the detector from moving out of its threshold region; and if the driving network is resonant, it will 
radically reduce the selectivity for strong signals by reducing the circuit Q.
     The defect is present in most traditional crystal-set designs20.  It results in a peculiar behaviour 
whereby there is relative silence between stations, but when a reasonably strong distant station is 
tuned in, it is heard mixed with a strong local station.
     The solution is to place a parallel RC network in series with the inductive load, as shown in the 
diagram below.  The network is known as a 'benny', after its inventor Ben Tongue21.  Usual design 
practice is to use the resistor RB to pad the transducer resistance to equal its nominal impedance 
value, thereby establishing the detector large-signal RF input impedance.  The coupling capacitor 
CB is then chosen to have a reactance magnitude that is small relative to the transducer impedance 
(say 1/10th) at the lowest required audio frequency.

Notice here incidentally, that the transducer T is shown with a step-down transformer, but a high-Z 
transducer could just as well be used without a transformer.  Also, the tuned input transformer is 
shown with separate windings for the resonator and the detector, whereas they can be combined.  
This sidesteps the question of whether or not it is a good idea to tap the detector takeoff point down 
the tank coil to preserve selectivity.  The answer is that it is not necessary to trade signal voltage for 
selectivity if a benny is used, because the detector input impedance, and hence the loaded Q of the 
filter, can be controlled by RB .

20 See, for example, The boy's book of crystal sets, W J May, Bernards Radio Manuals 1954. 
http://www.rexresearch.com/xtlradio/boysbook.pdf  (accessed 23rd Aug. 2014)

21 Crystal radio set design.  Ben Tongue.  http://bentongue.com/  (accessed 27th Dec. 2015)
[Ben Hapgood Tongue, one of the founders of Blonder-Tongue Labs., died on 4th July 2015, at the age of 90]
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1.8  Demodulated signal frequency response
Since the diode rectifier is the ubiquitous AM radio demodulator or 'envelope detector', it follows 
that if the signal generator is amplitude modulated (e.g., with a 1 kHz sine wave), then the indicator 
can be a transducer (earphone, etc.), or an audio amplifier with a loudspeaker.  Audible output can 
be useful, for example, when nulling an RF bridge, because the ear can distinguish signal from 
noise, whereas a meter cannot.
     The demodulated signal frequency response of a diode detector is dictated by the time constant, 
CD×RD.  We can show how this comes about by determining the  frequency response function.  The 
full derivation is strictly outside the realm of linear circuit analysis, but the result can nevertheless 
be deduced in a fairly straightforward way.  
     We start by representing the network as a simple
potential divider, involving an as yet undefined source
resistance, Rsrc.  The equivalent circuit is shown on the
right, where the inclusion of perfect coupling capacitors
serves to remind us that we are dealing strictly with the
AC component of the measurable output.  
     The  relative frequency response is obtained by taking
the magnitude of the ratio of the output at frequency f 
( V~m(f) say) and the output at the frequency of maximum response, which, since we are dealing with
a roll-off, we will call V~m(0).  It is, of course, assumed that the process by which the signal was 
modulated has a completely flat frequency response.  Starting with the output relative to the 
modulation component we have:

V~m(f)

Vmod

 =  
RD // jXCD

Rsrc+(RD // j XCD)
   

where V~m(f) is written in bold because its phase differs from that of Vmod.   This can be rearranged:

V~m(f)

Vmod

 =  
1

( R src

RD // j XCD

+1)
 =  

1

(R src(RD+j XCD)

jRD XCD

+1)
 =  

1

( Rsrc

j XCD

+
R src

RD

+1)  

At low modulation frequencies, where there is no roll off, the capacitive reactance XCD → -∞ and 
we have:

V~m(0)

Vmod

 =  
RD

R src+RD

 =  
1

(R src

RD

+1)  

Now taking the ratio:

V~m(f)

V~m(0)

 =  
(R src

RD

+1)
( R src

j XCD

+
Rsrc

RD

+1)
 =  

1

( R src/ j XCD

(R src+RD)/RD

+1)
 =  

1

( R src RD

jXCD(R src+RD)
+1)

 

Hence:
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V~m(f)

V~m(0)

 =  
1

(Rsrc // RD

j XCD

+1)  

For the loudness response however, which is independent of phase, we want the magnitude, i.e., we 
square the real and imaginary parts separately and take the square root:

∣V~m(f)

V~m(0)
∣ =  

1

√(R src // RD

XCD
)

2

+1
 

where Rsrc //RD  is the parallel combination of the detector load resistance and the source resistance. 

So far so good, but we cannot use this relationship unless we know the source resistance.  This is 
where linear analysis fails.  The input signal to the detector has no component at the modulation 
frequency.  Instead, the demodulated signal is created in the diode junction by mixing between the 
carrier and its sidebands.  Since the smoothing capacitor CD  has a low impedance magnitude at 
radio frequencies, and the load resistance merely sets the DC operating point, the load impedance at
the modulation frequency has no effect on the demodulation process, at least in first order.  This 
means that Rsrc is effectively infinite.  The demodulated signal therefore appears to originate from a 
current source, which can be thought of as a generator with a series resistance so large that the load 
impedance makes no difference to the current supplied.  Thus, we put Rsrc→∞ , and the relative 
voltage frequency response of the detector (also bearing in mind that  XC = -1/2πfC ) becomes:

∣V~m(f)

V~m(0)
∣ =  √

1

(2π f CD RD)
2
+1

 

The upper demodulated-signal bandwidth limit, casually known as the 'bandwidth' and also 
variously known as the 'turnover frequency', the 'cutoff frequency' or the '-3 dB point', occurs when 
the output power has fallen to half the value it would have at low frequencies; i.e. (noting that the 
square of a voltage is proportional to power):

∣V~m(f)
2

V~m(0)
2 ∣ =  

1
2

 =  
1

(2π f -3dB CD RD)
2
+1

 

which, after rearrangement gives:

f-3dB = 1 / (2πCD RD )

The log-log graph on the right shows the audio
frequency response of a detector with a time
constant of 50 μs.  That gives the -3dB point at
3.18 kHz, which is a fairly typical choice for radio
communications receivers and for systems using
modulation signals in the vicinity of 1 kHz.
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2.  Shunt-diode rectifier 
An alternative to the standard half-wave detector configuration is the shunt diode rectifier, shown 
below.  This is the prototype of the indirectly-grounded detector circuits favoured by the Collins 
Radio Company in the 1950s, and popularised in SWR and impedance-measuring circuit 
construction articles by Collins design engineer Warren Bruene22 and others23.  

Note that a voltage placed in square brackets refers to the DC component of a waveform.  As in the 
previous section, Vin~  represents the AC component of the input voltage, whereas the actual input, 
Vin , acquires a DC offset due to the rectifying action of the diode.  As before also, we will define:

Vin~  =  Vp sinφ

where Vp is the peak voltage, and  φ = 2πf t , so that:

Vp = Vin~ √2 

The circuit appears, at first glance, to place a diode across
the detector port; but it does no such thing because of the
action of the coupling capacitor CC .  When Vin~  first goes
negative (relative to the polarities shown on the circuit
diagram), D1 conducts and clamps one end of CC  nearly to
zero, except for a shortfall due to the diode forward voltage
Vf .  This means that the most negative excursion of Vin  is
clamped to -Vf .  Then, since the charge in CC  remains
substantially constant on the timescale of the AC signal, the
near-sinusoidal voltage at the cathode of D1  averages about
+Vp - Vf .  The filter comprising the RF choke, Rport and CD 

removes the AC component to give a measured voltage of  
Vp - Vbk - Vf , which is the same as for the ordinary half-
wave detector.  Overall, the main theoretical difference between the ordinary detector and the shunt 
diode detector is the order in which Vp , Vbk and Vf  are added together.
     Note that, as far as is possible, the nomenclature has been made consistent with that used for the 
ordinary detector.  Thus Rport , although it is no longer part of the source network, has exactly the 
same effect on the DC output as does the DC resistance of the source network in the preceding 
section.  
     For the filter that removes the AC component, we have the choice of using a choke, a resistance, 
or a combination of the two (such as a realistic choke).  As before, the use of a choke minimises Vbk 

but introduces the possibility of parasitic resonances, and so if some reduction in sensitivity is 
tolerable, the troublesome choke can be eliminated. 

22 An Inside Picture of Directional Wattmeters, Warren B Bruene, QST, April 1959, p24-28
23 In-Line RF Power Metering, Doug DeMaw, QST, Dec. 1969, p11-16.
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Input impedance 
The AC input resistance of the shunt detector obeys the same 1:2 impedance transformation rule as 
the simple detector, i.e.;

RZin = ( RD + Rdiode + Rport ) / 2

The filter components however are effectively in parallel with that, and the reactance of the 
coupling capacitor is effectively in series; so that the total (neglecting parasitics) is:

Zin  = jXCC + ( Rport + jXRFC ) // [ ( RD + Rdiode + Rport ) / 2 ]

If the coupling capacitor is very large, and the choke (as is often the case) is omitted, this reduces 
to:

Zin = RZin = Rport  // [ ( RD + Rdiode + Rport ) / 2 ]

The coupling capacitor can also be physically omitted if the driving network is open-circuit to DC. 
If there is any DC path across the detector port however, CC  is essential; and if needed it should be 
chosen to have a reactance that is always small in comparison to RZin .  If the lowest frequency of 
operation is say 1 MHz, and RZin  is about 100 kΩ for large inputs, then the voltage drop across the 
capacitor might be considered to be negligible if its reactance magnitude is (say) always less than 
1% of RZin ,  i.e., less than 1 kΩ at 1 MHz.  Since  C = 1/2πf |Xc|, we can then calculate that CC  
should be at least 159 pF.  It makes no practical difference if the capacitor is somewhat larger than 
the minimum required, and so 1 nF or greater would be a sensible choice.  Note however, that the 
detector response will become sluggish if the capacitor is very large and the return path has a 
relatively high resistance, because it will take time for the circuit to reach equilibrium.  

Diode PIV 
Since the voltage at the cathode of the diode averages at roughly +{Vin} √2 (assuming that the diode
polarity is chosen to give a positive output), the instantaneous peak inverse voltage sustained by the 
diode will be   {Vin}2√2 .  Hence, as in the case of the simple half-wave rectifier, the VRM  for the 
diode must be at least 2√2 times the maximum possible RMS input voltage.

Shunt diode rectifier:  Diode  VRM > Vin (max) ×2√2
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2.1 Sampling floating voltages 
One of the great advantages of the shunt-diode detector is its suitability for sampling voltages 
across network components that are floating with respect to ground.  A practical example is given in
the diagram below, which depicts a circuit for determining complex impedance ( Z = R+jX ) using 
only scalar voltage measurements.  This technique was originally described by Heathkit design 
engineer Doyle Strandlund24, but the implementation shown below is due to M E Gruchalla25.

This circuit produces five DC voltages, which (assuming perfect linear rectification) are 
proportional to the magnitudes of the AC voltages across the source, the reference resistor Rref , the 
reference reactance Xref , the load Z, and the junction between the two reference elements and 
ground (the output voltages are all referred to ground).  The full set of voltages is such that, even 
though the individual measurements contain no phase information, they can be combined in various
ways to determine any of the impedance or admittance-related attributes of the load, Z (including 
the sign of the reactance or susceptance)26.
     The diodes D1 , D3 and D5 all have their anodes connected to ground, and so the corresponding 
detectors conform to the prototype circuit given earlier, except that they are intended to feed 
operational amplifiers having high input resistance and so use resistive filters and dispense with the 
chokes.  Also notice that there is a 1 MΩ resistor across each of the diodes, the reasons for its 
presence in each case being firstly; that the detector must have a load if it is not to have an infinite 
time constant (and connecting it across the diode avoids loading the output); and secondly; that the 
op. amp. will require a few nA of input bias current, and it is a very bad idea to get that via the 
diode.  Note that the voltages produced by these three detectors will be positive with respect to 
ground.
     The detectors using the diodes D2 and D4 have the same design considerations as the others, 
except that they measure AC voltages that float relative to ground.  This is possible because the 

24 Amateur measurement of R+jX, Doyle Strandlund, QST, June 1965, p24-27.  [An ingeneous graphical method for
measuring complex impedance using only scalar measurements].

25 Complex Impedance Measurement Using only Scalar Voltage Measurements, M E Gruchalla, Communications 
Quarterly, Oct. 1998, p33-43.  [Analytical approach to Strandlund's method and other improvements ].

26 For a complete analysis, see: Impedance and admittance measurement using scalar voltage samples.  
D W Knight.  http://www.g3ynh.info/zdocs/bridges/
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measuring circuit is isolated from the outside world by coupling capacitors, which means that the 
AC signals are guaranteed to have no DC component.  This allows the D2 detector to get its ground 
reference via the 75 Ω input shunt resistor, while D4 gets its reference via the 75 Ω resistor and the 
51 Ω reference resistor in series.  Since the detector currents are only of the order of a few μA, the 
anodes of D2 and D4 are effectively grounded from the DC point-of-view, and so the detectors give 
positive outputs referenced to ground.

Another example of the use of shunt-diode detectors is given in the circuit below.  This shows the 
detector arrangement used in the MFJ269 antenna analyser27.  A greatly simplified version of the 
driving arrangement is also included to show that the circuit has complete DC isolation from the RF
source (and also, that it works at UHF).

The MFJ engineers chose to use conventional
half-wave detectors for AC voltages
referenced to ground, and shunt detectors for
the floating voltages.  In this case, the filter
resistor is 47 kΩ, about 1000× the resistance
needed to balance the bridge, but also small
enough to minimise the voltage drop caused
by the 1 MΩ load resistors.  The DC signals
are applied to CMOS op. amps., which have
an input leakage current of around 1 pA
(somewhat less than might be caused by a
fingerprint on the circuit board), and so there
is no significant loading apart from the
resistor.  The MF269 uses static diode
linearity compensation , and 12-bit A-D
conversion; and the result is a remarkably
accurate instrument, able to measure
impedance-related quantities within an order-
of-magnitude of 50 Ω to better than ±2%.   

27 http://www.mfjenterprises.com/
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3.  Voltage-doubler rectifier 
The circuit shown below28 is obtained by the simple expedient of replacing the filter components of 
the shunt-diode detector with a second diode.  The effect, at least nominally, is to double the voltage
output in comparison to a half-wave rectifier, to eliminate the port resistance and hence the backoff 
voltage, and to remove the need for an RF choke.  The circuit can also be used for the detection of 
floating AC voltages provided that the conditions outlined in section 2.1 are met..  Such are its 
advantages that we might wonder why it is not universally adopted; but it turns out that its principal
strength is also its principal drawback in voltage-sampling applications.  The issue is that its 
effectiveness at converting AC input into DC output means that it has a surprisingly low input 
impedance.

As before, we will define  Vp = Vin~√2 , where Vin~  is the AC component of the input voltage.  The 
operation of the circuit is then as follows:  When  Vin  first
goes negative, D1  conducts and clamps one end of the
coupling capacitor CC  to  -Vf .  This causes the capacitor to
be charged to Vp - Vf .  The charge in CC  then remains
substantially constant on the timescale of the AC signal, and
so the voltage across CC  is placed in series with Vin ,
ultimately causing the smoothing capacitor CD  to be charged,
via D2 ,  to twice the peak AC input minus two diode forward
voltages.  Note that since the diodes operate alternately, this
detector conducts on both positive and negative half-cycles
of  Vin , which means that it is actually a type of full-wave
rectifier.  Also notice that the detector has an output shortfall
of two diode forward voltages; but since it also give twice
the output of a half-wave detector, the overall degree of non-linearity is (at least nominally) the 
same as for the half-wave detector .

Diode PIV 
Due to the clamping action of D1 , the voltage at the anode of D2 cannot fall substantially below 
zero.  Hence, since the voltage across the smoothing capacitor CD  is very nearly +Vin 2√2 , VRM  for 
D2  must be at least 2√2 times the maximum possible RMS value of Vin .  In the case of D1 , since its 
effect is to clamp the most negative excursion of  the input voltage approximately to ground, 
thereby charging CC  to  Vin √2 ,  the voltage across CC will be placed in series with Vin~ when it 
makes its positive excursion.  Hence VRM  for D1  must also be at least 2√2 times the maximum 
possible RMS value of Vin .

Voltage doubler:  Both diodes,  VRM > Vin (max) × 2√2

28 A floating input bridge configuration, known as the 'Latour doubler', is also possible.  
See, for example: 'High Efficiency Low Power Rectifier Design using Zero Bias Schottky Diodes', A Mabrouki, 
M Latrach, V Lorrain. 2015.  https://hal.archives-ouvertes.fr/hal-01131545, also, 
'Full-range nonlinear model of Latour's detector . . .', Xavier Le Polozec, cited earlier.

https://hal.archives-ouvertes.fr/hal-01131545
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3.1  Doubler input impedance 
In order to determine the input impedance of the voltage doubler, we can use an argument similar to
that given in section 1.4.  
     Provided that the loading on the source is not so great as to cause substantial harmonic 
distortion, most of the harmonic energy generated by the rectification process will be dissipated in 
the dynamic component of the diode forward voltage (section 12).  In that case, the DC power 
dissipated in the network will be the same as the AC input power.  The total DC voltage produced 
is:  

2Vp  =  2 Vin~ √2

and the total DC resistance is:  

Rtot = RD + 2Rdiode 

Hence:

Pin =  ( Vin~ 2√2 )2 / Rtot  =  8 Vin~ 
2 / Rtot 

but, by definition:

Pin = Vin~
2 / RZin 

Hence:

RZin = Rtot / 8

and for large signals, when RD >> Rdiode ,

RZin ≈ RD / 8

Thus, whereas the half-wave detector is a 1:2 impedance transformer, the voltage doubler is a 1:8 
impedance transformer.  

The disadvantage of the voltage doubler29 for non-invasive voltage-measurement purposes can now 
be demonstrated by a simple example.  Suppose we decide to use a voltage doubler to drive a 
100 μA moving-coil meter padded to 100 kΩ to give 10V FSD.  Neglecting diode resistance and 
parasitics, the detector input impedance will correspond to a resistance of about 12.5 kΩ.  If we 
were to use a half-wave detector however, we would get half the output voltage, but we could easily
reduce the meter padding resistance to 50 kΩ (including Rport) and thereby increase the sensitivity to
5 V FSD.  This alternative half-wave detector will now give exactly the same meter readings as the 
doubler, except that its large-signal input impedance will be about 25 kΩ.  We have not, 
incidentally, found a source of free energy by using a non-multiplying detector.  We have merely 
avoided pumping the smoothing capacitor up to a high voltage, only to drop the voltage back down 
again using a resistor.  

29 See also: Crystal radio set design technical help, Ben Tongue, 
http://bentongue.com/xtalset/0def_exp/0def_exp.html     section 5A.
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4.  Bridge rectifier 
A non-multiplying detector that requires no RF chokes, does not have a backoff voltage, and does 
not care whether or not there is a DC path through the source network, is the full-wave bridge, 
shown below:

This circuit is nearly universal in modern power supplies, but it has two disadvantages in signal 
detection applications; one being that it has two diode forward-voltages in the path to the load, and 
the other being that either the output or the input terminals must be allowed to float with respect to 
the system ground.
     Despite the caveats, one advantage of the bridge rectifier is that the maximum inverse voltage 
for any of the diodes is only √2  times the RMS input voltage.  The magnitude of the inverse 
voltage across D2  is is prevented from rising above Vin√2  by the clamping action of D1  and vice 
versa.  The same argument applies for D3  and D4 .

Bridge rectifier:  All diodes,  VRM  > Vin(max) × √2

Principle of operation 
Although the bridge rectifier is very familiar, its mode of operation is surprisingly difficult to 
understand.  This can be made apparent by asking the question: 'If the circuit above is grounded as 
shown, what voltage waveforms, measured relative to ground, will appear at points V1 and V2 ?'  If 
you have not previously needed to solve this problem, it will probably take you a while to work out 
the answer.
     A simple way to find the solution is to imagine adding centre taps to both the input network and 
the load network, as shown in the diagram below. 
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It is not really necessary to tap into the smoothing capacitor as well as the load resistor, but if we do
so the circuit becomes reminiscent of the familiar dual-rail power supply30.  All we have to do to 
turn it into the dual-rail supply is move the earth to the centre tap and feed it with a centre-tapped 
transformer instead of a resistive potential divider.  Thus it should be obvious that if the two half-
outputs are equally loaded (which they are), there will be no current flowing along the connection 
between the input and output centre taps.  This means that, with the negative terminal of the output 
grounded,  the alternating voltages V1 and V2 must be symmetric about a DC offset at half the 
output voltage.  So now, if we let:

Vin =  Vp sinφ

Then:

V1 = ( Vm + Vp sinφ ) / 2

and

V2 = ( Vm - Vp sinφ ) / 2

Note that these two voltages are identical apart from a 180º
phase difference.  Also, the AC component in each case is half
the input voltage.  
     Now compare the graph of the operation cycle given above with the corresponding graph for the 
voltage doubler in section 3.  It appears that the bridge circuit splits the input voltage into two 
halves in antiphase.  These two half-voltages are then applied simultaneously to a pair of voltage 
doublers.  Since there is no overall voltage multiplication however, the input impedance is:

RZin = ( RD + 2Rdiode ) / 2

Ripple frequency
The rectifiers described in sections 1 - 3 all top-up the smoothing capacitor once per cycle.  The 
bridge rectifier however, tops up the capacitor twice per cycle, which means that it doubles the 
ripple frequency.  Also, if the circuit is used without smoothing, it becomes a highly efficient 
frequency doubler, removing the fundamental frequency-component completely (assuming perfect 
symmetry).  The frequency-doubled output is not sinusoidal, of course, but it can be filtered.
     The frequency doubling effect is useful in mains-frequency power-supply applications because it
reduces the required smoothing capacitance for a given level of ripple.  It is however, usually of 
little importance in radio-frequency applications because smoothing capacitors are, in any case, 
small.  
     The bi-phase (half-bridge) rectifier circuit discussed in section 5 also doubles the ripple 
frequency; but note that the voltage doubler (section 3) does not, even though it is a type of full-
wave rectifier.   

30 It turns into a pair of bi-phase rectifier power supplies of opposite polarity.  See section 5.
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Frequency sampling 
The fact that the input terminals of a bridge rectifier, when measured relative to ground, carry an 
AC signal of half the floating input voltage can be exploited for the purpose of sampling the input 
frequency.  This is the traditional method for extracting the power-line frequency from mains 
transformers without using a separate winding, and is used to provide a simple and accurate timing 
reference in devices such as electronic clocks.

A power-line sampling circuit is shown on the
right.  The forward voltage for silicon P-N
power diodes is about 0.7 V, so the power-
supply produces a raw DC output of
7.5√2 - 2×0.7 = 9.2 V, which is intended for
regulation to 5 V for powering logic circuitry.
Thus the voltage to ground on either side of the
AC input to the rectifier is 3.75 V RMS, with a
DC offset of +4.6 V.  This corresponds to a
peak-to-peak excursion of 3.75 × 2√2 = 10.6 V,
but it is fed through a resistor and a coupling
capacitor to a peak clipper comprising two
1N4148 silicon P-N signal diodes.  These have
a forward voltage of about 0.6 V,  and so the
resulting waveform is limited to lie between
0.6 V above the +5 V rail and 0.6 V below
ground, i.e., it is clipped to 6.2 V P-P.  This is
converted into a clean 5 V P-P square wave by
means of a CMOS Schmidt trigger.
     It should be understood, of course, that any substantial loading of the voltage at the AC input 
side of a bridge will upset the symmetry.  For a circuit designed to produce hundreds of milli-amps, 
or even amps, of output current however, a sampling network such as this will make no measurable 
difference.  Note that the 100 nF capacitor has a reactance of -32 kΩ at 50 Hz (-27 kΩ at 60 Hz), 
and although there will be harmonics present, it constitutes a very weak coupling.  The 1 kΩ resistor
gives the diodes and the Schmidt trigger some protection from any fast transients that might appear 
on the power-line.
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Coupling capacitor 
Because the bridge rectifier introduces no net DC component into the current flowing in the source 
network, it can be fed via a coupling capacitor (or capacitors) if so desired.  In power supplies 
however, the use of a coupling capacitor can be dangerous unless the implications of so doing are 
considered in advance.
     In the thoroughly nasty circuit shown on
the right, a bridge is fed via a coupling
capacitor, and four switches are provided for
the purpose of simulating a short-circuit
(which is the usual failure mode) in any one
of the four diodes.  
     Let us first consider what happens when
diode D3 is shorted.  In that case, V2 is pulled
to ground, D1 and D2 begin to act as a voltage
doubler, and D4 is harmlessly reverse-biased  
(it is assumed, incidentally, that none of the
diodes have their VRM ratings exceeded when the event occurs).  From an external point of view, the
effect is approximately to divide the input impedance by a factor of 4 (assuming a purely resistive 
load), and to double the output voltage.  Shorting-out D1 will, of course, have a similar effect.
     Now consider the effect of shorting-out D2.  In that case, V1 is tied to the positive output 
terminal, D3 and D4 act as a voltage doubler producing an output that is negative relative to the 
positive terminal, and D1 is permanently reverse biased.  Shorting out D4 will have a similar effect.
     Thus, when the bridge is capacitively coupled, there are four ways in which the most common 
type of diode failure can double the output voltage and quarter the input impedance.  A fuse is 
generally too crude a safety device to detect such an impedance change, and circuitry subjected to 
twice its intended operating voltage can malfunction in numerous unpleasant ways.  Such might be 
the consequence of failing to consider this idiosyncrasy.  On the other hand, a  voltage doubler 
circuit can be provided with a half-output (×½) facility by the addition of two more diodes an a 
single-pole switch.
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5.  Bi-phase rectifier 
The bi-phase (or 'half-bridge') rectifier was once widely used in the power supplies of valve (tube) 
equipment.  As a power rectifier, it is a poor choice in comparison to a full bridge; and after 
selenium HV rectifiers31 became available in 1933, its chief design merit seems to have been that it 
maximised the profits for owners of light-bulb factories while increasing the size and complexity of 
the mains transformer at the customer's expense32 33.  The circuit creates a serious fire hazard in the 
event that one of the rectifiers should fail open circuit34, because a DC component will then be 
present in the transformer secondary current, causing core saturation and overheating.
     In signal detection applications however, the circuit has the advantage of being a full-wave 
rectifier with only a single diode forward-voltage drop in the path to the load.  By conducting on 
both half-cycles of Vin , the circuit also halves the average diode current for a given output voltage, 
and so reduces the diode forward voltage drop compared to that of a half-wave rectifier.  Because of
the logarithmic diode V-I characteristic however, the Vf   reduction is only a few %. 

A disadvantage of the circuit that it usually requires a centre-tapped coupling transformer (although 
it can be constructed as a pair of half-wave rectifiers driven by a dual-ended (balanced output) 
amplifier).  The output voltage of the transformer-coupled version is given approximately by the 
following expression (which neglects transformer losses): 

Vm = √2 Vin  Ns / Np  - Vf 

Where Ns / Np  is the turns ratio.  Correct operation requires that the transformer has sufficient 
primary inductance not to load the driving network significantly at the lowest frequency of 
operation, and that the transformer is otherwise working within its pass-band.  For HF radio 
frequency applications, the transformer can be wound on a small ferrite toroid or two-hole 
('binocular') core.  Note incidentally, that if a transformer is used for the ratio arms (i.e., the voltage-
dividing network) of a measuring bridge, it is possible to combine this transformer with the bi-
phase detector transformer by using the fact that the bridge is a linear reciprocal network (i.e., 
generator and detector ports are interchangeable).  The resulting configuration, a type of 

31 Selenium high-voltage rectifiers (see: http://en.wikipedia.org/wiki/Selenium_rectifier) were considerably more 
efficient than valves and require no heater supply, but equipment manufacturers associated with the valve cartels did
not use them.  The slow adoption of semiconductors in some quarters is further discussed in section 11.  

32 As pointed out by Bob Weaver (private e-mail, 14th Aug 2014), the weight of copper required is not greatly increased
when a bi-phase is used instead of a bridge, because the two secondary windings provide half the current each.  The 
manufacturing time and the amount of insulating material however, will be increased, and the valve rectifier (in safe 
design practice at least) requires an additional floating heater winding.

33 The marketing of radio receivers in the 1930s, particularly in the USA, led to tube wars.  Using more tubes was 
supposed to make a better radio set.  Thermionic rectifiers were counted as tubes, even though they were nothing to 
do with the signal chain, but the semiconductor rectifier was not so easily turned into a marketable concept.

34 Silicon rectifiers usually fail short-circuit, which is safe with an adequately specified transformer because it will 
blow the primary-side fuse.  Valve rectifiers come in two types; single cathode dual anode, which cannot fail with 
one diode open circuit; and the more usual dual diode with dual filaments in parallel, which is a fire hazard and 
should be replaced by a solid-state rectifier and a soft-start circuit if the equipment is to be re-certified for use.  It is 
a good idea to replace or re-form the smoothing capacitors when changing to solid state rectification (an increase in 
output voltage occurs). 
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transformer ratio-arm bridge (TRAB) is shown below:

This circuit allows the unknown and reference impedances, the generator, and the output network, 
all to have one terminal connected to ground.  The transformer will introduce some minor voltage 
shortfall, due to losses and leakage inductance; but it will not introduce non-linearity unless it is 
operated close to core saturation, which is highly unlikely given the trivial power requirement of a 
signal detection circuit. A particular disadvantage of the configuration however, is that it involves 
stuffing the ratio-arm transformer with a relatively large amount of wire, which might make it 
difficult to minimise stray capacitance between the primary and secondary windings.  The ratio-arm
transformer must be designed with balance as the principal criterion, and it is not necessarily a good
idea to try to make it perform additional functions.

With regard to diode VRM , note that the bi-phase rectifier is simply two half-wave rectifiers feeding 
the same smoothing capacitor.  Hence the inverse voltage rating for a diode must be at least 2√2 
times the RMS voltage at the transformer output.

Note that the bi-phase circuit is a frequency-doubling rectifier, which can be either an advantage or 
a disadvantage in RF applications.

As mentioned before, the bi-phase rectifier gives an improvement in linearity over the half-wave 
rectifier by dividing the rectifier current between two diodes; but as will be discussed in the next 
and later sections, the diode forward voltage drop varies logarithmically with current in such a way 
that the improvement will not be particularly large, and so the additional complexity might not be 
warranted.



29

6.  Diode static voltage vs. current characteristic 
All of the diode detectors described in the preceding sections have at least one diode forward-
voltage drop in the path to the measuring device.  Under static conditions (i.e., when a DC bias is 
applied) the voltage across the diode ( Vd ) varies approximately in proportion to the logarithm of 
the current ( Id ) passing through it.  The current also depends on the temperature of the diode 
junction.  For many types of diode, this behaviour is described to a good approximation by a 
modified form of the Shockley diode equation35 36 37 38.

Vd = Id  Rds + m ( kB T/qe ) ln[ ( Id / IS ) +1 ]

where:

Id  is the static or instantaneous forward current.

Rds is the ordinary ohmic series resistance of the diode.

IS  is the junction reverse saturation leakage current (see section 6.1).  Note that this quantity
varies with temperature independently of the thermal voltage, VT  (discussed below).  

m  is a dimensionless correction factor between 1 and 2  (known as the 'ideality factor' or 
'emission coefficient' )39.

ln  is the natural logarithm operator (Loge ).

kB is Boltzmann's constant ( kB = 1.380662×10-23 joules/kelvin).

qe  is the charge of an electron ( qe = 1.6021892×10-19 coulomb). 

T is the temperature in Kelvin, K, i.e., the absolute temperature (°C +273.16).   

The factor  kB T/qe  has dimensions of volts and is often given the symbol VT (the thermal voltage).  

VT = kB T/qe = 25.3 mV at 20°C.

The modified Shockley equation is then more conveniently written:

Vd = Id  Rds + m VT ln[ ( Id / IS ) +1 ] 6.1

When  m = 1 and  Rds = 0 , the diode forward characteristic reduces to the Shockley ideal diode 
equation:

35 The theory of p-n junctions in semiconductors and  p-n junction transistors.  W Shockley.  Bell System Tech. 
Journal 28(3), 1949, p435-489.  See p454, equation 3.13 [Ideal diode equation with ohmic resistance].

36 Carrier generation and recombination in P-N junctions and P-N junction characteristics, C T Sah, R N Noyce,
W Shockley, Proc. IRE, Sept. 1957, p1228 - 1243.  [Deviation from ideality].

37 Physics of semiconductor devices.  S M Sze. Wiley, 1969. SBN 471 84290 7 [2nd edition 1981 and 3rd edition 2006 
also exist].  Chapter 3, part 4 (p96-102).  Current-voltage characteristics of PN junction diodes.

38 The art of electronics, P Horowitz and W Hill. 2nd edition 1989, Cambridge Univ. Press. ISBN 0-521-37095-7. 
Ebers-Moll model for transistors.  p79-80.

39 Most of the original articles use n for the emission coefficient, but here we will reserve n for other purposes.
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Vd = ( kB T/qe ) ln[ ( Id / IS ) +1 ]

which, using the notation exp(x) = ex ,  is more usually written:

Id = IS [ exp( Vd qe / kB T ) - 1 ]

i.e.,

Id = IS [ exp( Vd / VT ) - 1 ]

The Shockley equation was derived for a P-N junction, but also applies to point-contact and 
semiconductor-on-metal (Schottky or 'hot carrier' 40 ) diodes when IS and m are chosen 
appropriately.

For an overview of the theory of metal-semiconductor junctions, see the review by Rhoderick41.  He
points out some limitations of the near-ideal diode equation close to the threshold of forward 
conduction, particularly in that it should strictly take the form:

Id = IS exp( Vd / mVT ) { 1 - exp( - Vd / VT ) }

This does not quite turn into the accepted form of the modified Shockley equation because there is 
no emission coefficient (m) in the second term.  It makes no difference for large diode currents, but 
it does imply a small finite conduction threshold.

Bear in mind that the effective diode forward voltage drop under dynamic (i.e. AC) conditions, is 
greater than the static voltage drop.  That issue is examined in section 12.  The static characteristic 
is nevertheless an indicator of dynamic behaviour, and so governs the choice of diode.  Also note 
that the diode equation as given does not describe the reverse-breakdown (avalanche) region of the 
characteristic; i.e., the diode is assumed to be operating within its specified VRM  limit.

6.1  Variation of saturable leakage current with temperature
The reverse saturation leakage current of a diode, IS , doubles
for about every 20 K (20ºC) of temperature rise42.  A simulation
is shown on the right (see spreadsheet det_models.ods sheet 7). 
This represents substantial variability, which will need to be
taken into account when the diode forward voltage is significant
in comparison to the peak signal voltage. 
     If a dependent quantity doubles for every application of a
particular constant increment of an independent variable, then
that behaviour constitutes exponential growth.  Consequently, if
we have a measurement of  IS  at a particular temperature, we
can find its value at some other nearby temperature by noting
that the logarithm of  IS  divided by its value at the original
temperature will make a straight line graph.  Thus, if we have a

40 Using the hot carrier diode as a detector.  M Crane, H O Sorensen, HP Journal. 17(4) Dec. 1965.
41 Metal-semiconductor contacts.  E H Rhoderick, IEE Proc, Vol 129, pt. 1, No. 1. Feb. 1982.  p1-14.
42 Characteristics and applications of diode detectors.  Ron Pratt.   HP RF & Microwave Symposium, ≥1978.

http://www.hparchive.com/seminar_notes/Pratt_Diode_detectors.pdf
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measurement at (say) 293.16 K (i.e., 20ºC), and we call  IS  at this temperature  IS293 ,  then we can 
write:

ln( IS / IS293 ) = aT + b . . . . . (6.2)

where T is the temperature, a is the gradient of the line, and b sets the point at which the line crosses
the axis.  Now note that when  IS = IS293 ,   ln(IS / IS293) = 0 .  Thus:

0 = 293a + b

i.e.: 

b = -293a

Also note that if the saturation leakage current doubles for a 20 K rise in temperature, then:

ln(2) = 313a + b   =  313a - 293a  =  20a

i.e.:

a = ln(2) / 20

Feeding the expressions for  a  and  b  back into equation (6.2) gives:

ln( IS / IS293 ) = T [ln(2) / 20 ] - 293 [ln(2) / 20 ]

i.e.:

ln( IS / IS293 ) = ln(2) ( T - 293 ) / 20

Exponentiating both sides and rearranging then gives:

IS = IS293 exp{ ln(2) ( T - 293 ) / 20 } 6.3

Note that this expression contains the assumption that  IS  doubles for a 20 K temperature rise.  It 
will suffice if no other information is available43; but if two measurements of  IS  are made at 
different temperatures ( T0 and T1 say), then a more accurate form can be written:

IS = IST0 exp{ ln( IST1 / IST0 ) ( T - T0 ) / ( T1 - T0 ) } 6.4

The large temperature variation of the diode characteristic, although quantifiable, suggests that 
detector diodes used for precision voltage measurement applications should ideally be operated in a 
temperature controlled environment.  The detector, for example, might be placed inside a small 
temperature regulated chamber, similar to (or actually) a crystal oven.

43 'Nonsquarelaw behavious of diode detectors . . ',  [Harrison - Le Polozec 1994],  cited earlier. See equation (2).
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6.3  Diode measurements
The graph below shows the measured forward voltage vs. current characteristics of a variety of 
small signal diodes. 

The 1N4148 is a silicon P-N junction diode.  The 1N5711 (Agilent 5082-2800) is a high-inverse 
silicon Schottky diode (i.e., silicon-metal junction diode).  The OA47 is an archaic germanium 
gold-bonded diode, and the rest are germanium point-contact diodes.  Two 1N4148 diodes from 
different manufacturers were measured merely to illustrate the point that silicon P-N diodes have 
the highest forward voltage and are therefore a poor choice for low voltage detectors.  The 1N5711 
curve is the average of results from four diodes (all from the same batch) that had practically 
identical characteristics.  The OA47 curve is the average for four diodes from two manufacturers, 
all having similar characteristics.  The OA90, OA91, and 1N60 curves are from single examples, 
and are therefore not necessarily representative of the type.  All data were recorded at an ambient 
temperature of 21°C. 
     The data indicate that the IN4148, the 1N5711, and the OA47, all obey a logarithmic V/I 
relationship reasonably well, whereas the germanium point-contact characteristics show 
considerable curvature due to high ohmic resistance.  With regard to the forward voltage drop 
however, the germanium diodes are all superior to the IN5711 in the 1 to 100 μA range, and the 
preference for the latter may merely reflect the fact that many semiconductor manufacturers no 
longer fabricate germanium.  Silicon Schottky diodes, such as the 1N5711 and 1N6263 have better 
high-frequency performance than germanium diodes, but germanium diodes work well at VHF and 
are therefore often adequate for HF applications.  Among the germanium diodes, there is little 
difference between the gold-bonded and standard varieties in the 1 μA to 100 μA range, but the 
OA47 is the best choice for currents up to 1 mA.  We should observe however, that detector diodes 
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only conduct significantly on the peak of the applied waveform, and so the instantaneous current is 
much higher than the average current, the difference being about an order of magnitude (see section
12).  Therefore, in selecting diodes for average currents in the region of 1 μA  to 100 μA, we should
consider the steady-state voltage drop in the region 10 μA to 1 mA; in which case the germanium 
gold-bonded diode offers the lowest forward-drop among the diodes compared.  Note however, that 
one of the consequences of the diode equation is that low forward voltage-drop is associated with 
high reverse saturation leakage current.  Also, there will be a non-saturable reverse leakage current, 
roughly equivalent to a resistance in parallel with the diode, and germanium diodes are worse than 
modern silicon diodes in that respect.  Hence, if reverse leakage is an issue, high-inverse silicon 
Schottky diodes are to be preferred.  To put this matter in perspective however, the reverse leakage 
current of an OA47 diode was measured as follows:

Vr / Volts 1.0 2.0 3.0 5.0 10.0 15.0 20.0

Ir / μA 1.1 1.3 1.4 2.1 4.1 6.3 8.8
T = 21°C

The leakage current is approximately linear in the 5 V - 20 V range and can be modelled by 
assuming a parallel resistance of about 2 MΩ.  Such a defect has little effect on the operation of a 
detector loaded with a 10 kΩ - 100 kΩ resistance, but will be deleterious in the high-impedance 
detector circuits discussed earlier.  Some users of Ge diodes in high-impedance detectors actually 
use them without a DC return path (using the diode leakage for that purpose); but such circuits are 
unpredictably dependent on the characteristics of the particular diode used. 

Some final points in favour of the silicon Schottky diodes are that germanium diodes show a wider 
spread of characteristics, and that the OA47 and the later AAY-series Ge-Au diodes are obsolete.  
Hence the Si Schottky diodes are definitely preferable in applications requiring diode matching, 
precise calibration, or availability through normal commercial channels.  The 1N5711 in particular 
also, has a high reverse breakdown voltage for a silicon device of its class, its VRM  of 70 V making 
it suitable for half-wave detectors of up to 24.7 V DC output.  An OA47 half-wave detector has a 
maximum DC output of 10.6 V if VRM  is not to be exceeded.

Note that the silicon Schottky diode  can only achieve a high peak inverse voltage if it is fabricated 
using a guard-ring structure44.  The guard-ring prevents breakdown due to the high electric field 
strengths that occur at the edge of the metallised area.  The downside however is that it increases 
the junction capacitance (2 pF for a 1N5711),  and it creates a spurious P-N junction that can 
conduct slightly at very high forward currents.
     For small signal applications, simple Schottky diodes (e.g., Agilent HSMS-2850) are to be 
preferred.  Without the guard-ring, the junction capacitance is about 0.3 pF.  VRM  is then however in
the 2 V to 6 V range45.

44 see: http://www.radio-electronics.com/info/data/semicond/schottky_diode/technology-structure-operation.php
Accessed 22nd Dec. 2015.

45 Chin-leong Lim 9W2LC, Private e-mail correspondence, 4th - 5th March. 2015.
Agilent HSMS-285x series data sheet.

http://www.radio-electronics.com/info/data/semicond/schottky_diode/technology-structure-operation.php
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7.  Signal diode data 
The table below shows some collected diode data.  The information is mostly historical, but the 
point is to be aware of the typical forward voltages, reverse breakdown voltages and reverse leakage
currents associated with the various types.  Also note that Ge diodes are nowadays usually NOS or 
salvaged, and so old spec. sheets are not necessarily redundant.  
     For small-signal RF rectifier voltmeters, diodes should be chosen for low forward voltage drop 
and low junction capacitance (which is given in brackets where known).  An example Pico-amp 
diode (PAD) is also included.  These are not used as detectors, but are connected anode to cathode 
across diodes placed in op-amp feedback loops, to prevent wild excursions in the wrong output 
polarity range.

Type Description
Vr max

/ V
If max

/ mA
If av

/ mA
Typ Vf @ If Typ Ir @ Vr

†

Data
/ V / mA / μA / V

1N4148 Si P-N junction (4 pF @ 0 V) 75 200 - 1.0max 10 0.025 20 a

1N5711 Si Schottky (2.0 pF) 70 - - 0.41max 1 0.2 50 b

1N5712 Si Schottky (1.2 pF) 20 - - 0.55max 1 0.15 16 b

1N6263 Si Schottky (2.2 pF) 60 50 15 0.41max 1 0.2 50 f

AA119 Ge point contact * 45 100 35 2.6 30 170 45 c, d

AAY30 Ge Au-bonded. High speed 30 400 - 0.88 150 8.0 30 c, d

AAY32 Ge Au-bonded. High speed 30 150 - 0.60max 30 11 30 c, d

AAY33 Ge Au-bonded. High speed 12 240 - 0.5max 30 15 12 c, d

AAZ15 Ge Au-bonded. High voltage 100 250 - 0.8 250 16 100 c, d

AAZ17 Ge Au-bonded. Gen. purpose 75 250 - 0.8 250 16 75 c, d

BAT81

Si Schottky (1.6 pF)

40

30 -
0.33
0.41
1.0

0.1
1
15

0.2 30 aBAT82 50

BAT83 60

OA47 Ge Au-bonded. Gen. purpose 30 150 - 0.54 30 10 30 c, d

OA90 Ge point contact * 30 45 10 2.0 30 300 30 c, d

OA91 Ge point contact 115 150 50 2.1 30 75 100 c, d

OA95 Ge point contact 115 150 50 1.85 30 80 100 c, d

PAD5 Si PN low leakage (0.5 pF) 45 - - 0.8 5 5 pA 20 e

* Very high reverse leakage current.  Generally best avoided, but leaky diodes will work in high 
impedance detector circuits with no external DC return46.  Not for precision measurement 
applications.

Data sources
a) Philips Components Quick Reference Guide 1990.
b)   Agilent 1N5711, 1N5712, 5082-2300 Series, 5082-2800 Series, 5082-2900 Schottky Barrier 
Diodes for General Purpose Applications.  These have a guard-ring structure, which increases 
reverse breakdown voltage but also adds capacitance.  
c) Mullard Semiconductors, 1974/5

46 Hi Fi Detector for AM broadcast. Robert Batey.  http://www.g3ynh.info/circuits/hi-fi_am.html.  See. TRF circuit 
with regeneration. 
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d) Mullard Industrial Semiconductors, Quick Reference Guide 1969/70
e) Linear systems datasheet.  www.linearsystems.com/
f) ST Microelectronics datasheet   www.st.com/

† Typical reverse leakage current at a given voltage gives a way of estimating the effective parallel 
resistance.  Provided that the reverse saturation leakage current is much smaller than the total 
reverse leakage current:

Rdp = Vr / Ir      

If the saturation leakage current is high, it should be subtracted from the total to find the ohmic 
contribution, i.e.;

Rdp = Vr / (Ir - IS )

Point contact junctions
Note that point-contact diodes are sometimes Schottky diodes and sometimes not.  If the point-
contact results in a semiconductor-metal junction, then the diode might be reasonably classified as a
Schottky type.  Often however, there is an initial burn-in step in manufacture, which causes some of
the metal to diffuse into the semiconductor crystal and form a P-N junction47.  Given this ambiguity,
the term 'Schottky diode' is usually reserved to mean diodes having a semiconductor-metal junction 
formed by evaporation of metal on to the crystal surface.

47 Schottky barrier devices.  J C Irvin and N C Vanderwal, in Microwave semiconductor devices and their circuit 
applications, H A Watson (Ed.), McGraw-Hill 1969, LCCN 68-17197. p340-369,  see p341.
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8.  Diode circuit model 
A suitable model for in-circuit diode simulation is shown on the
right.  The non-linear behaviour is described by the three
parameters of the modified Shockley ideal diode equation 
(Is , m, VT  in equation 6.1), and all of the other parameters can be
represented as conventional circuit elements.  
     Lds  is the series partial inductance associated with every circuit
component, and Cj  is the junction capacitance.  Lds is a few nH for
wire-ended diodes (the old 20 nH per inch rule provides a rough
guide), but is very small for surface-mount devices (neglecting PC tracks).  Cj is as per the 
manufacturer's literature (2 pF for the 1N5711) unless quantified experimentally.  Note that a half-
wave diode detector usually feeds into a smoothing capacitor.  The smoothing capacitor 
intentionally has nearly zero reactance at the generator frequency.  The capacitance shunting the 
diode also makes zero contribution to the DC output.  Hence, at the driving frequency, Cj  is 
effectively connected between the input-side network and ground.  This can help to simplify the RF 
modelling problem at higher radio frequencies.  Reactances, of course, can be neglected at lower 
frequencies.

A simulation of the DC or
instantaneous characteristic of a
1N5711 Schottky diode (neglecting
reactance) is shown on the right
(see open document spreadsheet
file det_models.ods, sheet 1).
Voltage and current are defined as
positive when the anode is positive
with respect to the cathode.  Two
curves are shown; one with Rds

taken into account, and the other
with Rds = 0 (i.e., ignored).  The
typical Rds  of 25 Ω  implies a
substantial contribution to the
forward voltage at Id = 10 mA, but
it is not so important with currents
of a few microamps.  If Rdp is left
open circuit (i.e., ignored) the diode
reaches its reverse saturation
leakage current when the negative
bias exceeds more than about 0.1V.  If Rdp is included, the total current under negative bias is  
-Is + Vd / Rdp  (where Vd is negative).  The model assumes that the reverse breakdown voltage is 
never approached.

8.1  Diode stacking 
The diode static current vs. voltage characteristic (neglecting parallel resistance) is given by the 
modified Shockley equation (6.1).  

Vd = Id  Rds + m VT ln[ ( Id / IS ) +1 ]
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If we put several identical diodes in series, then the forward voltage drop for a given current is 
multiplied by the number of diodes (nd say).  Thus

Vnd = nd Id  Rds + nd m VT ln[ ( Id / IS ) +1 ]

Thus the effect is to multiply the thermal voltage (VT ) and the series resistance by the number of 
diodes.  The parallel resistance is, of course, similarly multiplied, as is the series partial inductance. 
The capacitance however is halved.

9.  Back diodes 
One further rectifying device that we should mention in passing is the backward diode or 'back-
diode' 48 49.  This is a type of tunnel diode or Esaki diode.  Due to heavy doping of the 
semiconducting material (often germanium), the tunnel diode has a negative resistance region in its 
V/I characteristic, which makes it useful as an amplifier, oscillator or trigger device.  The back 
diode is a less-heavily doped version, which means that the negative resistance characteristic largely
suppressed.  This gives it a characteristic more like that of a normal diode, except that it has an 
extremely low forward voltage drop, somewhere in the region of 90 mV for 10 mA forward current.
     Unfortunately however, there is no general workaround as far as the diode equation is concerned.
The back diode has an extremely low reverse breakdown voltage, and a leakage current of around 
1 mA for only 500 mV of reverse bias50.  The reason is that, relative to the normal electrode naming 
for a given material type, the back diode is used backwards; i.e., it conducts more in the 'reverse' 
direction than in the 'forward' direction.  This is due to the quantum-mechanical tunnelling effect 
after which this class of devices is named.  
     The diode can therefore only be used in extremely low-impedance low-voltage circuits, which 
makes it unsuitable for the construction of conventional peak detectors.  It does however make a 
good square-law detector, and can therefore be used for direct conversion of voltage readings into 
power readings51.  It also has low capacitance, and is free from charge storage effects, making some 
types useful up to about 40 GHz.
     Back diodes are still a current microwave technology52, but they are expensive.  When a square-
law detector is required for more general RF applications, and presuming that active circuitry can be
used, a more cost effective solution is to use a linear detector followed by an anti-logarithmic 
amplifier or an analogue multiplier.  Another solution is to digitise the output of a linear detector 
and perform the arithmetic using a computer or a microcontroller.

48 The art of electronics.  2nd ed. Horowitz & Hill (previously cited).  Back diode as a square-law detector, p891-892. 
Tunnel diode p14-15, p1060.

49 Amplifier Handbook.  Ed. R F Shea.  Mc Graw Hill 1966. ISBN 0-07-056503-1.  Ch. 12.  Tunnel diodes and 
backward diodes.  C S Kim and J J Tiemann.  Theory, characteristics and applications.

50 Effective noise reducer and hearing protector.  R L Rod, QST, April 1978, p40.  Simple audio clipper circuit 
using back diodes.  Gives V/I characteristic for General Electric BD1.

51 New approach to measuring SWR at high frequencies.  U L Rohde.  Ham Radio.  May 1979, p34-35.  
The Rohde & Schwarz NAUS 80 RF power meter uses back diodes as square-law detectors.

52 http://www.aeroflex.com/ams/metelics/micro-metelics-prods-TD-MTD.cfm
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10.  Vacuum thermionic diodes 
Given that semiconductor diodes are not ideal rectifiers, some readers might wonder if thermionic 
diodes (valves) are capable of better performance.  The answer however is a most emphatic 'no!'  
The forward voltage of an indirectly heated valve diode in the low-current (space-charge limited) 
regime53 is given by the expression:

Vf = ( If  / K )3/2 - Vc

where K is a constant determined by the geometry of the diode and Vc  is called the contact 
potential, by analogy with the potential developed by a thermocouple.  The diode contact potential 
arises because some of the electrons ejected from the cathode arrive at the anode even when there is
no bias, and so the anode becomes negatively charged.  This means that the diode must be reverse 
biased in order to prevent it from conducting, and the amount of bias required varies with the heater
temperature and the age of the valve.

In precision measurement terms, the contact potential is enormous.  A
sample of eight double-diode valves of type EB91 (6AL5) showed
contact potentials ranging from 0.48 V to 0.96 V (with a mean of
0.73 V) when measured using a voltmeter with 10 MΩ input resistance
and a stabilised 6.30 V DC heater supply (due to drift, sensible
measurement was impossible using a filament transformer connected to
the AC mains supply).  A 100 μA moving coil meter with an internal
resistance of 980 Ω was connected across a diode having an open-
circuit contact potential of 0.74 V, and registered a zero-bias current of
70 μA, i.e., the diode gave a DC output of 4.8 μW due to the thermal
current.  When the meter was padded to 10 kΩ, to simulate the diode
loading in a reasonably realistic detector circuit, the zero-bias current
was 22 μA, i.e., 22% of full-scale deflection.  
     Without even considering the other (manifold) shortcomings of the
device,  we may safely conclude that, in comparison to semiconductor
diodes, thermionic diodes have no merit in small-signal detecting
applications.  That however must leave us to wonder why they were
used and recommended for that purpose in the early and mid 20th

century.   It certainly wasn't because the semiconductor diode had yet to
be invented.
     The semiconductor diode does, of course, have a thermal voltage; but it is nothing like that 
which obtains from heating the cathode to between 600ºC and 1000ºC.

53 Radio Engineering, F E Terman, McGraw-Hill, 3rd edition 1947. Section 5.5, Diodes - Space-charge effects.  
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11.  A brief history of diode detectors 

Nature abhors a vacuum tube.54

The vacuum thermionic diode was actually invented by Thomas Edison and described an 1884 
Patent55.  Edison was well aware of its one-way conduction property (which is known as the 'Edison
effect'), but the patent relates to his use of the critical relationship between anode current and 
filament temperature (and hence voltage) to make an expanded-scale voltmeter and a voltage-
regulator for DC power generators.  J A Fleming had worked for Edison at that time, and had been 
involved with the experiments.
     In 1904, Fleming's contract as scientific advisor to Marconi
had come to an end and he was engaged in research relating to
the development of high-frequency AC measuring instruments56.
Aware that some of the types of radio detector in use at the time
have a rectifying action, he decided to try using the Edison diode
in conjunction with a galvanometer, and met with success.  He
then patented the invention57 58, essentially a crude diode RF
voltmeter, but also somewhat overstepped the mark by laying
claim upon the use of the valve for rectification in general, as
well as for his particular application.
     What is perhaps not obvious is that a Patent is of no intrinsic
value to a private individual, and it can be a financial burden.
For those without manufacturing interests, a patent is only
desirable if it can produce royalties, or if it can be used as a
bargaining tool.  Fleming seems to have taken out the patent
because he saw it as a way of getting-back his job with the
Marconi company.  He wrote to Marconi on several occasions
about patents he had filed at around that time, but the diode
appears to have been the one that did the trick.  Fleming was duly
re-employed, but on a contact that forced him to transfer control
of all relevant patents taken out in the time between his two
periods of employment.  In other words, had had to give the
valve patent to Marconi.
     It was Marconi who turned the detector into a moderately useful demodulator by replacing the 
galvanometer with a telephone earpiece.  Still, there was not much to listen to except the buzzing of 
spark transmitters, and the device was never clearly superior to other types of detector used by 
Marconi at the time (it is less sensitive than a coherer, but it doesn't require resetting).  Also, it was 
doomed to become silent with the move to quasi-continuous and then continuous waves.  It should, 
by rights, have been destined for obscurity, at the very least until the advent of amplitude 
modulation and broadcasting after the First World War; had not Lee de Forest had the bare-faced 

54 Quip usually attributed to J R Pierce of Bell Labs., but attributed by Pierce to his colleague Myron Glass. 
http://www.smecc.org/john_r__pierce____electron_tubes.htm  (accessed 27th Aug. 2014).

55 Electrical Indicator.  T A Edison, 1884 (filed 1883), US Pat. No. 307031.
56 Inventing the history of an invention: J A Fleming's route to the valve.  Sungook Hong,  2000.  Artifacts, Vol 2, 

02.  http://www.artefactsconsortium.org/Publications/PDFfiles/Vol2Elect/2.01.Electronics-
Hong,FlemingValveGr75ppiWEBF.pdf   (accessed 27th Aug. 2014).

57 Improvements in instruments for detecting and measuring alternating currents. J A Fleming. 1904, British Pat.
No. 24850..  

58 Instrument for converting alternating electric currents into continuous currents. J A Fleming. 1905 US Pat. 
No. 803684.

Fleming 'Oscillation Valve' 1918
(Platinum filament)
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effrontery to invent the triode59.  
     Being the first practical electronic amplifying device, the thermionic triode really did herald the 
start of the vacuum-tube revolution60.  It had two serious problems however; the first being that it 
had been invented by one of Marconi's rivals, and the second being that it was superficially similar 
to Fleming's valve.  This led to years of litigation, and despite a 1915 disclaimer withdrawing 
invalid claims in Fleming's US patent; de Forest sustained sufficient financial damage to cause him 
to allow his British triode patent to lapse.  That meant that the Marconi company could manufacture
and sell triode valves freely in the UK, while the US market remained in a state of legal uncertainty 
until the Fleming patent expired in 1922.  In 1943, the US Supreme Court declared Fleming's patent
to have been entirely invalid for all time, due to deliberate false claims and failure to declare prior 
art61.  That was too late to be of any use to the US electronics industry; and although it might have 
entitled de Forest to some redress, nothing came of it. 
     According to de Forest, the Fleming valve was nothing more than a laboratory curiosity.  This is 
a reasonable assessment in the context of signal detection, although thermionic diodes are useful as 
noise sources.  The publicity surrounding the legal battles relating to it however gave it a perceived 
merit that it does not actually posses, and this will have had an influence on circuit designers.  The 
main reason why vacuum diode detectors were used however lies in the cosy relationship that grew 
up between the valve manufacturers and the equipment manufacturers, especially in the consumer 
sector.  Often the valve makers and the set makers were one and the same; and in Britain they 
operated a vast cartel62, with restrictive practices that included approved component types and 
sanctions against companies that tried to source parts independently.  Hence a preference for the 
valve diode detector; although it must be understood that it was only of use in circuits having plenty
of pre-amplification, such as superheterodyne radio receivers.  Receivers needing sensitive low-
noise detectors and mixers had to use either the triode valve, or the semiconductor crystal diode.   
     To be fair to the light-bulb cartel companies, it took a long time to perfect the manufacture of the
crystal detector; and a couple of spare thermionic diodes could easily be included in the superhet 
final IF amplifier or first audio valve.  That does not however explain the marketing of signal diode 
valves (like the 6AL5 shown earlier, which was introduced in 1945) at a time when high-inverse 
germanium diodes were available; or the curious practice of supplying radio sets to the British 
market with valve power supply rectifiers and detector diodes, and equivalent models for the North 
American market with semiconductor devices in those positions. 

Meanwhile, in a parallel universe, the elements of the true electronics revolution were beginning to 
come together.  The unilateral conduction of crystal-metal junctions was discovered by Ferdinand 
Braun63 in 1874.  The use of this effect for the detection of radio signals was then developed by 
Jagadis Chandra Bose from 1894 onwards64.  Bose experimented with several types of 
semiconductor crystal, plotting the V-I characteristics using a galvanometer capable of registering 
1 nA, and appears to have anticipated the existence of P and N-type materials.  He also gave public 
demonstrations of radio signalling in 1895, pre-dating Marconi by two years.

59 Device for amplifying feeble electrical currents, Lee de Forest, 1907 (filed 1906), US Pat. No. 841387.
60 Although, it must be understood that de Forest's 'Audion' was too gassy to work properly as a linear amplifier, and 

constitutes the invention of the control-electrode rather than a fully developed technology.
61 The genesis of the thermionic valve. Lecture given to the IEE on the 50th adversary of the invention of the 

thermionic valve.  G W O Howe, 1954.  [ Howe's lecture was not what his audience would have expected.  Refer to 
the full transcript ( http://www.g3ynh.info/valves/old/history/Howe1955_genesis.pdf), not the heavily abridged 
summary appearing in JIEE, March 1955, p158 ].

62 Report on the supply of electronic valves and cathode ray tubes, The Monopolies and Restrictive Practices 
Commission, HMSO 1956.  http://webarchive.nationalarchives.gov.uk/+/http://www.competition-
commission.org.uk/rep_pub/reports/1950_1959/020cathode.htm

63 http://en.wikipedia.org/wiki/Cat's-whisker_detector 
64 The work of Jagadis Chandra Bose, 100 years of mm-wave research.  D T Emerson. IEEE Microwave 

Symposium (MTT-S) Digest 1997, Vol. 2, p553-556.
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     Bose's preferred detector was the galena65-metal junction, now recognised to be a type of 
Schottky barrier diode.  To make a diode, the semiconductor crystal requires an area contact and a 
point contact, and those elements are the basis of the modern diode symbol.  The springy sharpened 
wire used for the point contact is known colloquially as a 'cat's whisker'.  Bose used the point-
contact rectifier, in conjunction with waveguide and horn antennas, at frequencies up to 60 GHz.  
He was awarded a patent on the galena diode in 1904, having filed the specification in 190166.  Also,
in 1906, a patent for the silicon point-contact diode was awarded to GW Pickard67.
     It is thus evident that semiconductor diodes were well known at the time when Fleming made his
'discovery', and they were considerably more sensitive than his valve even at the long-wave 
frequencies that Marconi was using.  Both Fleming and Marconi were also known to keep a close 
watch on the patent and electrical literature.  It is therefore inconceivable that they did not know of 
Bose's work, and we are left to wonder why they ignored it.  A possible explanation is that Fleming 
was not so much looking for a detector, as looking for a novel detector that could be offered to 
Marconi; and that Marconi was primarily interested in inventions he could control.  When 
commercial production of valves began in 1919, Marconi joined forces with GEC, a patent pooling 
arrangement was agreed, and the Marconi-Osram Valve company was formed.  The Marconi 
company did make crystal-set radio receivers from about 1915 onwards68 69, there being a 
considerable market for them; but the large valve-orientated electronics manufacturing concerns 
made no self-driven effort to turn crystal diodes into stable reproducible components until after the 
Second World War.

The modern semiconductor electronics revolution is closely associated with research into UHF and 
microwave radar and communications, with much of the work taking place at Bell Laboratories in 
the USA.  There is some doubt about whether Bell Labs was first to produce a working 
transistor70 71, but the company certainly made a concerted effort to investigate and perfect the 
detector diode from about 1934 onwards72.  About 100 different
crystalline materials were investigated by the Bell scientists, and
silicon and iron pyrites73 (fool's gold, FeS2) were found to give
the best results.  Subsequent research led to the production of
uniformly active rectifying surfaces on silicon crystals,
eliminating the need to  search for hot spots.  This resulted in the
first manufacturable modern diode, the 1N21 front-end mixer
(used in 3 GHz radar sets) in 1942.  The 10 GHz 1N23B
(introduced in 1944) is similar in appearance, and is shown on
the right.

65 Lead(II) sulphide, PbS.  Crystals are cubic or octahedral, with a black opaque shiny appearance.  
66 Detector for electrical disturbances.  J C Bose, US Pat. No. 755840. 1904 (filed 1901).
67 Means for receiving intelligence communicated by electric waves.  G W Pickard.  US Pat. No. 836531, 1906 

(filed 1906).
68 http://www.sparkmuseum.com/MARCONI.HTM 

http://www.sparkmuseum.com/CRYSTAL4.HTM   (Accessed 17th Aug. 2014)
69 The Cat's Whisker.  50 Years of wireless design.  Jonathan Hill.  

Oresko Books, 1978.  ISBN 0-905368-47-9. p43-44.
70 Method and apparatus for controlling electric currents.  J E Lilienfeld, US Pat. No. 1745175, 1930 (filed 1926).

Amplifier for electric currents. J E Lilienfeld, US Pat. No. 1877140, 1932 (filed 1928).
Device for controlling electric current.  J E Lilienfeld, US Pat. No. 1900018, 1933 (filed 1928).

71 The Other Transistor: early history of the metal-oxide-semiconductor field-effect transistor, R G Arns.   
Engineering Sci. and Education. Journal. Oct. 1998. p233-240.

72 Development of silicon crystal rectifiers for microwave radar receivers, J H Scaff and R S Ohl, Bell System 
Technical Journal, Jan. 1947, 26(1), p1-30.  http://www3.alcatel-lucent.com/bstj/

73 Vacuum-tube and crystal rectifiers as galvanometers and voltmeters at ultra-high frequencies.  Arnold 
Peterson. General Radio Experimenter, May 1945.  
http://www.ietlabs.com/genrad/experimenters/  (accessed 17th Aug. 2014)

http://www.sparkmuseum.com/MARCONI.HTM
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     Early silicon crystal specimens incidentally were categorised into two distinct types; P-type and 
N-type.  P-type materials gave maximum conduction with the body of the crystal as anode (i.e,  
positive with respect to the point contact) and for N-type
materials it was the other way around.  This is illustrated
in the diagram on the right, and it will be seen that
modern circuit symbol is based on the N-type diode.  The
Bell researchers found that N-type crystals made the best
microwave mixers; while the P-types gave better
sensitivity at low voltages, which made them useful in test equipment.  Nowadays, of course, we 
know that the two different types arise because of impurities; which can be removed by zone-
refining of long monocrystalline bars, and reintroduced by doping of thin wafers; so that the 
material resistivity and the preferred majority carrier (holes or electrons) can be controlled.  
     Shown here on the right is a 1950s vintage
commercial germanium diode (GEC GEX34),
fused into a 4.7mm diameter glass tube; and since
the cathode is marked with red paint, it can be
deduced that the material is N-type.  In N-type
materials, the majority carriers are electrons,
which have twice the intrinsic mobility of holes.
     The germanium diode was originally developed as a high-inverse-voltage signal rectifier74 
(VRM > 100 V), suitable for use as the video (final) detector in radar receivers.  Its advantages over 
the vacuum-tube diode are nicely summarised in volume 15 of the MIT Radiation Laboratory 
series75:

   ● Much greater forward conductance.
   ● The I-V characteristic passes through the origin (practically no contact potential). 
   ● It becomes  approximately linear at low voltage.
   ● It has very low inter-electrode capacitance, and low capacitance to ground.
   ● It has no heater, and so produces no mains hum.
   ● It is about the same size as a small resistor, and it doesn't need a socket.

Prior to the development of zone refining techniques, early silicon diodes had high reverse leakage; 
and so the germanium diode was the first unambiguous direct replacement for the valve.  Early 
commercial units made their debut in post-war TV receivers76, since the 38 MHz final IF (inherited 
from radar practice, and necessitated by the need for wide signal bandwidth) was fairly near to the 
limit of valve diode capability.  

Scientists working at Bell labs on microwave communication, and British scientists working on 
wartime airborne radar development, both saw the importance of semiconductor detectors early in 
their research programmes.  Other radar researchers took a little more convincing however.  In 
1940, Britain desperately needed to develop its centimetric radar capabilities, but lacked the 
manufacturing capacity required.  A decision was made therefore, that Britain's radar secrets would 
be shared with the USA, in return for joint R&D effort and the supply of manufactured sets.  The 
result was the Tizard mission in August and September 1940, during which the cavity magnetron 
was revealed.  That led to the establishment of the Radiation Laboratory (Rad. Lab.) at MIT in 

74 The origin of semiconductor research at Purdue. 
http://www.physics.purdue.edu/about_us/history/semi_conductor_research.shtml  (Accessed 17th Aug. 2014)

75 Crystal Rectifiers, H C Torrey and C A Whitmer, MIT Rad. Lab. Series Vol. 15, 1948.  Ch. 12, p361.  High-inverse-
voltage rectifiers.  

76 See for example, Mullard germanium diodes, Mullard Outlook, January 1954.  
https://sites.google.com/site/transistorhistory2/home/philips-mullard-resources  (Accessed 16th Aug. 2014).
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October of that year.  American progress with the magnetron and its ancillary components was 
rapid; and in July 1941 there was an informal showdown between British and American 3 cm radar 
sets77 at Leeson House, near Swanage, in Dorset, Southern England.  These were bench-top tests of 
prototype units intended for airborne use; and involved picking-up targets looking out across the 
bay towards the Isle of Wight.  This was the point at which the conventional vacuum tube was to be 
forever banished from the microwave receiver front-end.
     The British and American sets gave similar performance, with the small anomaly that the British 
unit was the overall winner, while the Rad. Lab. set produced considerably more transmitter power. 
Furthermore, tests in the US had shown earlier American receivers to be superior to the British 
ones, and there appeared to have been a performance downturn.  Finally a British receiver unit was 
connected to an American set; and the effective detection range increased by about a factor of three.
     It was quickly discovered that the discrepancy was due to the Rad. Lab. receiver having a 
grounded-grid triode in the front end; whereas the British, having adopted semiconductor first 
mixers at the very beginning of their microwave development programme, were using silicon 
diodes.  It turned out  that the Rad. Lab. researchers had tried crystal mixers but abandoned them 
because they felt that vacuum tubes were superior.  Somewhat later it was determined that their 
comparison test had been conducted using only a single diode, which had happened to be defective.

*        *        *

1A3 (CV753, DA90) Signal diode78

This miniature 7-pin (B7G) tube was introduced by
RCA in 1943.  It probably represents one of the last
attempts to compete at VHF / UHF with the new 
germanium diodes about to come on to the market. 
The anode is about 2 mm tall, the anode-to-cathode
capacitance is 0.6 pF, and the self-resonance 
frequency is about 1 GHz.  The device still has a 
heater though; and a spurious heater-to-cathode 
capacitance of 0.7 pF, which inevitably restricts its 
application.
     With the heater connected to a 1.5 V Lithium 
cell, the contact potential for the diode shown was 
0.1 V when measured using a 10 MΩ DVM.

77 The invention that changed the world.  The story of radar from war to peace.  Robert Buderi. Abacus, 1996.  
ISBN 0 349 11068 9.  see p117.

78 Technical data obtained from National Valve Museum,  http://www.r-type.org/exhib/aaa0872.htm  and 
http://www.r-type.org/exhib/aad0031.htm  (accessed 17th Aug. 2014).
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12.  Simple diode voltmeter dynamic characteristics 
For those who wish to make accurate RF measurements using only DC measuring instruments for 
calibration, it should be evident that, for the majority of applications, the semiconductor-metal 
junction diode is the best broadband rectifying device available.  It is certainly not the most linear of
detectors if it is compared against active (powered) circuits, but it is the basis of circuits offering 
extremely wide bandwidth in conjunction with a well defined conduction characteristic.  To make 
use of its properties for absolute voltage measurement purposes however, or to to make accurate 
corrections for its non-linearity, we must quantify its dynamic behaviour.  

12.1  AC-DC Transfer function 
We will use the simplified detector circuit shown on the
right as a starting point for AC analysis79.  This model
assumes that the generator has zero output impedance and
no DC resistance, and that the diode has no series or
parallel resistive components (matters that will later require
correction).  Also, the smoothing capacitor CD  is taken to
be very large, so that there is no voltage droop between the peaks of the driving waveform.  
     The generator produces an instantaneous output voltage of  Vp sinφ ,  where Vp is the peak 
voltage, and  φ = 2πf t  is the time-varying phase angle80.  Vm  is the DC output voltage (the raw 
measurement), and  Vd  is the instantaneous voltage appearing across the diode.  RD  is the total 
detector load resistance, including the input resistance of any subsequent circuitry.

The instantaneous current flowing through the
diode is, according to the modified ideal diode
equation (see section 6):

Id = IS[exp( Vd

mVT
)−1]  

Expressed in terms of the time-varying 
input, this becomes:

Id= IS[exp( Vp sinϕ−Vm

mVT
)−1]   (12.1)

This is shown plotted on the right for an input
of 1 V peak, a load of 1 MΩ, and diode
parameters as for a 1N5711 with zero junction
resistance (see worksheet file det_models.ods,
sheet 2).  The forward conduction angle (i.e.,
the portion of the cycle during which the diode is positively biased) varies with Vp , and so note that 
the graphs do not simply scale according to the input.  The average diode current, Iav , and the 

79 The development given here, for the simplified case, is based on the author's attempt to recreate the derivation of 
formulae given in the article: Theory of diode voltmeters and some applications, by A E Weller, QEX, Jan. 1984, 
p7-14.  In that article, unfortunately, there is an error in the solution of the main integral (equation 4), and so the 
subsequent analysis is flawed.

80 The problem can also be defined using the cosine, see, for example: Cvetković and Marković 1989. cited earlier.
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measurable output, Vm  , are the solutions to the problem we are presently investigating.

Equation (12.1) allows us to plot the instantaneous current for a given output voltage, but we need 
to determine what that output voltage is.  To do that we note that:

Vm = Iav RD

The average diode current is, of course, the area under the curve for instantaneous current (Id ) 
divided by the length of a cycle (i.e., 2π radians).  Thus:

Iav =
Vm

RD

=
1

2π
∫
0

2π

Id dϕ  

It will be helpful to carry out a rearrangement and define some composite parameters in order to 
perform this integration.  Firstly, the exponential in (12.1) can be separated into two parts, thus:

Id = IS[exp(−Vm

mVT
) exp( Vp sin ϕ

mVT
)−1]  

Now notice that, because we have made the smoothing capacitor CD  very large, Vm  does not vary 
over the course of a cycle; and so the first exponential is a constant in the integration.  Vp / (mVT )  is
also a constant, and so let us define:

Km = exp{ -Vm / mVT  }     and     u = Vp / mVT 

The integral then becomes:

Iav =
IS

2π
∫
0

2π

[ Km exp (u sinϕ )−1]dϕ (12.2)

An obvious but somewhat long-winded way of performing this integration81 is to expand the 
exponential as a series using:

exp(x)= ex
=∑

i=0

∞
x i

i! (note that i is used here to represent a real integer)

Hence, using this in (12.2) we get:

Iav =
IS

2π
∫
0

2π

[Km∑
i=0

∞ u i sini
ϕ

i !
−1]dϕ  (12.3)

81 There is a more elegant solution to this problem involving Bessel's integral form of J0(x).  We will use it to check the
result.  The longer method  given here requires no special knowledge, and identifies the error in Weller's article.
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General expressions for siniφ are given by Ryshik and Gradstein82 (R&G).  When a sine is raised to 
an odd power, the generating function is:

sin2n−1 ϕ =
1

22n−2 ∑
k=0

n−1

(−1)n+k−1  ̇ Ck
2n−1  sin [(2n−2k−1)ϕ ] (R&G 1.320.3)

and when a sine is raised to an even power, the generating function is:

sin2n
ϕ =

1
22n [ C n

2n
+∑

k=0

n−1

(−1)
n− k . 2 . C k

2n  cos [2(n−k)ϕ ]] (R&G 1.320.1)

where  qCr  is a binomial coefficient (pronounced "q choose r" ), defined as:

C r
q =

q !
r ! (q−r)!

 =  
q (q−1)  . . . . . (q−r+1)

r !
 (see R&G, p433, or  Dwight, p1)

Expansions of  siniφ  for powers up to 7 are given by Dwight83.  Evaluation of binomial coefficients 
is assisted by noting that they are the elements of Pascal's triangle.  In this case however, it also 
pays to note the following:

● In the expansion of  sin2n-1φ  (1.320.3), every term has the sine of an integer multiple of  φ  as a 
factor.

● In the expansion of sin2nφ  (1.320.1), the terms have the cosine of an integer multiple of  φ  as a 
factor,  except for a single constant ( 2nCn / 22n ).  

● Sinusoids (i.e., sines and cosines) that undergo an integer number of cycles over the range of an 
integration average to zero.

The corollary is that all of the sine and cosine terms from these expansions vanish in the integration 
process, leaving only the constants from the even power series.  To make use of that information, 
we need to change the summation index in (12.3) because we want a series that only produces even 
powers.  The substitution required is  i = 2n.  Putting that into (12.3) gives:

Iav =
IS

2π
∫
0

2π

[Km∑
n=0

∞ u2n . C n
2n

(2n )! 22n  −1]dϕ  

Now substituting for the series of binomial coefficients we obtain:

Iav =
IS

2π
∫
0

2π

[Km∑
n=0

∞ u2n
(2n)!

(2n )! 22n n ! (2n−n )!
 −1]dϕ  

82 Tables of Series, Products, and Integrals. I M Ryshik and I S Gradstein. VEB Deutscher Verlag der 
Wissenschaften, Berlin, 1957.  p26 and 27.  1.320.1 (even),  1.320.3 (odd).  

83 Tables of Integrals and Other Mathematical Data. H B Dwight. 4th edn. Macmillan 1961. LCCN: 61-6419. Page 
82.  Formulae 404.12 - 404.17.  
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This can be rearranged 84 :

Iav =
IS

2π
∫
0

2π

[Km∑
n=0

∞
(u /2)

2n

(n !)2  −1]dϕ  

Now recall that  u = Vp / (mVT )  is a constant in the integration.  Therefore everything in the integral
is now a constant, and the indefinite integration process is simply a matter of multiplying the whole 
thing by φ.  Then in the upper integration limit we set φ=2π, and the the lower limit we set  φ=0.  
Subtracting lower limit value of the integral (=0) from the upper limit value gives:

Iav = IS[Km∑
n=0

∞
(u/2)2n

(n!)2  −1]  

An infinite series with the square of a factorial in the denominator is the classic signature of a 
Bessel function.  Reference to McLachlan85 or Dwight86 reveals the series to be the modified Bessel 
function87 of the first kind, zero order, I0(u).  

I0(u )= J0( j u)=∑
n=0

∞
(u /2)

2n

(n !)2  where  j = √-1    (McLachlan p200, eqn. 153,  Dwight, p195, 813.1)

Thus the expression for the average diode current is:

Iav = IS [ Km I0(u) - 1 ]  . . . . . . . . . . . . (12.4)

There is, incidentally, a well known integral form for the ordinary Bessel function J0(x) that 
corroborates the result just given88 89 :

J0(x )=
1

2π
∫
0

2π

exp(±jx sinϕ)dϕ (McLachlan p190, eqn. 10.   Bowman p57, eqn. 4.2)

If we put  x= ju  then  J0(x) = I0(u)  and, bearing in mind that  j2 = -1 ,  we get:

I0(u )=
1

2π
∫
0

2π

exp(±u sin ϕ)dϕ

Substituting this into (12.2) gives (12.4) directly.

84 Notice here that  2n-n =  n(2-1) = n , so that  (2n-n)! = n! .  This is where the mistake in Weller's article occurred.  
He did not give his working, and wrote 2! instead of n! . 

85 Bessel Functions for Engineers. N W McLachlan. 2nd edition. Oxford, Clarendon Press 1955.  p200. eqn. 153.
86 Dwight (already cited), p195, 813.1.
87 Modified Bessel functions are the functions that result from evaluating an ordinary Bessel function using a purely 

imaginary argument.
88 McLachlan (already cited). p190. 2.10
89 Introduction to Bessel Functions.  F Bowman.  Dover 1958.  LCCN 58-11271.  SBN 486-60462-4.  Chapter IV.  

Definite integrals.  p57. eqn. 4.2 . 
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 We can now re-expand (12.4) by replacing the composite parameters.  Thus:

Iav =
Vm

RD

= IS[exp(−Vm

mVT
)  I0( V p

mVT
)  −1]  12.5

A solution for the rectified output voltage (Vm ) can be obtained from this expression.  Note 
however that there are two instances of Vm , one separable and one as an exponent.  This means that 
there will be no closed-form analytical solution; although finding a solution by trial and error is 
fairly straightforward.  
     More instructively however, we can compare the expression with the modified Shockley 
equation as given at the beginning of this section:

Id = IS [ exp{ Vd / mVT  } - 1 ]

Here, Vd  can be taken to be either the instantaneous diode voltage drop under dynamic conditions, 
or the diode forward voltage drop under static conditions (i.e., the error that occurs if we place it in 
series with a DC voltmeter).  So let us define the effective diode forward voltage drop under 
dynamic conditions as:

Vf = Vp - Vm

This is, of course, the error that occurs when the diode is used as a peak detector.

In order to extract Vf  from equation (12.5), we can define a new function (W0 say) that provides a 
factor that converts an exponential into a modified Bessel function.  This gives:

Iav =
Vm

RD

= IS[W0 exp( Vp

mVT
) exp(−Vm

mVT
)−1]  (12.6)

Combining the two exponentials then gives:

Iav =
Vm

RD

= IS[W0 exp( Vf

mVT
)−1]  (12.6a)

Which can be rearranged:

Vm

IS RD

+1= W0 exp( Vf

mVT
)−1  

Now taking the natural logarithm of both sides and rearranging, we get:

V f = mVT[ln( Vm

IS RD

+1)−ln (W0)] (12.7)
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An expression for W0 is obtained by comparing (12.5) and (12.6):

I0( V p

mVT
)= W0 exp( V p

mVT
)  

Thus:

W0 =
I0(V p /mVT )

exp(V p / mVT )
 

Inserting this into (12.7), and noting that  -ln(W0) = ln(1/W0) ,  gives:

V f = mVT [ ln( Vm

IS RD

+1)+ ln( exp (V p /mVT )

I0(V p / mVT ) ) ]  12.8

Now bearing in mind that:  Vm = Vp - Vf ,  this expression can be solved manually by entering an 
initial guess for  Vp - Vf   and adjusting it until the two instances of  Vf  agree.  Experimentation is 
also facilitated by noting that Bessel functions are built-in to modern spreadsheets (such as Open 
Office Calc).  Program routines to perform this iteration process automatically must be carefully 
designed however, there being a problem of reliable convergence when Vp is close to zero (this 
matter is resolved in section 13.3).

If we put equation (12.8) in terms of the average diode current we get:

V f = mVT [ ln( Iav

IS

+1)+ln(exp(Vp /mVT )

I0(Vp /mVT ) )]  (12.9)

The first term is identical to the DC form of the diode equation except that it has an average current 
instead of a constant current.  The second term is therefore a correction for the fact that the true 
current is varying over time.  Thus we can write the effective diode forward voltage drop under 
dynamic conditions as:

Vf = Vf _ + Vf ~ 

where the component associated with the continuous output current (DC) is:

V f_ = mVT ln( Iav

IS

+1)  (12.9dc)

and the AC contribution is:

V f ~ = mVT ln(exp(Vp / mVT )

I0(V p /mVT ) ) (12.9ac)
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There is, of course, a temptation to rewrite the latter expression as:

Vf ~  = Vp -  mVT ln[ I0( Vp / mVT ) ]

The reason for not using this form is that the ratio  Vp /mVT   can easily amount to several hundred.  
Say for example that we have a peak input voltage  Vp = 10 V  and   m = 1.15.  If the temperature is 
20ºC, then  VT = 25.3 mV,  and so  Vp /mVT = 344.2 .  We then find that  e344 = 3.1×10149  and   
I0(344) = 6.6×10147 .  Subtracting the logarithms of such enormous numbers is likely to produce 
inaccurate results due to floating-point rounding error, but their ratio is only 46.5 in this case, and 
Vf ~  is 112 mV.  Also, as we will see shortly, this ratio is an important physical quantity.  Hence it is 
best to compute the bracket first and then take the logarithm.  This is particularly true when the 
argument is large because there is an asymptotic form of I0  that involves an exponential.  This is 
given explicitly for the zero-order function by  Dwight90 and McLachlan91 and can be found in more
general form in numerous other references.

I0(u )=
exp (u)

√2π u [1 +
12

1! 8u
+

12 32

2!(8u)
2 +

12 32 52

3!(8u )
3 + . .. . .. .] for  u ≥ 10 (12.10)

The polynomial in square brackets is not given in compact form in the books cited, but if we give it 
the symbol  PaI0(u)  (polynomial used in the asymptotic form of I0 ), it can be written: 

PaI0(u )= 1+∑
n=1

∞
(2n−1)!

(n−1)! 2n−1
(8u)

n as  u→∞  ,  PaI0(u) →1 (12.10p)

The asymptotic form of  I0(u)  is good to 6 significant figures for  u ≥ 10 ,  and can be evaluated to 5
significant figures with only 4 terms in the polynomial (i.e., terms up to  n = 3).  To put that in 
perspective with regard to the diode voltmeter problem, note that if  mVT = 29.1 mV  (1N5711 @ 
20ºC), then the asymptotic form applies when the peak input voltage is  ≥ 0.29 V.  For a silicon 
Schottky detector diode, the input threshold voltage for a usable output (and a starting point for 
accurate non-linearity correction) is somewhere around 0.35 V.  Thus we find that the asymptotic 
form of the Bessel function is applicable even at the nominal threshold of usability of the detector.  
     The wide-range of applicability of the asymptotic form should not be taken to imply that we can 
disregard the general analytical form; particularly because the general form can (within its 
limitations) extend the range of our diode voltmeter theory to zero peak input.  It does however 
allow us to characterise the large-signal limiting behaviour of the model with good precision using 
simple formulae.  

If we substitute (12.10)  into (12.9ac), with the polynomial written as PaI0(u), we get:

Vf ~ = mVT ln{ √2π u / PaI0(u) } . . . . . . . . . . . . . . . . .  (12.10ac)

where  u = Vp / mVT

This can be separated into three parts, with the square root eliminated by halving the logarithm:

Vf ~ = (½)mVT ln(2π) + (½)mVT ln(u) -  mVT ln{ PaI0(u) }

90 Dwight (already cited).  p196, 814.1.
91 McLachlan (already cited), p220, Table 13.
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The positive terms and the total are shown
plotted on the right for   mVT = 29.1 mV.  The
term involving the log of the polynomial is
included, but it is not shown on the graph
because it makes a contribution of only
-0.38 mV when Vp  is 0.29 V, and  -10 μV when
Vp  is 10 V (see spreadsheet det_models.ods,
sheet 5).  The constant term ½mVT ln(2π)  is
26.7 mV, and the total varies between 60 mV
and 112 mV as the peak input changes from 0.3
V to 10 V.
     The error that would be incurred by
computing the forward voltage drop using
average current in place of direct current (i.e., by
ignoring the dynamic correction) is fairly small
for large input; around 1% for inputs of about 10 V peak and a 1 MΩ load.  For precision absolute 
voltage measurement however, it is evident that the correction should be included.

The issue of how to calculate the transfer function of a diode detector using the theory just 
developed is the subject of section 13 (calculation procedures).  Some representative graphs, 
modelling the behaviour of a 1N5711 detector with a 100 kΩ load resistance are given below.   
These were produced using the function program DVfp2m( RD ; Vp ; mVT ; IS ), which is described 
in section 13.3 (see spreadsheet det_models.ods, sheet 3, for the working details).

The graph on the right shows the diode
dynamic forrward voltage-drop over a
detector peak input voltage range from
1 mV to 10V.  Also shown are the  separate
DC and AC contributions, the latter having
been calculated using equation (12.9ac).
Notice that the AC contribution is very
different from the DC characteristic.  This
means that linearity compensation schemes
using reference diodes in DC circuits
cannot provide complete correction.



52

Here the dotted line shows what the output
of an ideal peak detector would be.  The
realistic detector92 falls somewhat short of
that, giving practically no output until the
peak input voltage reaches about 0.1 V.  

This graph shows the ratio Vm / Vp as a 
function of the peak input voltage.  For an 
ideal detector this would always be 1, so the 
curve is a measure of detection efficiency.  
Note the output onset threshold for a peak
input of around 0.1 V.

92 Note that by plotting input voltage on a log. scale, the curve shown can be compared directly with graphs plotted in 
dB.  See for example, Harrison 1992 [cited earlier], Fig. 2., Harrison - Le Polozec 1994 {cited earlier], figs. 3 & 4.
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12.2  Peak to average current ratio 
An expression for the instantaneous diode current was given earlier as equation (12.1)

Id = IS[exp(V psin ϕ−Vm

mVT
)−1]  

By inspecting this we can see that the peak forward current occurs when  sinφ =1 , i.e., when 
φ = +90º  or  π/2 radians.  Thus we can easily write a separate expression for the peak forward 
current (which we will call Ip ) :

Ip = IS[exp(V p−Vm

mVT
)−1]

But  Vp -Vm  is the effective diode forward drop under dynamic conditions, to which we previously 
assigned the symbol  Vf  .  This we have:

Ip = IS [ exp( Vf  / mVT ) - 1 ]

which can be rearranged:

( Ip / IS ) + 1 = exp( Vf  / mVT ) . . . . . . . . . . . . . . . . . (12.11)

Also, somewhat less trivially, we obtained an expression for the average diode current by 
integrating the expression for instantaneous current.  This was given by equation (12.6a) as: 

Iav = IS [ W0 exp( Vf  / mVT ) - 1 ]

which can be rearranged:

( Iav / IS ) + 1 = W0 exp( Vf  / mVT ) . . . . . . . . . . . . . . . . . (12.12)

The function W0 was given earlier as:

W0 =
I0(V p /mVT )

exp(V p / mVT )

So taking the ratio (12.11) / (12.12) we get:

(Ip /Is)+1

(Iav /IS)+1
=

1
W0

=
exp(Vp /mVT )

I0(Vp /mVT )
 

Multiplying numerator and denominator of the left-hand side by IS then gives:

Ip+Is

Iav+IS

=
exp (Vp /mVT )

I0(Vp / mVT )
(12.13)
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Now, bearing in mind that the reverse saturation leakage current (IS ) is small (a few nA for a silicon
Schottky diode), this quantity is effectively the peak to average current ratio.  It is also the ratio that 
governs the AC correction term in the effective diode forward voltage drop.

The error in the detector output ( Vf = Vp - Vm ) was given by equation (12.9) as:

V f = mVT ln( Iav

IS

+1)⏟
Vf_

+ mVT ln( exp(V p / mVT )

I0(V p / mVT ) )⏟
Vf ~

 

This solution has given us the basis for calculating the error, and it tells us that the AC contribution 
is dependent only on the peak input voltage.  That conclusion is somewhat opaque however, 
because it does not seem to offer a physical reason for the effect.  All becomes clear when we use 
(12.13) as a substitution:

V f = mVT ln( Iav

IS

+1)+ mVT ln( I p+IS

Iav+IS
)  (12.14)

Now it can be seen that the AC error term is governed by the peak to average current ratio; which is 
physically reasonable, and perhaps also obvious in retrospect.

A corollary of equation (12.14)  is that the AC error disappears when the peak current is the same as
the average current.  This has a trivial meaning when both are zero; but it also implies that the error 
will disappear when the rate of change of the detector input voltage is so slow that the output can 
follow it.  In this simplified derivation, we have prevented that from happening by specifying that 
the smoothing capacitor must be 'large'.  This gives rise to a further and perhaps more interesting 
corollary; which is that the dynamic voltage error is independent of frequency provided that the 
capacitor is large.  That point leads to a useful conclusion, as will now be explained.
     It is possible to make extremely linear active detectors ('superdiode' circuits) by the use of high 
gain and negative feedback.  Such detectors however have limited bandwidth.  We can nevertheless 
calibrate a diode voltmeter against an active detector by comparing the readings when both are 
driven simultaneously by a signal generator working within the active detector's range.  
Furthermore, we can then vary the output voltage of the generator until the output of the diode 
detector agrees with that of an identical detector connected to an (unknown) RF voltage that we 
want to measure.  The level adjustment of the reference generator can of course be done 
automatically.  The reading given by the linear detector is then a measurement of the unknown RF 
voltage.  This type of voltmeter is known as an 'amplitude tracking detector'.
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12.3  Detector power dissipation and input impedance 
In section 12.1, for the purpose of deriving the basic transfer function, it was assumed that the 
generator driving the detector has zero output impedance.  This is unrealistic, of course, but we can 
adapt the model to deal with finite source impedance provided that we know the detector input 
impedance at the driving frequency.  The actual input voltage is obtained from a potential divider 
formed by the source impedance and the input impedance (see section 1.6).
     A rough idea of the AC input resistance of a practical half-wave rectifier circuit was given in 
section 1.5.  Here we will carry out a more detailed analysis.  The determination is a matter of 
applying the principle of conservation of energy, so that the power dissipated in the detector and its 
DC network is equal to that abstracted from the source.  
     The instantaneous power delivered to the detector is the product of the instantaneous input 
voltage, multiplied by the instantaneous input current.  Thus:

Pinst = Vin Id = Vp Id sinφ

Where, as was originally given as equation (12.1):

Id=IS[exp(V psin ϕ−Vm

mVT
)−1]  

As before, Vp is the peak input voltage, and Vm  is
the detector DC output voltage (i.e., the
measurable voltage).  For illustration, the
instantaneous power, for a 1N5711 detector with a
1 MΩ load and Vp = 1 V is shown in the graph
above (see worksheet file det_models.ods, sheet 2).
     The average power, from which an equivalent AC input resistance (i.e., the detector input 
impedance) can be calculated, is obtained by integrating the instantaneous power over a complete 
cycle of the input waveform and dividing by the integration range.  Thus, if we also define the same
composite parameters as were used in section 12.1, i.e.:

Km = exp{ -Vm / mVT  }       and       u = Vp / mVT  

Then, assigning the symbol Pdet  to the average power (i.e., the power):

Pdet =
Vp IS

2π
∫
0

2π

sinϕ [ Kmexp ( usin ϕ)−1] dϕ  

Although this integral is not the same as in the expression for average current given in section 12.1,
the discussion in that section is nevertheless relevant to its solution.  Recall (as mentioned in the 
text following equation 12.3) that all pure sinusoids average to zero over a complete cycle.  Thus, if 
we were to multiply-out the part of the expression above that is to be integrated, we would end up 
with a term -sinφ, which averages to 0.  Hence, the integral reduces to: 

Pdet =
Vp IS Km

2π
∫
0

2π

sin ϕ exp (u sinϕ ) dϕ  
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Now, as was previously done in order to solve the integral equation (12.2), we can expand the 
exponential as an infinite series.  In this case however, we also need to multiply every term in the 
series by sinφ, which has the effect of increasing the index for  siniφ  by 1.  Thus:

Pdet =
Vp IS Km

2π
∫
0

2π

∑
i=0

∞ u i sini+1
ϕ

i !
dϕ   

As was also discussed previously, raising a sinusoid to an integer power results in a series of 
harmonics, plus a constant in those cases where the power is even.  All of the harmonics, being 
sines and cosines of integer multiples of φ, vanish in the integration, leaving only the series of 
constants.  Since the integral then contains no instances of φ, integration between 0 and 2π is 
reduced to a matter of multiplying the whole thing by 2π (which cancels the existing factor of 1/2π).
     The series of constants is given by  2nCn / 22n ,  where  2nCn  is a binomial coefficient (see the 
discussion following 12.3), and in this case,  2n = i+1 .  To produce only the even terms, we can 
change the summation index to  n  and use the substitution:  i = 2n-1 .  Note that for  i=0 ,  i+1  is 
odd, so the new series starts from n=1.  Thus:

Pdet = Vp IS Km∑
n=1

∞ u2n−1. Cn
2n

(2n−1)! 22n  

The binomial coefficient is evaluated as: 2nCn = (2n)! / (n!)2 .  As before, the square of a factorial in 
the denominator should immediately alert us to the possibility that the series represents a Bessel 
function.  Also, since the expression for the current involves a zero-order modified Bessel function 
of the first kind, and the matter of getting from a current to a power, in general, involves raising the
order of an expression; we might reasonably be able to guess which Bessel function it is.  Thus the 
solution in this case is a matter of proving the most obvious conjecture.  Expanding the binomial 
coefficient gives:

Pdet = Vp IS Km ∑
n=1

∞
u2n−1

(2n)!
(2n−1)! 22n

(n !)2  

This expression can be simplified using the substitutions:  (2n)! = (2n-1)!×2n  and  22n = 2×22n-1  .  
The result is:

Pdet = Vp IS Km ∑
n=1

∞
(u /2)

2n−1 n
(n !)2  

The series summation (as expected) corresponds to the first-order modified Bessel function of the 
first kind 93,  I1(u) .  Thus the solution for the total detector power, averaged over a complete cycle 
of the input waveform is: 

Pdet = Vp IS Km I1(u)

After expansion of the composite parameters Km and u, this becomes:

93 Dwight (already cited), p195, 813.2.   
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Pdet = Vp IS exp(−Vm

mVT
) I1( V p

mVT
)  12.15

Now, if  RZin  represents the resistive component of the detector input impedance due to AC to DC 
conversion; then, since the power delivered to the detector (excluding losses due to causes other 
than conversion) is, by Joule's law:

Pdet = Vin(RMS)
2 / RZin 

and, for a sinusoidal input waveform: 

Vin(RMS) = Vp /√2

Then

RZin = Vp 
2 / 2 Pdet 12.16

Note however, that (12.15) is not the best method for calculating the detector power because it will 
run into the floating-point arithmetic upper range limit when Vp /mVT  is large.  An unrestricted 
approach will be developed in the next two sections.

12.4  Diode power dissipation 
The preceding derivation provides the basic solution to the detector input impedance problem; but 
in the matter of providing insight into the behaviour of the detector, it is somewhat unsatisfactory.  
In particular, it should be obvious that, for moderately large signal levels, the power dissipation in 
the detector is dominated by the dissipation in the load resistance, which is trivially obtainable as 
the product of the output voltage Vm and the average diode current Iav .  The interesting information 
is that which governs the non-linear relationship between input voltage and input impedance, this 
being related to the dissipation that occurs in the diode.  The diode power can be written:

Pdiode = Pdet - Pload  =  Pdet - Vm Iav

Now recall that in section 12.1 , for the purpose of extracting the diode dynamic forward voltage, 
Vf ,  we defined a function  W0(Vp /mVT) , which converts an exponential into a zero-order modified
Bessel function of the first kind.  Here, we will perform a similar trick by defining a function  
W1(Vp /mVT) ,  which converts an exponential into a first-order modified Bessel function of the first
kind.  Equation (12.15) then becomes:

Pdet = Vp IS exp(−Vm

mVT
) W1 exp( Vp

mVT
)  
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Combining the two exponentials gives:

Pdet = Vp IS W1 exp( Vf

mVT
)  (12.17)

and W1 is defined as:

W1 =
I1(Vp /mVT )

exp(Vp /mVT )
 

The load power is given by Vm × Iav ,  and  Iav was given previously as equation (12.6a):

Iav = IS[W0 exp( V f

mVT
)−1]  

Thus the diode power is:

Pdiode = Vp IS W1 exp( Vf

mVT
)− Vm IS[W0 exp( V f

mVT
)−1]  

This can be rearranged to give:

Pdiode = IS [exp( Vf

mVT
) (Vp W1−Vm W0 ) + Vm] (12.18)

Also, a corollary of equation (12.6a) is that:

exp( Vf

mVT
)=( Iav

IS

+1) 1
W0

 

Substituting this into equation (12.18) and multiplying out gives:

Pdiode = ( Iav + IS ) [ ( Vp W1 / W0 ) - Vm ] + IS Vm  

Where:

W1 / W0 = I1( Vp / mVT ) / I0( Vp / mVT )

Thus:

Pdiode =(Iav+IS) [Vp

I1(Vp /mVT)

I0(Vp /mVT)
−Vm]+ IS Vm  12.19
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This is the general expression for diode power, but it should also be noted that there exists an 
asymptotic form94 95 of I1(u) , which (like the asymptotic form of I0(u), equation 12.10) is applicable 
over the entire practical working range of an uncorrected detector (i.e., Vp /mVT > 10).  The 
asymptotic form can be written:

I1(u ) ≈ exp(u) PaI1(u) / √2π u . . . . . . . . . . . . (12.20)

Where PaI1(u)  (polynomial used in the asymptotic form of I1 ) is given by: 

PaI1(u)=1 −
4−12

1 ! 8u
−

(4−12
) (4−32

)

2 ! (8u )
2 −

(4−12
) (4−32

) (4−52
)

3 ! (8u )
3 − . .. .. (12.20p)

as  u → ∞ ,  PaI1(u) → 1
or alternatively:

PaI1(u)=1 +∑
n=1

∞
(−1)

n

n ! (8u)n ∏
i=1

n

[4−(2i−1)2 ]  (12.20s)

The asymptotic forms of the zero and first order modified Bessel functions are identical except for 
the polynomial used, which means that if we substitute them into (12.19) we end up with the ratio 
of the two polynomials, i.e.;

Pdiode =(Iav+IS)[V p

PaI1(Vp / mVT)

PaI0 (Vp / mVT)
− Vm]+ IS Vm Vp /mVT > 10

The graph on the right shows the ratio of the
two Bessel functions versus detector input
voltage when  mVT = 29.1 mV  (e.g., 1N5711
@ 20ºC).  The calculation can be switched to
use the ratio of the two polynomials when
Vp /mVT = 10, which corresponds to
Vp = 0.291 V.  This is not a large input
voltage, but at this point the ratio has already
reached 0.95,  and it gets closer to 1 as the
input voltage is further increased.  Bearing in
mind also that we are in the process of
estimating the power dissipated in the diode,
which is generally a small fraction of the
total power delivered to the detector; it is
apparent that for most purposes, it will be
sufficient to assume that the ratio of the
Bessel functions is 1.  This leads to the approximation: 

Pdiode ≈ ( Iav + IS ) ( Vp - Vm ) + IS Vm

94  McLachlan (already cited), p220, Table 14.
95  Dwight (already cited), p196, 814.2.   
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i.e.: 

Pdiode ≈ Iav ( Vp - Vm ) + IS Vp - IS Vm + IS Vm 

and noting that Vp -Vm = Vf  (the dynamic forward voltage drop) and that IS Vp is small (a few nano 
watts):

Pdiode ≈ Iav Vf 12.21

This is an extraordinary result because, although we might adopt the habit of imagining that Vf  is a 
DC voltage present in the detector network; it is actually a transitory voltage (the peak detection 
error), which only exists for an instant in each cycle at the point when  sinφ=1.  Still, for moderately
large inputs, it is apparent that we can estimate the diode power on the basis that it is an average 
voltage to be multiplied by the average diode current.

A graph of diode power vs. input voltage for a
detector with a 1 MΩ load,  mVT = 29.1 mV and
IS = 2.2 nA is shown on the right.  The curve
marked 'Exact' is generated by equation (12.19),
and the curve for for the approximation  Iav × Vf

(equation 12.21) lies a little above it.  The over-
estimation occurs because the ratio of Bessel
functions included in (12.19) has the effect of
reducing the effective value of Vp slightly.  The
error is around 4% for reasonably large inputs
(see spreadsheet det_models.ods, sheet 3), but
since the diode power is a small proportion of the
total in that case, the effect on input impedance
estimation is fairly minor (see section 12.6).
     In section 12.1 it was shown that Vf  can be split into two components, Vf _ (DC) and Vf ~ (AC).  
This separation also leads to two power components, which are shown on the graph.  The curve for 
Iav × Vf _ shows that neglecting the dynamic (AC) component leads to a considerable 
underestimation of diode power. 
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12.5  Fast unrestricted computation of input impedance 
With the use of asymptotic forms for large Bessel-function arguments, equation (12.19) is the best 
choice for the calculation of diode power.  Adding back the load power to obtain the total converted 
power (AC to DC + harmonics) then gives:

Pdet =( Iav+IS) [V p

I1(Vp / mVT)

I0(Vp /mVT)
−Vm]+ IS Vm + Iav Vm   

Which turns into a remarkably compact expression:

Pdet =( Iav+IS) Vp

I1(V p /mVT)

I0(V p / mVT)
 12.22

Routines for the calculation of the Bessel functions I1 and I0 and their asymptotic forms are 
developed in section 13 (calculation procedures).  In subsection 13.9 however, the various methods
are combined into a single program that calculates the ratio.  The program chooses initially between
the small argument and asymptotic forms and then computes both the zero and first order functions 
from within the same program loop.  This approach is probably about as efficient as it gets within a 
given programming environment, and is, of course, free from practical argument-range restrictions. 
The detector power is then given by:

Pdet = ( Iav + IS ) Vp RatioI1_0( Vp /mVT )

where RatioI1_0( ) is the function   Combining this result with equation (12.16) gives the input 
impedance:

RZin = Vp 
2 / 2 Pdet 

i.e.:

RZin =
Vp

2( Iav+IS)

I0(Vp /mVT)

I1(Vp / mVT)
  12.23
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12.6  Using diode dynamic resistance to estimate input impedance 
In section 1.5, the effective diode resistance under dynamic conditions, Rdiode , was introduced as a 
term in the total detector DC resistance, the latter being required for the determination of input 
impedance.  With the analysis given in sections 12.1 to 12.4, we can, of course, now estimate the 
dynamic diode resistance as Vf  / Iav , and this allows us to derive a useful approximate expression 
for the input impedance.
     The component of the detector input impedance due to AC-DC power conversion was given as 
equation (12.16):

RZin = Vp 
2 / 2 Pdet 

which can be rearranged:

Pdet = Vp 
2 / 2 RZin . . . . . (12.24)

Also, using the approximation (12.21): 

Pdiode ≈ Iav Vf

we can write:

Pdet = Pdiode + Pload  ≈  Iav Vf  + Iav Vm   = Vp Iav 

where

Iav = Vm / RD = (Vp - Vf ) / RD

Therefore:

Pdet ≈ Vp (Vp - Vf ) / RD

i.e.:

Pdet ≈ Vp
2 ( 1 - Vf  / Vp ) / RD

Equating this with (12.24) gives:

Vp
2 ( 1 - Vf  / Vp ) / RD ≈ Vp 

2 / 2 RZin 

i.e.:

RZin ≈ RD / [ 2 ( 1 - Vf  / Vp ) ] 12.25
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The graph on the right shows a comparison
between this formula and the exact expression
(i.e.; using 12.23) (see  spreadsheet 
det_models.ods, sheet 3).  The approximation
does not describe the behaviour of the input
impedance at very low input voltages, but the
two methods agree within 4.1% at 0.1 V, 1.2%
at 1 V and 0.12% at 10 V.  The simple formula
also illustrates the asymptotic behaviour of the
input impedance, which tends towards RD /2 as
the input becomes very large.

We can, incidentally (according to the 2:1
impedance transformation rule) also define RZin

as:

RZin = ( RD + Rdiode ) / 2 12.26

where:     Rdiode ≈ Vf  / Iav     and     Iav = (Vp - Vf ) / RD   

Hence: 

Rdiode ≈ RD Vf  / (Vp - Vf ) 

i.e.:

Rdiode ≈ RD / ( Vp / Vf  - 1 ) 12.27

The exact expression for the diode dynamic resistance is obtained by rearranging (12.26):

Rdiode = 2 RZin -  RD 12.28

RZin being obtained from (12.23).  This final expression is however probably only of use for the 
purpose of evaluating approximations; since the point of calculating Rdiode  is to determine the input 
impedance, and so there is no need to do it if the input impedance is known.
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13.  Calculation procedures for the simple diode voltmeter  
The solution to the basic diode voltmeter problem, i.e., the relationship between AC input voltage 
and DC output voltage, is obtainable from equation (12.8):

V f = mVT [ ln( Vm

IS RD

+1)+ ln( exp (Vp /mVT )

I0(Vp / mVT ) )]  Vm = Vp - Vf 

Where Vm is the DC output (measurement) voltage, Vp is the peak input voltage, and Vf  is the 
effective diode forward voltage drop under dynamic conditions.  
     The expression above is however tautologous, in that any substitution to reduce the three 
principal variables to two (e.g., by replacing Vm with Vp - Vf ) results in the need to input a value of 
a voltage that we want to find before it will give an output of that quantity.  This means that there 
are no closed-form analytical solutions.  Nevertheless, it is a straightforward matter to set up the 
various parts of the equation in the columns of a spreadsheet, and then input trial solutions until 
both instances of the desired quantity agree.  That method is, of course, tedious and unsatisfactory; 
and so the problem is that of how to automate the process (i.e., turn it into a set of algorithms).  We 
will moreover want solutions in either direction, i.e.; so that we can put in a value of Vp  and obtain 
Vf  and Vm ; or so that we can put in a value of Vm  and obtain Vf  and Vp .  There is also a particular 
difficulty in this case, which is that the argument of a logarithm function-call must never become 
less than zero; and so for small values of Vm we will be performing an iterative procedure close to a 
point at which a runtime error will occur.
     A further issue is that the the problem involves exponentials and modified Bessel functions of 
large argument.  In Open Office, for example, the double-precision floating-point range is from 
4.941×10-324  to 1.798×10308, and a simulation for a 1N5711 detector operating at 20°C (for 
example) hits the upper limit at Vp = 20.62 V.  The built-in spreadsheet function for I0 is moreover, 
not accessible from the macro programming environment.  It is therefore useful to have routines for 
the modified Bessel function and its asymptotic form.

13.1  Modified Bessel function, first kind, zero order 
A calculation procedure involving the summation of an infinite series should, if possible, confine 
itself to the use of the elemental operations of addition and multiplication.  This is advisable 
because most interpreters and compilers handle operations such as 'raising to a power' by 
exponentiation, even when the power is an integer.  Such composite operations can incur significant
rounding errors (which accumulate as the summation progresses), whereas simply multiplying a 
quantity by itself is less affected.  Greatest computational efficiency is also obtained by exploiting 
any recursion relations96 that might exist; a recursion factor being a quantity by which a given term 
in a series can be multiplied in order to obtain the next term.  The use of elemental operations 
usually depends on the existence of such a factor.

The infinite series for the modified zero-order Bessel function or the first kind was introduced 
earlier and has the form:

96 Practical considerations in the calculation of Kelvin functions and complete elliptic integrals.  Robert S 
Weaver, Oct. 2009.  Available from:  http://www.g3ynh.info/zdocs/magnetics/    
and    http://electronbunker.ca/CalcMethodsRef.html
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I0(x)=∑
n=0

∞
(x /2)

2n

(n!)2 McLachlan, p200, eqn. 153.   Dwight, p195, 813.1

This has a simple recursion factor, which can be spotted by writing down the first few terms:

term(0) = 1

term(1) = (x/2)2 / ( 12 )

term(2) = (x/2)2 . (x/2)2 / (12 . 22 )

term(3) = (x/2)2 . (x/2)2  . (x/2)2 / ( 12 . 22  . 32 )

etc.  

Hence the overall pattern is:

term(n) = term(n-1) × (x/2)2 / ( n × n )

Furthermore, the quantity (x/2)2 can be pre-calculated as   x x /4 .

The resulting algorithm, coded in Open Office Basic, is shown below:

Function I0Bessel(byval x as double)as double
'Calculates modified Bessel function, 1st kind, zero order, I0(x)
I0Bessel = 1
If x <= 0 then exit function
Dim xx4 as double, term as double, sum as double, rcf as double
Dim n as integer
term = 1
sum = term
xx4 = x*x/4
n = 0
do
  n = n+1
  rcf = xx4/(n*n)
  term = term*rcf
  sum = sum + term
loop until term/sum < 1E-12
I0Bessel = sum
end function

This routine works for arguments up to 708, as does the built-in spreadsheet function; and it agrees 
with the built-in function to at least 12 significant figures (see spreadsheet file det_models.ods, 
sheets 1 & 2).
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13.2  Polynomial used in the asymptotic form, first kind, zero order 
 For arguments greater than about 10, the asymptotic form of the modified Bessel function I0(x) can 
be used.  It was given earlier as equation (12.10)

I0(x)=
exp(x)

√2πx [1 +
12

1! 8x
+

12 32

2! (8x )
2 +

12 32 52

3! (8x)
3 + .. .. . ..]    x ≥ 10 Dwight, p196, 814.1.

McLachlan, p220, table 13

This form will not extend the argument range of the function itself because it is the output, rather 
than some internal variable, that falls outside the floating-point arithmetic range.  We can however, 
use it in the AC part of the expression for Vf  ,  in which case it eliminates the exponential and vastly
increases the calculation range.

The AC part of Vf  , originally given as equation (12.9ac), is:

V f ~ = mVT ln(exp(Vp / mVT )

I0(V p /mVT ) )   

Using the exponential form, with  x = Vp / mVT ,  this becomes (12.10ac):

Vf ~ = mVT ln{ √(2π x) / PaI0(x) }

where PaI0(x) is the polynomial appearing in the asymptotic form, i.e.:

PaI0(x) =1 +
12

1! 8x
+

12 32

2! (8x )
2 +

12 32 52

3! (8x)
3 + .. .. . ..   

We can approach the problem of calculating this series as before:

Term(0) = 1

Term(1) = (2×1 - 1)2 / ( 1 . 8x )

Term(2) = (2×1 - 1)2 . (2×2 - 1)2 / ( 1×2 . 8x . 8x )

Term(3) = (2×1 - 1)2 . (2×2 - 1)2  (2×3 - 1)2 / ( 1×2×3 . 8x . 8x . 8x )

etc.  Hence:

Term(n) = Term(n-1) × (1/8x) × (2n-1) × (2n-1) / n

An algorithm that performs the calculation is shown below.  It is restricted to arguments ≥ 9.6 in 
order to prevent floating-pont underflow errors (in the OO Basic programming environment.  Other 
platforms may differ).  Its output ranges from 1.013 to 1 as x goes from 10 to ∞.



67

Function PaI0(byval x as double)as double
'Calculates the polynomial used in the asymptotic form of I0(x)
PaI0 = 1
If x < 9.6 then exit function           'floating-point underflow occurs for arguments < 9.6
Dim x8 as double, term as double, sum as double, rcr as double
Dim n as integer
term = 1
sum = term
x8 = 1/(8*x)
n = 0
do
  n = n+1
  rcr = x8*(2*n-1)*(2*n-1)/n
  term = term*rcr
  sum = sum + term
loop until term/sum < 1E-9
PaI0 = sum
end function

A comparison of calculations of  Vf ~  using the small argument formula and the polynomial formula
is given in the spreadsheet file det_models.ods, sheet 5.  The two expressions agree to within a 
picovolt for arguments > 60 ; except that the small argument formula, as mentioned earlier, fails for 
arguments > 708 ; whereas the polynomial version was tested initially with arguments up to 35481 
without error.  The latter corresponds to just over 1030 V peak input for the 1N5711 example, not 
that a small signal diode can survive this.  

13.3  Determining output voltage from peak input voltage 
When the input voltage Vp is given, and the exercise is to calculate the forward voltage (or detector 
error) Vf  and the output voltage Vm ,  then the AC part of Vf  can be determined analytically.  The 
relevant formulae are (12.9ac) for values of  Vp / mVT  up to (say) 60, and (12.10ac) for larger 
arguments.  Routines for use in the evaluation of either form are given above.  The expression for Vf

then reduces to:

V f = Vf ~ + mVT ln(Vp−Vf

IS RD

+1)  

In order to solve this equation for Vf , we can start by giving different symbols to the two instances, 
i.e.:

y = Vf ~ + mVT ln(V p−x

IS RD

+ 1) and   x = Vf   when   x = y (13.1)

If we set-up this equation in a spreadsheet, it is a simple matter to insert a value of  x  into the right-
hand side and see what value of  y  comes out.  The input  x  can then be adjusted until it agrees 
with  y to a number of significant figures deemed sufficient, and then x (or y) is the solution.  The 
point however, is to find a procedure that will work automatically and never fail; regardless of the 
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peak input voltage Vp  , the parameters  mVT  and  IS RD , and the initial, intermediate and final 
values of x.  
     A starting point for guessing  x  is to note that, by definition, it can never be smaller than Vf ~ .  
Hence it is safe to begin by setting  x = Vf ~ .  The simplest automatic strategy for finding the 
solution is then to make x equal to the value of  y that comes out, and try again.  The process is 
repeated until x and y converge.  
     In fact, in a test with  mVT = 29.1 mV  and   IS RD = 2.2 mV,  the simple strategy worked well for
input voltages (Vp ) above about 200 mV.  For smaller inputs however, it failed miserably due to 
overshoot.  Feeding back the first value of y caused  Vp - x  to be < -1.  That caused the argument of 
the log function to be < 0, resulting in a program error.  Furthermore, the reason for developing the 
program is to explore the behaviour of the detector in the poorly-characterised region of the diode 
forward-conduction threshold.
     In order to make the procedure stable for small inputs, we need to find a more accurate way of 
estimating the required value of  x.  To do that, we can analyse the adjustment process as follows:

When   x → x + δx   ,    y → y + δy

A solution occurs when:

x + δx = y + δy

If this were a linear system, then the shift in y would be equal to the shift in x multiplied by the rate 
rate of change of y with respect to x ;   i.e., for linear or infinitesimal change:

δy = δx ∂y/∂x 

(where  ∂y/∂x  is the partial derivative of y with respect to x ,  i.e., the function is differentiated with
all other variables treated as constants).   In this case, of course, the system is not linear; but the 
differential relationship between δy and δx will nevertheless become approximately true as we 
approach a solution; and it will become exact at the point at which a solution is found because the 
required shift is then infinitesimal.  Thus, in the vicinity of a solution, we expect: 

x + δx ≈ y + δx ∂y/∂x

This can be rearranged to give an estimate of the required adjustment:

δx ≈ ( x - y ) / ( ∂y/∂x - 1)

The quantity  x - y  moreover provides the termination criterion for the iteration process, i.e., we can
exit the program loop when it becomes suitably small.  

The derivative of equation (13.1) is easily obtained by noting that  d(ln{x})/dx = 1/x  and applying 
the chain rule.  Thus:

∂y/∂x = mVT ( -1 / IS RD ) / [ 1 + ( Vp - x ) / IS RD ]

Calculating the required shift by using the derivative reduces the minimum input voltage for 
successful iteration by about an order of magnitude in comparison to the simple procedure.  There is
however, still a tendency to overshoot for very small inputs, this being due to the inaccuracy of the 
derivative in the first round of iteration.  The problem is easily solved however, by adding an extra 
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nested program loop.  In this loop, δx is added to x,  and the argument of the logarithm is tested to 
see if it is greater than 1.  If the argument is too small, the original value of x is restored, δx is 
halved, and the program returns to the point at which δx is added to x.  Thus δx is successively 
reduced until the log argument is in range.
     The complete algorithm is shown below.  It has been tested for values of  Vp down to 1 pV (well 
outside any practical measurement range), at which point it is still both stable and convergent.  Note
that  IS  is called  Isat  in the program, because 'is' is a Basic keyword.

Function DVfp2m(RD as double, Vp as double, mVT as double, Isat as double) as double 
'calculates voltage error (forward drop) of simple diode peak detector.
'Calls the functions I0Bessel( ) and PaI0( ).
DVfp2m = 0
if Vp <= 0 then exit function
Dim u as double, Vfac as double, x as double, y as double, Vsr as double
Dim kd as double, arg as double, der as double, deltax as double, xold as double
'Calculate Vf~.  Use the asymptotic form for arguments >= 60.
u = Vp/mVT
if u < 60 then
    Vfac = mVT*log( exp(u) / I0Bessel(u) )
else
    Vfac = mVT*log( sqr(2*pi*u) / PaI0(u) )
end if
'Set up starting values and composite parameters
x = Vfac
Vsr = Isat*RD
arg = 1 + (Vp-x)/Vsr
kd = -mVT/Vsr
'Calculate the difference between x and y, the derivative, and the estimated shift in x
do
    y = mVT*log(arg) + Vfac
    diff = x-y
    der = kd/arg
    deltax = diff/(der-1)
'Apply shift to x and check that the log argument is valid.  If not, reduce the shift and try again.
    do
        xold = x
        x = x + deltax
        arg = 1 + (Vp-x)/Vsr
        if arg <=1 then 
            deltax = deltax/2
            x = xold
        end if
  loop until arg > 1
loop until abs(diff) < 1E-12
DVfp2m = x
end function
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13.4  Determining peak input voltage from output voltage 
The computational methods described so far are useful for modelling detectors; but for practical 
measurement purposes, the matter of interest is that of inferring the AC input voltage (Vp ) from the 
DC output.  This problem is made difficult by the fact that we cannot pre-calculate the the AC 
component of the diode forward voltage ( Vf ~ ), because we need to know Vp  in order to do it.  
Also, the unknown is used in the argument of a modified Bessel function, and the choice of 
calculation method depends on that argument. 

Small voltages
To solve the peak input problem for small voltages, it is probably easiest not to use equation (12.8) 
but to go back to its precursor, equation (12.5):

Iav =
Vm

RD

= IS [exp(−Vm

mVT
) I0( Vp

mVT
)−1]  

This can be rearranged into a form that would be analytical but for want of an inverse of the 
modified Bessel function.

I0( V p

mVT
)=( Vm

IS RD

+1) exp( Vm

mVT
)  

The right-hand side of this expression can be calculated, and if we call it y (say), then:

Vp = mVT AntiI0(y)

where AntiI0(y) is the inverse of the modified Bessel function of the first kind, zero order.

Modified Bessel functions have a single-valued inverse because, unlike the ordinary Bessel 
functions, they are not undulatory.  Indeed, the curves for the In (first kind) functions roughly 
resemble exponential growth.  Inverse calculation routines however, do not appear to be standard 
library functions.  That problem was solved by writing a suitable routine; which will be described in
section 13.6. 

Large voltages
A limitation of the solution given above, of course, is that it contains an exponential and will easily 
exceed the floating-point computation range in typical applications.  To circumvent that problem, 
we must find an expression that eliminates the exponential.  That can be done by substituting the 
asymptotic form of the modified Bessel function (12.10 - 12.10ac) into the AC part of equation 
(12.8), thereby producing the expression:

V f = mVT [ ln( Vm

IS RD

+1)+ ln( √2πx
PaI0(x))]  x = Vp /mVT    ,    Vm = Vp - Vf

We already have a routine for the polynomial  PaI0(x)  (see section 13.2), and we know that it 
converges for arguments greater than about 10 and does not deviate greatly from 1.  Therefore it can
be seen that solutions based on the expression above will be viable for x between 10 and the 



71

floating-point limit.

Now, substituting for  Vf  and using  x = Vp /mVT  throughout we get:

x −
Vm

mVT

= ln( Vm

IS RD

+1)+ ln( √2π x
PaI0(x))  

This can be rearranged to put all instances of x on one side:

ln( Vm

IS RD

+1)+ Vm

mVT

= x − ln( √2π x
PaI0(x))  

The left-hand side can now be calculated, and if we call it (say) y , we have:

y = x - ln[ √2π x / PaI0(x) ]

The logarithm can also be separated into terms, giving:

y = x - (½) ln(2π) - (½) ln(x) + ln[ PaI0(x) ]

This can be solved iteratively by making an estimate of x (x1 say), which can be inserted into the 
formula above to produce an approximation to y (y1 say).  Also notice that y is a good first 
approximation for x because the first term on the right is much larger than all of the others.  The 
required change in y (δy) can then be used to estimate the required change in x (δx) via the 
derivative dy/dx, i.e.:

δy = y - y1 ≈ δx dy/dx

Thus:

δx ≈ ( y - y1 ) / ( dy/dx )

Note that  1/(dy/dx)  is not the same as  dx/dy  because the original relationship is non-linear.   The 
differential relationship does however become exact at the point at which the solution is found, and 
so  y - y1 → 0  is the termination criterion for the iteration process.  The derivative is easily obtained
by applying the chain rule to the final term.  Thus:

dy/dx = 1 - 1/(2x) + [ dPaI0(x)/dx ] / PaI0(x)

One additional mathematical function is required, and that is the derivative of the polynomial.  It is 
easily obtained by differentiating the series term by term, and a suitable calculation routine is given 
in section 13.5.  Its contribution to the overall derivative is very small and negative; but it must be 
included if the calculated shift in x is to vanish at the point of solution.

Overall calculation
The overall calculation routine using the techniques just described is given below.  Note that it 
returns the detector forward voltage drop (i.e., the detector error), which can be added to the output 
voltage to determine the peak input voltage.
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     For detector outputs of less than 1.5 V, the inverse modified Bessel function method is used, the 
main calculation being performed by a separate routine called Anti_I0().  For higher voltages, the 
iterative method is used, and this involves calls to calculate the polynomial and its derivative.  
Procedure development, prior to coding, was carried out in the spreadsheet  det_models.ods, 
sheet 3.  The program was tested, with  IS RD = 2.2 mV and  mVT = 29.1 mV, for Vm values between 
1 pV and 100 kV.  The changeover point at Vm = 1.5 V will not lead to out-of-range polynomial or 
polynomial derivative arguments when used in conjunction with modern semiconductor diodes, but 
it can easily be changed to deal with unusual diodes or large diode stacks if necessary.

Function DVfm2p(RD as double, Vm as double, mVT as double, Isat as double) as double 
'calculates voltage error of simple diode peak detector from the output voltage Vm.
'Calls the functions: Anti_I0( ), PaI0( ), DerPaI0( )
DVfm2p = 0
if Vm <= 0 then exit function
Dim y as double, x as double, Vp as double
if Vm < 1.5 then
  y = (1+Vm/(Isat*RD))*exp(Vm/mVT)
  x = Anti_I0(y)  
else
dim y1 as double, diff as double, deltax as double, poly as double, deriv as double
  y = Vm/mVT +log(1+Vm/(Isat*RD))
  x = y  
  do
    poly = PaI0(x)
    y1 = x - log(2*pi)/2 -log(x)/2 +log(poly)
    diff = y - y1
    deriv = 1 - 1/(2*x) + DerPaI0(x)/poly
    deltax = diff / deriv
    x = x + deltax
  loop until abs(diff) < 1E-9
end if
Vp = mVT*x
DVfm2p = Vp-Vm
end function
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13.5  Derivative of the asymptotic form polynomial, first kind, zero order 
The polynomial used in the asymptotic (large argument) form of the zero order, first kind, modified 
Bessel function (see section 13.2) is given by the series:

PaI0(x)=1 +
12

1! 8x
+

12 32

2! (8x)
2 +

12 32 52

3! (8x)
3 + .. . .. ..  

Differentiating this, term by term, gives:

dPaI0(x)/dx =−
1 . 12

1 . 8 x2 −
2 . 12 32

1 . 2 . 82 x3 −
3 . 12 32 52

1 . 2 . 3 . 83 x4 −
4 . 12 32 52 72

1 . 2 . 3 . 4 . 84 x5 − . . .. .. .   

Thus:

Term(0) = -1/8x2

Term(1) = (-1/8x2 ) 12 32 / 1 . 8x

Term(2) = Term(1) × 52 / 2 . 8x

Term (n) = Term(n-1) × (2n+1)2 / 8x n

The calculation procedure is given below.  Note that in order to avoid underflow errors, the 
termination criterion is set to 10-9 for arguments above 13.4, and 10-6 for arguments between 9.7 and
13.4.  This applies to OO Basic.  Other programming environments may differ.

Function DerPaI0(byval x as double)as double
'Calculates the derivative PaI0'(x)
DerPaI0 = 0
If x < 9.7 then exit function
Dim x8 as double, term as double, sum as double, rcf as double, test as double
test = 1E-9
If x < 13.4 then test = 1E-6
term = -1/(8*x*x)
sum = term
x8 = 1/(8*x)
Dim n as integer
n = 0
do
  n = n+1
  rcf = x8*(2*n+1)*(2*n+1)/n
  term = term*rcf
  sum = sum + term
loop until term/sum < test
DerPaI0 = sum
end function
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13.6  Inverse modified Bessel function, first kind, zero order 
As mentioned earlier, the modified Bessel functions all have a unique inverse; and as has been 
found here, it is sometimes useful to be able to determine it.  No strenuous effort has been made to 
find the most efficient method for the inverse of the first kind, zero order, but the following 
approach works well.

If  y = I0(x) ,  then let us define  x = AntiI0(y)  and find its value iteratively.

Given y, we first need to make an estimate of  x  (x1 say).  The estimate does not have to be 
particularly accurate, provided that the iteration procedure converges from its starting point.  Using 
x1 we can calculate the corresponding value of y  (y1 say) using the routine for  I0(x)  that we 
already have, i.e.;

y1 = I0(x1)

We can now estimate the required shift in x using the procedure described in the previous section, 
i.e.:

δx ≈ ( y - y1 ) / ( dy/dx )

where dy/dx is, in this case, the first derivative of the modified Bessel function, first kind, zero 
order; which just happens to be the modified Bessel function of the first kind, first order, i.e.:

dy/dx = dI0(x)/dx = I1(x)

A routine for calculating this function will be given in the next section.  δx  is added to  x1  and a 
new value of  y1  is calculated.  This iteration process is continued until  δx  becomes very small.

Prior to coding, the procedure was set up for manual implementation in the spreadsheet  
det_models.ods, sheet 4.  It was found that for values of  y  up to about 10, the routine would 
converge rapidly if the initial estimate for  x  was always set to 1.  For very large values of  y  
however, this leads to much unnecessary calculation; and as the floating-point limit is approached it
can result in overshoot and runtime error.
     An improved estimation procedure for large x values was obtained by noting that the polynomial
used in the asymptotic form of  I0(x)  never deviates greatly from 1.  Therefore a reasonably good 
estimate for large arguments is given by omitting it.  Thus, for x > 10 : 

y = I0(x) ≈ exp(x) / √2π x

Unfortunately, this cannot be rearranged to give x on its own, but if we set a value of 10 to the 
instance of x that occurs in the square root bracket we get: 

exp(x) ≈ y √20π

i.e.:

x ≈ ln(y) + (½) ln(20π)

It was found that for very large values of y, approaching the floating-point limit, this simple formula
estimates x to an accuracy of about 0.3%.  Hence the calculated  δx  is extremely accurate,  and a 
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termination criterion of |δx| < 1×10-12  has the iteration completed within two or three cycles.  This 
high accuracy holds until y is less than about 400  (x < 7.93),  but the iteration procedure will still 
terminate correctly if it is used down to y = 1.  For smaller inputs the estimate asymptotes to  
x ≈ ln(20π)/2 = 2.07.  Since x  lies between 0 and 1.81 for  y < 2, it was felt that setting x = 1 for 
y < 2 would probably eliminate at least one cycle of iteration in the lower input ranges.

The resulting program routine is shown below.  It is accurate to at least 12 decimal places, and in 
the OO Basic programming environment, using the companion functions  I0Bessel( )  and  
I1Bessel( ) ,  it works for inputs up to 9.1×10305.  

Function Anti_I0(byval y as double) as double
'Calculates the inverse of the modified Bessel function, first kind, zero order
'Calls functions I0Bessel( ) and I1Bessel( )
Anti_I0 = 0
if y <= 1 then exit function
Dim x as double, y1 as double, deriv as double, deltax as double
if y < 2 then
  x = 1
else
  x = log(y) + log(20*pi)/2
end if
do
  y1 = I0Bessel(x)
  deriv = I1Bessel(x)
  deltax = (y-y1)/deriv
  x = x + deltax
loop until abs(deltax) < 1E-12
Anti_I0 = x
end function
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13.7  Modified Bessel function, first kind, first order 
The first derivative of the modified Bessel function I0(x), as used in the inverse procedure described
above, is the same as the modified Bessel function I1(x).  This first order function is also used in 
calculating diode power and detector input impedance.  The series form is given by Dwight97, but it 
can also be obtained by differentiating the series for I0(x) (see section 13.1) term by term.  The 
result is:

dI0(x)/dx = I1(x)=
(x /2)

1
+

(x /2)
3

12 2
+

(x /2)
5

12 22 3
+

(x /2)
7

12 22 32 4
+ . . .. .  =∑

n=1

∞
n (x /2)

2n−1

(n!)2  

From which we can see that:

Term(1) = (x/2) / 1

Term(2) = (x/2) (x/2)2 / 1 . 1 . 2

Term(3) = (x/2) (x/2)2 (x/2)2 / 1 . 1 . 2 . 2 . 3

etc.

Term (n) = Term(n-1) × (x/2)2 / n (n+1)

An OO Basic calculation procedure, obtained by changing two lines in the zero order modified 
Bessel function program given earlier,  is shown below:

Function I1Bessel(byval x as double)as double
'Calculates modified Bessel function, 1st kind, first order, I1(x) = I0'(x)
I1Bessel = 0
If x <= 0 then exit function
Dim xx4 as double, term as double, sum as double, rcf as double
Dim n as integer
term = x/2
sum = term
xx4 = x*x/4
n = 0
do
  n = n+1
  rcf = xx4/( n*(n+1) )
  term = term*rcf
  sum = sum + term
loop until term/sum < 1E-12
I1Bessel = sum
end function

97 Dwight (already cited), p195, 813.2.   
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13.8  Polynomial used in the asymptotic form , first kind, first order 
For arguments greater than about 10, the asymptotic form of the Bessel function I1(x) can be used.  
This was given earlier as equation (12.20):

I1(x ) ≈ exp(x) PaI1(x) / √2π x

Using this form will not extend the argument range for the Bessel function itself, because it is the 
returned value that falls outside the floating-point range when the argument is large.  The detector 
input impedance determination however uses a ratio of Bessel functions, I1(x)/I0(x) .  The two 
asymptotic forms have a common factor exp(x)/√2π x ; and so the exponentials cancel when their 
ratio is taken, thereby greatly increasing the argument range.  The Polynomial PaI1(x) is given by:

PaI1(x)=1 −
4−12

1! 8x
−

(4−12
) (4−32

)

2! (8x)
2 −

(4−12
) (4−32

) (4−52
)

3! (8x)
3 − . .. . .  

Thus:

Term(0) = 1

Term(1) = (4-12) / 1 . (-8x)

Term(2) = (4-12) (4-32) / 1 . 2 . (-8x) . (-8x)

Term(3) = (4-12) (4-32) (4-52) / 1 . 2 . 3 . (-8x) . (-8x) . (-8x)

Term(n) = Term(n-1) . [ 4 - (2n-1)2 ] / n (-8x)

An OO Basic function is given below:

Function PaI1(byval x as double)as double
'Calculates the polynomial used in the asymptotic form of I1(x).
PaI1 = 1
If x < 9.6 then exit function
Dim x8 as double, term as double, sum as double, rcf as double
Dim n as integer
term = 1
sum = term
x8 = -1/(8*x)
n = 0
do
  n = n+1
  rcf = x8*(4-(2*n-1)*(2*n-1))/n
  term = term*rcf
  sum = sum + term
loop until abs(term/sum) < 1E-9
PaI1 = sum
end function
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13.9  Ratio of modified Bessel functions, first order / zero order 
The ratio of modified Bessel functions I1(x)/I0(x) is used for calculating the input impedance of a 
diode detector.  The routine below calculates both Bessel functions in the same program loop for 
arguments < 15, and calculates both asymptotic form polynomials in the same program loop for 
larger arguments.  

Function RatioI1_0(byval x as double) as double
'Calculates ratio of Bessel funcs; I1(x)/I0(x).
RatioI1_0 = 0  
If x <= 0 then exit function
Dim term1 as double, sum1 as double, rcf1 as double, 
Dim term0 as double, sum0 as double, rcf0 as double
Dim n as integer
n = 0
If x < 15 then
Dim xx4 as double
  term1 = x/2
  term0 = 1
  sum1 = term1
  sum0 = term0
  xx4 = x*x/4
  do
    n = n+1
    rcf1 = xx4/( n*(n+1) )
    rcf0 = xx4/(n*n)
    term1 = term1*rcf1
    term0 = term0*rcf0
    sum1 = sum1 + term1
    sum0 = sum0 + term0
  loop until term1/sum1 < 1E-9 and term0/sum0 < 1E-9
else
Dim x8 as double
  term1 = 1
  term0 = 1
  sum1 = term1
  sum0 = term0
  x8 = 1/(8*x)
  do
    n = n+1
    rcf1 = -x8*(4-(2*n-1)*(2*n-1))/n
    rcf0 = x8*(2*n-1)*(2*n-1)/n
    term1 = term1*rcf1
    term0 = term0*rcf0
    sum1 = sum1 + term1
    sum0 = sum0 + term0
  loop until abs(term1/sum1) < 1E-9 and term0/sum0 < 1E-9
end if
RatioI1_0 = sum1/sum0
end function
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13.10  Determining output voltage from source off-load voltage 
In later sections, we will show how practical diode voltmeter problems can be transformed so that 
they can be solved using techniques developed for the simple detector model.  In this way, the diode
detector is turned into an absolute AC voltage measuring instrument; at least in the sense that an 
accurate measurement of the DC output can be corrected to produce an accurate measurement of the
peak amplitude of a sinusoidal input.  In order to do that however, it is necessary to take account of 
the source loading effect (perhaps not so importantly when 50 Ω signal generators are connected to 
detectors driving CMOS op-amps; but certainly when feeble sources such as non-invasive sampling
networks are used to drive moving-coil meters).  Thus, in order to complete the minimum set of 
mathematical tools, we need two more procedures; one to get from source off-load voltage to DC 
output (for modelling purposes); and one to get from DC output to source off-load voltage.    

The problem of calculating the output
voltage from the source voltage can be
understood by considering the circuit on
the right. Here VS  is the RMS off-load
source voltage, and Vin  is the RMS
voltage produced by the source when it it
loaded by the detector.  RS +jXS  is the source output impedance, and RZin  is the detector input 
impedance.  Thus Vin  is the output of a potential divider formed by the two impedances, i.e.:

Vin  = VS  RZin / ( RZin + RS + jXS )

The detector however does not preserve phase information, and so we can eliminate complex 
quantities from the analysis without affecting its generality.  Thus, taking the magnitude of the 
denominator, and adopting the convention that an RMS voltage not written in bold is a magnitude, 
we get:

V in =
VS RZin

√(RZin+RS)
2
+ XS

2 (13.2)  

We still cannot calculate Vin  however, because  RZin  depends on it, and so it is necessary to use an 
iterative procedure.  That involves making an initial guess of Vin , calculating the average current Iav ,
and hence the input impedance , and using the results to refine the original guess.  The relevant 
formulae and functions are:

Iav = Vm / RD 

where, using the function described in section 13.3:

Vm = Vp - Vf  = Vp - DVfp2m( RD ; Vp ; mVT ; Is )

Vp = Vin √2

and, using equation (12.23) and the Bessel function ratio routine from section 13.9:

RZin = Vp
2 / 2 Pdet = Vp / 2 (Iav + Is) RatioI1_0( Vp /mVT )

The approach was tested in the spreadsheet det_models.ods, sheet 6, and then coded into the Basic 
macro function shown below.  The first method tried was that of taking the value of Vp  from a 
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round of calculation and using it directly as the starting value for the next round.  This resulted in a 
convergent procedure provided that  |RS +jXS |  was less than  RD ,  but for very large magnitudes of 
source impedance and source voltages in the region of 0.1 V to 1 V (when  mVT = 29.1 mV ), the 
routine would terminate at the maximum allowed number of iterations without giving the correct 
answer.  Subsequent investigation showed that the internal value of  Vp  in this case would oscillate 
above and below the solution value, with the error neither growing nor shrinking.  This behaviour 
was greatly curtailed by taking the seed for the next round of iteration to be the simple average of 
the previous and the current value.  For some extremely improbable inputs however, such as a 
source impedance magnitude of 1000×RD ,  the routine could still fail.  The complete solution was to
use the 2:1 weighted average in favour of the previous value, thus eliminating any possibility of 
overshoot.
     Note that the termination criterion for the program loop limits the maximum number of iterations
to 128.  Unmodified, it will not fail to find a solution for realistic input parameters, but the 
restriction gives insurance against 'program not responding' errors in the event that some awkward 
combination of inputs is found.

Function DetVs2m(byval Vs as double, Rs as double, Xs as double, RD as double, _
mVT as double, Isat as double) as double
'Calculates detector output voltage from source off-load voltage.  Version 1.00.
'Calls functions DVfp2m( ) and RatioI1_0( )
Dim Vpold as double, Vp as double, Vm as double, Iav as double, Rzin as double
Dim n as integer
DetVs2m = 0
If Vs = 0 then exit function
Vp = Vs*sqr(2)
do
  n=n+1
  Vpold = Vp
  Vm = Vp - DVfp2m(RD, Vp, mVT, Isat)
  Iav = Vm / RD
  Rzin= Vp / ( 2*(Iav+Isat)*RatioI1_0(Vp/mVT) )
  Vp = (2*Vpold + sqr(2)*Rzin*Vs/sqr((Rzin+Rs)^2 + Xs^2))/3
loop until abs(Vp-Vpold) < 1E-9 or n > 128
DetVs2m = Vm
end function

The results of some simulations using this algorithm are shown in the following graphs (see 
spreadsheet det_models.ods, sheet 6).
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This graph shows the overall transfer
function when the source impedance is a
pure resistance equal to the limiting large-
signal input impedance of the detector.
Notice that the peak input voltage, Vp , does
not begin to droop until the detector comes
into its working range at an input of around
0.1 V RMS.

Here, the overall peak detection efficiency is
given as the DC output voltage divided by
the peak source voltage.  The detector load
resistance is 10 kΩ, and so the large-signal
input resistance is just a little greater than
5 kΩ.  The curves show the output for
resistive source impedances of 500 Ω, 5 kΩ
and 50 kΩ, with zero source impedance for
comparison.  Note that with a very large
magnitude of source impedance , the
linearity of the detector is improved,
because the detector is then driven by
something approaching an AC current
source.  The efficiency however is very low.
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13.11  Determining source off-load voltage from output voltage 
For the purpose of making absolute voltage measurements, the single most important routine is that 
which allows the off-load source voltage to be determined from the detector DC output.  Given the 
work already done however, obtaining the source voltage is straightforward because it is quasi-
analytical (i.e., it is analytical except for the fact that it calls on numerical routines).  

Given Vm we can calculate Vp  using the function described in section 13.4:

Vp = Vm + DVfm2p( RD ; Vm ; mVT ; Is )

also: 

Iav = Vm / RD

Using these quantities in equation (12.23) (with the function from section 13.9):

RZin = Vp / 2 (Iav + Is) RatioI1_0(Vp /mVT)

The on-load input voltage is the peak voltage divided by √2 :

Vin = Vp / √2

and the source off-load voltage is given by a rearrangement of equation (13.2):

VS =
V in √(RZin+RS)

2
+ XS

2

RZin

  

A Basic macro function that performs the calculation is shown below:

Function DetVm2s(byval Vm as double, Rs as double, Xs as double, RD as double, _
mVT as double, Isat as double) as double
'Calculates source off-load voltage from detector output voltage.  Version 1.00,
'Calls functions DVfm2p( ) and RatioI1_0( )
Dim Vp as double, Vs as double, Iav as double, Rzin as double, Vin as double
Vp = Vm + DVfm2p(RD, Vm, mVT, Isat)
Iav = Vm / RD
Rzin = Vp /( 2*(Iav+Isat)*RatioI1_0(Vp/mVT) ) 
Vin = Vp / sqr(2)
DetVm2s = Vin*sqr((Rzin+Rs)^2 +Xs^2)/Rzin
end function

While the source off-load voltage itself is now easily obtained however, it is still necessary to 
calculate its standard deviation.  We will return to that problem in a later section.
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14.  Generalised half-wave detector model 
The simple diode detector model analysed in section 12 is often assumed to provide a complete 
description of detector behaviour.  Unfortunately however, while the various formulae and 
computational methods that develop around it can be used for the solution of practical problems, 
there is some art in the matter of applying them.  Strictly, the simple model will give a good account
of detectors driven by a source having extremely low DC resistance (such as an IF transformer), and
using a diode with low forward ohmic resistance and low non-saturable reverse leakage (i.e., a high 
value of parallel resistance).  It is therefore, as it stands, unsuitable for describing chokeless half-
wave detectors (either series or shunt diode); and it will not account for the behaviour of realistic 
diodes with sufficient accuracy for absolute voltage measurement.

14.1  Series diode rectifier with port resistance and parasitics 
A somewhat more general detector model is shown below.  This uses the diode equivalent circuit 
given in section 8, and so offers an improvement in accuracy if we can determine the overall 
transfer function.  Also included is port resistance (Rport ), i.e., the DC resistance looking back into 
the source.  Notice however that the source network does not correspond to an actual circuit, but to 
a generic representation of a network that has been transformed to separate the output impedance at 
the excitation frequency (RS + jXS ) from the DC resistance (Rport ).  That transformation was 
introduced in section 1.5.  The use of a perfect choke and a perfect coupling capacitor (∞ H and 
∞ F), is a way of representing the mathematical separation using circuit symbols.  A steady-state 
analysis is assumed, i.e., it is implied that infinite capacitances come pre-charged, and infinite 
inductances come pre-magnetised, according to the DC operating conditions.  As before, a voltage 
with as subscript ending with ~ should be read as "the AC component of ".

Fig. 14.1

This quasi-general diode voltmeter model is very different from the simple model of section 12; but
if we keep sight of the practical objective (which is to determine the off-load source voltage VS  
from the DC output voltage Vm ), then it should be apparent that there are various rearrangements 
that will simplify the problem.  We can start by considering the parasitic reactances.
     Lds is the series partial inductance of the diode and its wires or circuit tracks.  Its value is about 
the same as that of a piece of wire of the same total length and average diameter as the diode leads 
from the source terminal to the smoothing capacitor.  There will also be a contribution from the 
ground-return, but the use of a ground-plane will minimise this.  In some circumstances, such as 
when working with surface-mount devices at VHF and below, or when using wire-ended diodes 
with short wires at HF, its effect will be swamped by the overall measurement uncertainty; in which
case it can be neglected.  The best thing to do with it is to lump it with the source impedance.  In 
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that case, when calculating the detector input voltage from the output voltage, we will get the 
quantity Vin' (or its AC component), which is not strictly observable, but we can still calculate Vin~ 
(if there is any point in doing so explicitly) and thence VS , or we can calculate VS  directly using the
modified source impedance. 
     Cj  is the diode capacitance.  This is a function of the junction depletion-layer thickness and so 
varies according to the instantaneous voltage (the varactor effect), but for the purpose of rectifier 
modelling, its value is taken to be the average at the excitation frequency.  The fact that we are 
ignoring harmonic generation due to capacitance variation is a potential source of systematic error, 
but the effect is small for low capacitance signal diodes and will be lost in the overall measurement 
uncertainty.  Thus having declared the intention of treating Cj  as a simple capacitance; we can note 
that it cannot alter the average DC voltage across the smoothing capacitance CD , it consumes no 
power, and since CD  is intentionally vastly greater in value then Cj , the only effect that Cj  has is to 
place a weak reactive shunt across the AC input.  Thus we might as well lump it with the source 
impedance.  
     The equivalent circuit that results from moving the parasitic reactances is shown below.  It is 
now possible to combine them with the source impedance, but we will not do so yet because there is
at least one more element to be transferred.  For the purpose of the transformations to follow, the 
various voltages and currents associated with the diode network have also been marked.

Fig 14.2

As was demonstrated in section 12, determining the detector transfer function depends on being 
able to calculate the average output current, Iav .  That information is obtained by integrating the 
instantaneous diode current, Id , over a complete cycle of the input waveform, but in this case the 
process is complicated by the presence of the resistances Rds  and Rdp .  We can however, easily solve
that part of the integral involving the non-saturable leakage current I"d , and thereby obtain another 
transformation.
     Previously, we adopted the convention that the AC component of the input waveform is 
sinusoidal and is zero and positive-going at t = 0 , i.e.:

Vin~ =  Vp sinφ

(some commentators prefer the cosine form, but it makes no difference to the outcome).  Thus we 
can define the instantaneous input voltage V'in as:

V'in = V'p sinφ' - Vbk 

where both the peak voltage and the phase angle of the AC component are primed because there 
will be a shift in both magnitude and phase due to the parasitic reactances.  To the right of the point 
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at which V'in is marked on the diagram however, there are no more finite reactances, and so there 
will be no more phase shifts on the path to the load.

The instantaneous voltage across the whole diode (including its series resistance) is:

Vd =  V'p sinφ' - Vbk  - Vm

Hence the instantaneous diode current, using the diode equation (6.1), is:

Id = I'd + I"d = IS [ exp( V'd / mVT ) - 1] + ( V'p sinφ' - Vbk  - Vm ) / Rdp 

where

V'd = V'p sinφ' - I'd Rds - Iav ( RD + Rport ) 

Note here that, because the expression for V'd involves I'd ,  there is no closed-form analytical 
expression for the total instantaneous current, let alone its integral (although a numerical solution is 
possible, as we will see later).  Finding the average of the non-saturable leakage current is however 
straightforward. 

The total average current is the area under the curve for the total instantaneous current.  

Iav =
Vm + Vbk

RD + Rport

=
1

2π
∫
0

2π

Id dϕ =
1

2π
∫
0

2π

I'd dϕ +
1

2π
∫
0

2π

I''d dϕ  

Thus, if we separate that part of the average current that flows through Rdp and call it -I"av (the 
reason for the minus sign will become apparent shortly), we have:
 

−I''av =
1

2π
∫
0

2π
V'p sin ϕ' −Vbk −Vm

Rdp

dϕ  

Now observe that the sinusoidal term averages to zero over a complete cycle.  Thus the constant 
terms are all that remain, and after evaluating the integral we get:

-I"av = -( Vbk + Vm ) / Rdp 

What this means is that the diode parallel resistance acts as a DC shunt across the total load 
resistance RD + Rport .  The minus sign in the expression above tells us that the current flowing 
through Rdp is subtracted from the current available for charging the smoothing capacitor, i.e., it 
reduces the detector output.  This result, actually obvious on re-inspection of Fig. 14.2, allows us to 
redraw the model once again.
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Fig. 14.3

The sign chosen above for I"av  allows the diagram to be labelled sensibly.  Also notice that there are
now two instances of Rdp  in the equivalent circuit.  The reason for that is that Rdp, as well as 
shunting the rectified output, also shunts the input signal; and since we have imposed a 
mathematical separation between the AC and DC parts of the problem, it is necessary to account for
both effects separately.   
     Having worked out how to deal with Rdp however, it should be noted that in many instances it 
can be ignored.  This is because modern signal diodes typically have a large Rdp ; about 250 MΩ for 
a 1N5711 Schottky diode, and somewhere from a few hundred kΩ to a few MΩ for a germanium 
detector diode.  Thus, given that most RF networks will have output impedances of less than a few 
hundred ohms magnitude; the AC shunting effect will usually be negligible.  The DC shunting 
effect should however be taken into account when using a diode in conjunction with a large value of
RD  or Rport , a sensible guideline being that it should be included if it reduces the output by more 
than about 0.1%.

We have now annexed most of the diode equivalent-circuit elements either into an effective source 
impedance, or into an effective load resistance, or both.  A new, greatly simplified model results:

Fig. 14.4

Here the voltages V'in~ and V"in~ are the AC components of the voltages V'in and V"in .  Also notice 
that the smoothing capacitance has been given a prime, but this is merely to warn that the 
transformed load resistance R'D is not to be used for calculating the detector time constant.

For this model, V'm  is the total detected voltage, i.e.:

V'm = Vm + Vbk 

and

R'D = (RD + Rport ) // Rdp 

Thus Vm can be calculated as the output of a potential divider composed of RD and Rport , i.e.:
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Vm = V'm RD / (RD + Rport )

and V'm can be calculated from Vm :

V'm  = Vm (RD + Rport ) / RD   

i.e.:

V'm  = Vm (1 + Rport  / RD ) . . . . . . (14.1)

The average rectified current is:

I'av = V'm / R'D  

and so on.

The effective source impedance is obtained using Thévenin's theorem, i.e., by writing down the 
impedance looking back into the source when the generator is replaced by a short circuit.  Thus, by 
inspection of Fig. 14.3:

R'S + jX'S = (RS + jXS + jXLds) // Rdp // jXCj

We can use the aggregated parameter approach to solve the general diode voltmeter problem, 
provided that we can determine the overall transfer function.  The final issue therefore, is what to do
about the diode series resistance Rds .
     There are two ways in which we can proceed at this point.  One approach is to move Rds  into 
both the source impedance and the port resistance; in which case the analysis reverts to that of the 
simple detector model and its input impedance as per the working in sections 12 and 13.  The other 
approach is to develop numerical solutions for the transfer function of a detector with diode series 
resistance.  Both methods should agree but, since we have no mathematically rigorous basis for the 
presumed equivalence, it will be instructive to try them both.  In this section, we will continue 
reducing the problem to that of the simple detector.  The detector with diode series resistance will 
be analysed in section 15.

If we go back to the circuit of Fig. 14.3 and transfer instances of Rds  into both the source impedance
and the load resistance we get the equivalent circuit shown below: 

Fig. 14.5
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This network can now be modelled as a simple diode detector, with new circuit parameters suitable 
for passing to the calculation routines described in sections 13.10 and 13.11.  All we have to do is 
pass the modified parameters from the circuit below in place of the original quantities.

Fig. 14.6

Notice that adding Rds to the effective source impedance does not change its reactance.  
Consequently, although the effective source resistance gets an extra prime (cf. fig. 14.4) the reactive
element does not.

To calculate V"m , the appropriate function call is:

V"m = DetVs2m(VS ; R"S ; X'S ; R"D ; mVT ; IS )

and to calculate VS , the call is: 

VS = DetVm2s(V"m ; R"S ; X'S ; R"D ; mVT ; IS )

The required parameters can be calculated using the formulae and programs given below.

Effective load resistance 
The effective load resistance is given by:

R"D = R'D + Rds 

Where RD' is the effective load resistance from fig. 14.4.  Thus:

R"D = Rds + Rdp // (RD + Rport )

i.e.:

R"D =  Rds + [ Rdp (RD + Rport ) / ( Rdp + RD + Rport ) ] 14.2

A Basic macro routine that calculates  R'D  is shown below:

Function RDeff1(RD as double, Rport as double, Rdp as double) as double
'Calculates effective load resistance RD' = Rdp // (RD + Rport)
RDeff1 = Rdp*(RD+Rport) / (Rdp+RD+Rport)
end function

R"D is obtained by calling this function and adding Rds :

R"D = Rds + RDeff1( RD  ; Rport  ; Rdp )
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Effective source impedance
To calculate R"S and X'S , the transformation shown in the diagram below is required:

Fig. 14.7

Applying Thévenin's theorem gives us:

R"S + jX'S = Rds + R'S+ jX'S =  Rds + (RS + jXS + jXLds) // Rdp // jXCj . . . . . . . (14.7)

Extracting expressions for RS' and XS' from this is related to a general problem that we will refer to 
as the 'series-parallel to series (SP2S) transformation'.  Since we will also require exactly the same 
derivation again later, it will be set out using a more general notation in the next subsection.  The 
resulting formulae are coded into Basic macros, so that RS" and XS' can be calculated using the 
following function calls:

R"S = Rds + SP2S_R( RS  ; XS +XLds ;  Rdp ; XCj )

and

X'S = SP2S_X( RS  ; XS +XLds ;  Rdp ; XCj )

The actual expressions for R"S (or R'S ) and X'S are rather complicated and, in principle at least, we 
will need to differentiate both of them with respect to each of their parameters in order to calculate 
the overall standard deviation of a measured voltage.  This is not inherently difficult, but it is 
algebraically messy.  It is therefore worth noting that Cj and Rdp  are usually of considerably less 
statistical importance than the other parameters.  If  |Xcj|  and  Rd  are relatively large, it is still 
useful to include them for the purpose of reducing systematic error, but they won't make much 
difference to the estimated standard deviation (ESD) of either R"S or X'S.  Therefore we can usually 
neglect them in that context.  Hence for the purpose of calculating ESD, we merely have to 
differentiate the expressions:

R"S ≈ RS + Rds     and     X'S ≈  XS + XLds  
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Calculating DC output from  total detected voltage
The total detected voltage V"m is determined from the measured output voltage Vm  by analysing the
potential divider formed by Rds , Rdp , Rport  and Rd :

Vm + Vbk = V''m  
Rdp // (RD+Rport)

Rds+Rdp // (RD+Rport)
(14.3)

and

Vm =(Vm+V bk)
RD

RD+R port
 (14.4)

Substituting (14.3) into (14.4) gives:

Vm = V''m
[Rdp // (RD+Rport)]

[Rds+Rdp // (RD+Rport)]

RD

(RD+Rport )
 

Now if we expand the parallel resistances we get:

Vm = V''m  

Rdp (RD+Rport)

(Rdp+RD+Rport)

RD

(RD+Rport)

Rds+
Rdp (RD+Rport)

(R dp+RD+R port)

  

Rearranging the main denominator so that all of its terms share a common denominator gives:

Vm = V''m  

RD Rdp

(Rdp+RD+Rport)

Rds(Rdp+RD+Rport)+R dp (RD+Rport)

(Rdp+RD+Rport)

 

Thus, with some rearrangement of the terms in the denominator:

Vm = V''m  
RD Rdp

Rds(RD+Rport)+ R dp (RD+Rport+Rds)
  14.5

Notice here that, as Rdp → ∞ ,  only the terms in the denominator having Rdp as a factor survive, and
so we get:

as  Rdp → ∞   ,   Vm  → V"m RD / ( RD + Rport + Rds )

If we decide to ignore the diode series resistance, or set it to zero so that we can use a numerical 
method for the average diode current, we get:

as  Rds → 0   ,   Vm  → V"m RD / ( RD + Rport )

Fig. 14.8
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A basic macro routine that calculates Vm  from V"m using equation (14.5) is given below:

Function DCVout( Vm2 as double, RD as double, Rport as double, Rdp as double, _
Rds as double) as double
DCVout = Vm2*RD*Rdp/(Rds*(Rd+Rport) + Rdp*(RD+Rport+Rds))
end function

The function call is:

Vm  = DCVout( V"m ; RD ; Rport ; Rdp ; Rds )

or, if starting from Vm' (i.e., using a numerical diode-with-series-resistance model):

Vm  = DCVout( V"m ; RD ; Rport ; 1 ; 0 )

Notice, by inspection of equation (14.5), that Rdp  makes no difference to the calculation in this case,
but it must be > 0 .  Inserting a value of 1 is therefore convenient.
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Calculating total detected voltage from DC output
To obtain the total detected voltage Vm" from the output voltage Vm , we can rearrange equation 
(14.5) thus:

V''m = Vm  
Rds(RD+Rport)+ Rdp (RD+Rport+R ds)

RD Rdp
 

This can be simplified in various ways, e.g.:

V''m = Vm [1+
Rport

RD

+
Rds(RD+R port+Rdp)

RD Rdp
]   

14.6

Notice that when  Rds → 0 , this expression reverts to equation (14.1).

A Basic macro that performs the calculation is given below:

Function DCVtot( Vm as double, RD as double, Rport as double, Rdp as double, _
Rds as double) as double
DCVtot = Vm*(1 + (Rport/RD) + Rds*(RD+Rport+Rdp)/(RD*Rdp) )
end function

The function call for evaluating V"m is:

V"m  = DCVtot( Vm ; RD ; Rport ; Rdp ; Rds )

In order to calculate V'm (such as when using a diode-with-series-resistance model) the call is:

V'm  = DCVtot( Vm ; RD ; Rport ; 1E9 ; 0 )

Rdp is not required in this case, but a value of 1E12 prevents a divide-by-zero error.

>>>>>  Macro needs updating:
Rdp is not required if Rds = 0 is trapped automatically:

If Rds = 0 then
  DCVtot = Vm*(1 + (Rport/RD) )
else  
  If Rdp = 0 then Rdp = 1E12
  DCVtot = Vm*(1 + (Rport/RD) + Rds*(RD+Rport+Rdp)/(RD*Rdp) )
end if
end function

If RD is zero, result is undefined, so best to allow the div 0 error to occur as a warning.

>>>>>>
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14.2  Series-parallel to series transformation 
The diagram below refers to a frequently encountered electrical problem.  A generator having finite 
source impedance has an impedance placed across its terminals, and we want to find the new 
effective source impedance.  

Fig. 14.9

Using  Thévenin's theorem:

RSP + jXSP = ( RSS + jXSS ) // RPP // jXPP

The parallel impedance ( // ) operator is commutative, so we can start the expansion by combining 
the series elements with the parallel resistance.

RSP+j XSP =
(RSS+j XSS) RPP

RSS+RPP+j XSS

// j XPP   

Now including the parallel reactance we get:

RSP+j XSP =

(RSS+j XSS) RPP j XPP

RSS+RPP+j XSS

(RSS+j XSS) RPP

RSS+RPP+jXSS

+ j XPP

 

Placing the fraction in the denominator on to a common denominator gives:

RSP+j XSP =

(RSS+ jXSS) RPP jXPP

RSS+RPP+j XSS

(RSS+j XSS) RPP + j XPP(RSS+RPP+j XSS)

RSS+RPP+j XSS

 

i.e., after cancellation:

RSP+j XSP =
(RSS+j XSS) RPP j XPP

(RSS+j XSS) RPP + jXPP(RSS+RPP+ jXSS)
 

Multiplying out the brackets and grouping reals and imaginaries produces:

RSP+j XSP =
−RPP XSSXPP+j RSS RPP XPP

(RSS RPP−XSS XPP)+j(RPP XSS+RSS XPP+RPP XPP)
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and multiplying numerator and denominator by the complex conjugate of the denominator:

RSP+j XSP =
(−RPP XSS XPP+jRSS RPP XPP)[(RSS RPP−XSS XPP)−j (RPP XSS+RSSXPP+RPP XPP)]

(RSS RPP−XSS XPP)
2
+(RPP XSS+RSS XPP+RPP XPP)

2

Now we can multiply-out the numerator and separate the real and imaginary parts.

RSP+j XSP =
−RPP XSS XPP(RSS RPP−XSS XPP)+RSS RPP XPP(RPP XSS+RSS XPP+RPP XPP)

(RSS RPP−XSSXPP)
2
+(RPP XSS+RSS XPP+RPP XPP)

2

+
j [RSS RPP XPP(RSSRPP−XSS XPP)+RPP XSS XPP(RPP XSS+RSS XPP+RPP XPP)]

(RSS RPP−XSS XPP)
2
+(RPP XSS+RSS XPP+RPP XPP)

2

 

Thus, with a reversal of the terms in the real part to get rid of the leading minus sign:

RSP =
RSSRPP XPP(RPP XSS+RSS XPP+RPP XPP)−RPP XSS XPP(RSS RPP−XSS XPP)

(RSS RPP−XSS XPP)
2
+(RPP XSS+RSS XPP+RPP XPP)

2  14.8

and

XSP =
RSS RPP XPP(RSS RPP−XSS XPP)+RPP XSS XPP(RPP XSS+RSS XPP+RPP XPP)

(RSSRPP−XSS XPP)
2
+(RPP XSS+RSS XPP+RPP XPP)

2  14.9

The OO Basic macro functions shown below perform the calculations.

Function SP2S_R(Rss as double, Xss as double, Rpp as double , Xpp as double ) as double
'series-parallel to series transformation.  Calculates Rsp
Dim t1 as double, t2 as double
t1 = Rpp*Xss + Rss*Xpp + Rpp*Xpp
t2 = Rss*Rpp - Xss*Xpp 
SP2S_R = (Rss*Rpp*Xpp*t1 - Rpp*Xss*Xpp*t2) / (t1*t1 + t2*t2)
end function

Function SP2S_X(Rss as double, Xss as double, Rpp as double , Xpp as double ) as double
'series-parallel to series transformation.  Calculates Xsp
Dim t1 as double, t2 as double
t1 = Rpp*Xss + Rss*Xpp + Rpp*Xpp
t2 = Rss*Rpp - Xss*Xpp
SP2S_X = (Rss*Rpp*Xpp*t2 + Rpp*Xss*Xpp*t1) / (t1*t1 + t2*t2)
end function
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14.3  Shunt diode rectifier with port impedance and parasitics 
The problem of transforming the shunt-diode rectifier circuit so that it can be analysed using the 
simple detector model has much in common that of the series-diode case.  There are however, some 
differences that must be taken into account.
     A fairly realistic equivalent circuit for the shunt-diode detector is shown below.  As is the 
convention in this document, a voltage placed in square brackets refers to the DC component of a 
waveform.  The diode model used is as discussed in section 8.

Fig 14.10

Notice that the source impedance has been written with an additional subscript 0 on each of its 
elements.  This is done pending a transformation to make the complete network analytically 
equivalent to the series diode half-wave detector.  Additionally, a perfect coupling capacitor has 
been included to make it explicit that the source is a DC open-circuit.  This might seem 
unnecessary, given that there will be an actual coupling capacitor, but defining the series reactive 
element of the source impedance as negative at the input frequency is not the same as stating that 
there is no DC path.  
     The major analytical difference between the conventional detector and the shunt detector is that 
the latter has one or more port impedances, instead of just a port resistance.  This is because a port 
resistance is defined (at least in this document) as the DC resistance in the path to the load; and in 
the case of the shunt detector, that path is physically separate from the source impedance.  Thus we 
have to take both the total port resistance and the total port impedance into account.
     The reason why there are two port impedances is that the shunt detector can be used for the 
measurement of floating voltages.  Thus, assuming the grounding arrangement shown in the 
diagram, Zport2  is the ground-return impedance, whereas Zport1  refers to the network connecting the 
diode to the live output terminal.  When the source AC reference is not at ground potential, it can 
still usually be arranged that |Zport2| is very small relative to |Zport1| .  In that case most analyses can 
proceed with  Zport2 = 0 ,  but it is important to be aware that its neglect might introduce a systematic 
error.  
     The total port impedance for analytical purposes is:

Zport = Zport1 + Zport2 

If the maximum possible detector sensitivity is required, Zport1 can be the impedance of an RF 
choke; although such a choice is not recommended for precision voltmeter applications.  Even if the
DC path is provided by a resistor however, it is still an impedance, not a pure resistance, because 
high-value resistors are usually predominantly capacitive at radio frequencies when operated below 
the SRF. 
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The next step in the analysis is to separate the port resistance from the total port impedance.  This is
illustrated in the diagram below.

Fig 14.11

In this representation, a perfect choke channels the DC output through the port resistance, and the 
port impedance is made into a DC open circuit by means of a perfect coupling capacitor.  Note that 
the port resistance is not the same as the resistive element of the port impedance.  For that reason 
the impedance has been written as RP // jXP .  The parallel form is used because the transformation 
has made it obvious that the port impedance is effectively in parallel with the detector input.  This is
so because the smoothing capacitor intentionally has a reactance that is very much smaller in 
magnitude than  |RP // jXP| , and the AC component of the current through the smoothing capacitor 
makes no contribution to the DC output.  Hence the next step in the transformation, as shown 
below, is to place the port impedance directly in parallel with the source.

Fig 14.12

At this point it will become apparent why the source impedance has been given symbols that are 
different from the conventional detector case.  The reason is that, while the port impedance is, 
notionally, already combined with the source impedance in the series diode network, in this case we
need to combine the two impedances explicitly.  Thus, for the effective source impedance (i.e., 
including the shunting effect of the port impedance), we can use the same definition as in the 
conventional case (and hence the same computer programs for enumeration) provided that we make
the following transformation:

RS + jXS = ( RS0 + jXS0 ) // RP // jXP 

Here, the use of the parallel form for the port impedance works to our advantage because, in the 
preferred case when the port impedance is that of a high-value resistor; the resistor can usually be 
represented as its actual resistance in parallel with a capacitance of about 0.4 pF (provided that it is 
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operating below its SRF).  Furthermore, if the source impedance magnitude is relatively low, the 
effect of the port resistance on the AC amplitude can be neglected, and the port impedance becomes
simply the reactance of the resistor's capacitance.  Note incidentally, that the  port capacitance as a 
modelling parameter will be strongly correlated with the junction capacitance Cj .  Thus, if the 
model is used for parameter extraction, the two capacitances will probably have to be accounted for 
by eliminating one and allowing the other to increase slightly.
     The matter of combining the source impedance and the port impedance requires the series-
parallel to series (SP2S) transformation described in section 14.2.  Using the Basic macro routines 
given in that section, the required function calls are:

RS = SP2S_R( RS0  ; XS0 ; RP ; XP )     and     XS = SP2S_X( RS0  ; XS0 ; RP ; XP )

The diode parasitic reactances and parallel resistance can now be combined with the source 
impedance, and another instance of the parallel resistance can be combined with the DC load.  This,
as is shown below, gives us a configuration that can be analysed using the diode-with-series-
resistance numerical method.

Fig 14.13

This network should be compared with figure 14.3, whereupon it will be noted that; if the source 
and port impedances are combined, and the diode with its series resistance and the ideal choke are 
transposed, the only difference lies in the ordering of the resistances in the DC potential divider.  
Since addition of resistances is commutative, this problem is analytically identical to the 
comparable series diode case.

Finally, instances of the diode series resistance can be combined with the source impedance and the 
load.

Fig 14.14

Once the port impedance is combined with the source impedance, this network is analytically 
identical to the one shown in figure 14.5.  It can therefore be analysed as a simple detector using 
the transformations given in the previous section.  
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15.  Detector with diode series resistance 
In section 12, we developed the transfer function of the simple half-wave detector; the word 
'simple' in that context referring to the omission of a large number of elements affecting the 
behaviour of practical circuits.  In section 14 however, we showed that realistic problems can be 
handled using the simple detector functions; the trick being to modify the source impedance and the
DC load resistance to account for the various changes.  There is however, one point of theoretical 
contention that requires further exploration.
     The diode model has two resistances; the parallel resistance Rdp , which accounts for the non-
saturable leakage current, and the junction resistance Rds .  There must also be a physical resistance, 
referred-to here as the 'port resistance', in the DC loop that completes the detector circuit.  All of 
these are exposed to the harmonic currents created by the rectification process, and they will 
therefore dissipate some proportion of the harmonic energy.  
     If a diode voltmeter is to be calibrated using only DC standards,  then it is necessary to be able to
deduce the off-load source voltage from the DC output voltage.  This requires that we have an 
accurate knowledge of the detector input impedance, which is obtained by considering the power 
delivered to the detector (see section 12.3).  The detector power problem was solved however using
the simple detector model, which means that the generator used had zero output impedance and is a 
perfect short-circuit with regard to reflected power.  The derivation also made use of the assumption
that the smoothing capacitor has a very low magnitude of reactance at the excitation frequency, and 
therefore also at higher frequencies, preventing any RF dissipation in the DC load resistor.  Thus the
model is such that all of the harmonic energy is dissipated in the diode itself.  The effect of 
assigning that energy to the diode, instead of distributing it to the various resistances, will be to 
cause a systematic error in the determination of the input impedance.  It is reasonable to expect that 
this discrepancy will be small in most instances; but without some way of quantifying it, it is not 
possible to be sure.
     To allow the dissipation of harmonic energy in the resistances associated with the diode, it is 
necessary to include those resistances in the process of integrating the instantaneous current to 
obtain the average current.  Then to find the detector input impedance, it is necessary to include 
those resistances in the integration of the instantaneous VI product to find the power.  Before doing 
that however, a certain pragmatism is indicated in the matter of what to include.  
     The first issue is that, for practically any diode that we might want to use, Rdp  is large; and as 
was discussed in section 14.1, there is some point in including it in the effective DC load, but there 
is usually little point in including it in the effective source impedance.  Moving it into the source 
impedance is a way of accounting for its dissipation at the excitation frequency, and if there is some
doubt about the need to do that, then there is even more doubt about the need to consider its 
absorption of energy from higher harmonics.  Thus, while it will certainly complicate matters to 
include Rdp in the power integration, it is unlikely to produce any effect of statistical significance.  
For that reason, will not bother to do it.
     The second issue is a matter of complexity.  The resistance looking back into the source will be 
different at different frequencies.  We have already separated its DC component from its component
at the excitation frequency, but to make a full account of all of the harmonic energy, we will need a 
component at each if the harmonic frequencies.  This is workable if all of those components are the 
same, but they will only be so if the source impedance is a pure resistance.  Moreover, if the source 
can be modelled as a generator with a pure resistance in series with it, then that resistance can be 
combined with the diode series resistance.
     It follows, that while we will not be able to take account of harmonic energy to a high degree of 
accuracy in all situations, we will certainly be able to discover the magnitude of its effect by 
including Rds  in the integrations.
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15.1  Instantaneous diode current 
In the diagram below, the simple detector model of section 12 has been modified by the inclusion of
diode series resistance.  In order to find the average diode current Iav , from which the DC output 
voltage Vm  is calculated, it is necessary to integrate the instantaneous current Id over a complete 
cycle of the input waveform.  The first task therefore is to determine Id .  This is given by the near 
ideal diode equation (see section 6): 

Id = IS [ exp{ V'd / mVT } - 1 ]

Where:

V'd = Vd - Id Rds 

i.e.:

Id = IS [ exp{ ( Vd - Id Rds ) / mVT } - 1 ]

The problem with this expression is that it has instances of Id both inside and outside the 
exponential bracket.  This means that there will be no closed-form analytical solution.  We will 
therefore use an iterative method, based on the procedure first introduced in section 13.3.  We start 
by giving different symbols to the two instances of Id :

y = IS [ exp{ ( Vd - x Rds ) / mVT } - 1 ]

An initial value for x is easily obtained by calculating Id on the assumption that Rds= 0 , i.e.;

x0 = IS [ exp( Vd / mVT ) - 1 ]

x then has to be adjusted until y agrees with it to some sensible degree of accuracy, i.e:

|x - y| ≤ maximum acceptable error.

The change in y due to a small change in x is defined thus:

When   x → x + δx   ,    y → y + δy

and a solution occurs when:

x + δx = y + δy

where, for small increments:

δy ≈ δx ∂y/∂x

Thus:

x + δx ≈ y + δx ∂y/∂x

i.e.:
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δx ≈ ( x - y ) / ( ∂y/∂x - 1)

The derivative is obtained using the chain rule:

∂y/∂x = IS (-Rds / mVT ) exp{ ( Vd - x Rds ) / mVT }

Notice that if Rds = 0, the derivative is always zero and the initial estimate for x is the solution.  

A Basic program that performs the iteration is shown below.  Algorithm development was carried 
out in the spreadsheet det_models.ods, sheet 2.  The convergence criterion  |x-y|  has been set so 
that Id  is calculated to the nearest pico amp.

Function DinstI(byval Vd as double, Rds as double, mVT as double, Isat as double) as double
'Calculates diode instantaneous current when diode has finite series resistance
Dim x as double
x = Isat*(exp(Vd/mVT)-1)
DinstI = x
If Rds <= 0 then exit function
Dim arg as double, y as double, deriv as double, diff as double, deltax as double
do
  arg = (Vd - x*Rds)/mVT
  y = Isat*(exp(arg)-1)
  deriv = -Isat*Rds*exp(arg)/mVT 
  diff = x-y
  deltax = diff/(deriv-1)
  x = x+deltax 
Loop until abs(diff) < 1E-12
DinstI = x
end function
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15.2  Average diode current by numerical integration 
The DC output of a detector is given by the product of the average diode current and the effective 
load resistance; i.e., assuming zero port resistance and zero non-saturable leakage current:

Vm = Iav RD

The average current is the area under the curve for the instantaneous current.  This can be obtained 
by integrating the instantaneous current ( Id ) over one complete input cycle and dividing by the 
length of a cycle, i.e.;

Iav =
Vm

RD

=
1

2π
∫
0

2π

Id dϕ  

This was carried out in section 12.1 for the case with Rds = 0 and led to a solution involving the 
zero-order modified Bessel function of the first kind.  We know immediately however, from the 
working in the previous section, that when Rds > 0, this integral is not analytical because Id is not 
analytical.  The most obvious solution to this problem is to use a numerical integration method.  
Such procedures are generally less efficient than analytical methods, and so before applying them, it
is sensible to look for ways in which computational redundancy can be eliminated. 
     Throughout this document, we have made the assumption that the reactance of the smoothing 
capacitor is very small (i.e., analytically zero) at the excitation frequency.  This is actually not an 
approximation in the determination of the DC output for a given detector input, because RF currents
in the smoothing capacitor cannot affect the average (recall that sinusoids average to zero over an 
integer number of cycles), but it will affect the detector input impedance slightly.  Still, this effect, 
essentially an adjustment of the distribution of harmonic currents, is very small in comparison to the
issue we are trying to resolve; which is
whether or not it is safe to neglect the
dissipation of harmonic energy in the diode
series resistance.  Therefore we will retain the
large-smoothing-capacitance approximation,
which has the effect of eliminating output-
voltage droop in the interval between the
diode-current pulses.
     If the DC output voltage does not droop,
then the current-spike that occurs at the peak
of the input voltage waveform will be
symmetric about the maximum (as in the
diagram on the right).  If that is the case then,
assuming that the input voltage is defined as
Vp sinφ , the area under the curve between π/2
and 3π/2 radians will be the same as the area
under the curve between 3π/2 and 5π/2
radians (where 5π/2 is the same as π/2 in the
next cycle of the waveform).  It follows that
the average current can be found by
integrating the instantaneous current between
the limits π/2 and 3π/2 and dividing the result
by 3π/2 - π/2 = π.  

          Fig. 15.2
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Thus:

Iav =
1
π ∫

π /2

3π/2

Id dϕ  (15.1)

This change of limits reduces the computational burden of numerical integration by a factor of 2.  
     A further reduction in the computational overhead can be had by noting that, when a diode with 
infinite parallel resistance is reverse biased, the current is limited to the reverse-saturation leakage 
current.  Moreover, it can be shown by simulation (e.g., by playing with the numbers in the 
spreadsheet  det_models.ods, sheet 2), that for a diode with Rds = 0 , the saturation current (-IS ) is 
just reached when the diode reverse bias is the negative of the forward voltage drop under dynamic 
conditions, i.e., -Vf .  Since we have to input values of the peak and the DC output voltages (Vp and 
Vm ) in order to perform the integration, we have a value of  Vf = Vp - Vm  that can be used to find 
the part of the cycle in which the current is constant.  Sensible values of Rds make very little 
difference to the point at which -IS  is reached; but even if the value chosen is unusually large, the 
effect will be to increase Vf  and thereby reduce the length of the region in which we assume that 
Id = -IS .

To find the points at which the diode either comes out of or goes into the reverse saturation, we note
that this transition occurs when:

Vp sinφx - Vm = -Vf 

Where φx has two solutions because there are two crossover points in each cycle of the driving 
waveform.  Substituting for Vp :

( Vm + Vf ) sinφx - Vm = -Vf 

( Vm + Vf ) sinφx = Vm - Vf 

sinφx = ( Vm - Vf  ) / ( Vm + Vf )

Thus in the region between 0 and π/2 we have:

φx = arcsin[ ( Vm - Vf  ) / ( Vm + Vf ) ]

Since we need to integrate between π/2 and 3π/2 however, the solution we want is:

φx = π - arcsin[ ( Vm - Vf  ) / ( Vm + Vf ) ] 15.2

Now the integral becomes:

 Iav =
1
π [∫

π/ 2

ϕx

Id dϕ+ ∫
ϕx

3π/2

Id dϕ]  (15.3)

with the possibility of giving a fairly accurate solution for the second integral by simply setting its 
indefinite value to -IS φ .  Thus, applying the limits:
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Iav =
1
π [∫

π/ 2

ϕx

Id dϕ−(3π

2
−ϕx)IS] (15.4)

There is however, a good reason why using this form might not be a good idea.  This is that the 
solution for the diode forward voltage, Vf = Vp - Vm ,  has to be determined by a process of iteration.
Thus, when the integration routine is called at the beginning of the iteration process, the submitted 
values of Vp and Vm might not be very accurate.  If that is so, then the crossover point will not be 
accurate, and the assumption that the function is flat from φx to 3π/2 might not be valid.  Thus actual
evaluation of the second integral in (15.3) is advisable.  There will still be a large saving in 
computation time however because, as we will see, the numerical integration process can be made 
adaptive, so that the integration of the nearly-flat region will be much faster than the integration of 
the serpentine region from π/2 to φx .

Another episode of the Simpsons
The most basic numerical integration method is that of dividing the area under a curve into 
contiguous strips, drawing a straight line between the two points at which the curve intersects each 
strip, and then adding the areas of all the resulting trapezoids between the desired limits.  This, of 
course, is the trapezoid rule.  Since it involves straight line approximations to the curve, it can give 
an exact value of the integral of any linear (first-order) function.  If the function is linear and free 
from discontinuities, a single strip is sufficient.  If the function is of quadratic or higher order 
however, it produces an approximation, which improves slowly as the number of strips is increased.
     The problem with the trapezoid method is that the reason for wanting to perform a numerical 
integration is that there is no known analytical solution.  This usually means that the integrand is 
effectively of high order; i.e., it has highly variable curvature; which suggests that using a first-
order approximation for each curve segment is going to result in a large number of strips if it is to 
give useful accuracy.  An obvious improvement therefore, is to increase the order of the function 
used to approximate curve segments.
     Numerical integration using a second-order (quadratic) function to approximate each line 
segment is known as 'Simpson's rule' 98, or more informatively, 'Simpson's 1:4:1 rule'.  

∫
a

b

f (x)dx ≈
(b−a )

6 [ f (a )+4 f ( a+b
2 )+ f (b)]  (15.5)

The second-order approximation to the integral turns out to be the 1:4:1 weighted average of the 
function evaluated at the lower limit, the mid point, and the upper limit, of the segment.  If the 
integrand is second-order and continuous across the interval, then the solution is exact.  Otherwise 
the value returned is an approximation, which improves as the difference between the limits a and b 
is reduced.
     It is possible to fit the curve segments to functions of even higher order.  In fact, the trapezoid 
rule and Simpson's 1:4:1 rule are the first two in a series known as the 'Closed Newton-Cotes 
formulae' 99.  The cubic method is Simpson's 1:3:3:1 rule, and the quartic method is Boole's rule, 
which uses the 7:32:12:32:7 weighted average; the function being evaluated at equally-spaced 
intervals over the integration range in each case.  Notice that the function always has to be 

98 http://en.wikipedia.org/wiki/Simpson's_rule
99 http://en.wikipedia.org/wiki/Newton-Cotes_formulas
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evaluated at p+1 points, where p is the order of the approximating function.
     As the order of the fitting function is increased, the number of segments required to achieve a 
given degree of accuracy is reduced.  Increasing the order however, requires increasing the number 
of points to be evaluated across a segment.  Consequently there is not a linearly-increasing 
advantage in increasing the order in comparison to the simple expedient of using more segments.  
The greatest benefit is obtained by going from first-order to second-order, and for that reason, 
Simpson's 1:4:1 rule is the most widely-used method.  Another advantage of the 1:4:1 rule is that it 
can be implemented in a manner that automatically determines the number of segments required 
without the need to use arrays to store function-evaluation data.
     Most code examples for Simpson's-rule integration require the number of segments to be given 
as an input parameter.  Presumably, the user will have performed an exhaustive evaluation of the 
entire working parameter-space prior to using the method to solve actual problems, or will have 
some other clairvoyant way of knowing that the result will be sufficiently accurate with a particular 
choice.  The 1:4:1 weighted average however, is convenient for an algorithm that successively 
doubles the number of segments without either wasting the previous calculations or needing to store
them explicitly100.  The new result after each doubling is checked against the previous result, and the
process continues until convergence occurs.  In this way, Simpson's-rule integration becomes 
adaptive, and advance characterisation of the integrand is not required.

The version of the adaptive algorithm used here works as follows.  Firstly, a crude estimate of the 
integral is obtained by applying Simpson's rule across the entire integration range.  This is shown in 
the adjacent diagram, where the interval between the three samples of f(x) is designated h0, so that:

h0 = (b-a)/2

If we call this initial estimate S0 , then we get
(by comparison with equation 15.5):

S0  = [ f(a) + 4f(a+h0 ) + f(a+2h0 ) ] h0 / 3

We can however, also de-construct the
problem in a different way by designating the samples as odd or even according to the number of 
instances of the sampling interval that have been added to the lower limit.  Then we can write the 
sums of odds and evens separately.  For the initial estimate we get:

Σ0(even) = f(a) + f(a+2h0 )

Σ0(odd) = f(a+h0)

so that:

S0  = [ Σ0(even) + 4Σ0(odd) ] h0 / 3

100 The author was introduced to this method by Bob Weaver, who sent a code example in a private e-mail 
communication, 26th April 2010, 06:20.  Bob also describes the method and gives examples on his 'Numerical 
Methods for Inductance Calculation' web page: http://electronbunker.ca/CalcMethods2c.html  (accessed 25th Sept.
2014)
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Now we double the number of segments by
halving the sampling interval.

h1 = h0 / 2 

If we call the new estimate S1 , then we get:

S1 = [ f(a) + 4f(a+h1 ) + f(a+2h1 ) ] (h1 / 3) + [ f(a+2h1 ) + 4f(a+3h1 ) + f(a+4h1 ) ] (h1 / 3)

i.e.:

S1 = [ f(a) + 4f(a+h1 ) + 2f(a+2h1 ) + 4f(a+3h1 ) + f(a+4h1 ) ] (h1 / 3)

but now let us separate-out the odds and evens:

Σ1(even) = f(a) + 2f(a+2h1 ) + f(a+4h1 ) = Σ0(even) + 2 Σ0(odd) 

Σ1(odd) = f(a+h1 ) + f(a+3h1 )

and

S1 = [ Σ1(even) + 4Σ1(odd) ] h1 / 3 = [ Σ0(even) + 2 Σ0(odd) + 4Σ1(odd) ] h1 / 3

Thus it turns out that the summations from the previous round can be combined to give the evens 
for the current round, so that it is only necessary to calculate the odd samples.  The process is also 
recursive, so that:

Σk(even) = Σ(k-1)(even) + 2 Σ(k-1)(odd)

and

Sk = [ Σk(even) + 4Σk(odd) ] hk / 3

The loop indexing required for the
calculation of each new set of odd samples is
however not particularly obvious, because
the number of points increases exponentially.
This is perhaps illustrated by the case for
k=2, shown on the right.  The following table
unravels the problem.
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cycle no.
k

No. of
segs.

odd evaluation
points, a + i hk 

n = max. value of i No, of segs
used

0 1 i = 1 1 = 2(0+1)-1

1 2 i = 1 , 3 3 = 2(1+1)-1

2 4 i = 1 , 3 , 5 , 7 7 = 2(3+1)-1

3 8 i = 1 , 3, 5 , . . . .  , 15 15 = 2(7+1)-1

4 16 i = 1 , 3, 5 , . . . .  , 31 31 = 2(15+1)-1

k 2k i = 1 , 3, 5 , . . . .  , nk nk = 2( n(k-1)+1)-1 nsegs = ( nk+1) /2

The sum of odd samples can be calculated in a for-next loop, with a step size of 2.  As can be seen 
from the table, the maximum loop count for the kth iteration, nk , can be calculated from the 
maximum loop count for the (k-1)th iteration using:

nk = 2 ( n(k-1) + 1 ) - 1

The termination criterion can be based on  |Sn-Sn-1|  falling below a certain value, or  |1-Sn/Sn-1|  
falling below a certain value, depending on the need for an absolute or a relative measure of 
convergence.

The total number of segments used for a calculation can be determined from the final maximum 
loop count using:

nsegs = ( nk+1) /2

The total number of points calculated is 2nsegs +1 =  nk+2

A numerical solution for diode average current when Rds  is finite, using the adaptive method just 
described, is given below.  For Id values, it makes successive calls to the diode instantaneous current
routine DinstI( ) described in section 15.1.  The form of the integral is as per equation (15.1)
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>>>>>>  work in progress

Below is the first version of the algorithm, which performs the integral between  π/2 and 3π/2 in one
go.  It works fine as a proof of concept, but it is slow.  The much faster version that breaks the 
integral into two parts at the point φx is in the spreadsheet macro library, but I haven't documented it
yet or produced the final fully optimised version.

>>>>>>>>>

Function DavI(byval Vp as double, Vm as double, mVT as double, _
Isat as double, Rds as double) as double
'Calculates average diode current when diode has finite series resistance (Rds)
'Calls function DinstI( ). 'Adaptive Simpson's rule integration procedure
'based on a code example supplied by Bob Weaver (eml 2010:04:26 06:20).
Dim a as double, h as double, sumev as double, sumod as double
Dim previous as double, integral as double, diff as double
Dim n as integer, i as integer
a = pi/2
h = pi/2
sumev = DinstI(Vp*sin(a)-Vm, Rds, mVT, Isat) + DinstI(Vp*sin(3*a)-Vm, Rds, mVT, Isat)
sumod = DinstI(Vp*sin(2*a)-Vm, Rds, mVT, Isat)
previous = (4*sumod+sumev)*h/3
n=1
do
  sumev = sumev + 2*sumod
  sumod = 0
  n = 2*(n+1)-1
  h = h/2
  for i = 1 to n step 2
    sumod = sumod + DinstI(Vp*sin(a+i*h)-Vm, Rds, mVT, Isat)
  next
  integral = (4*sumod + sumev)*h/3
  diff = integral / previous -1
  previous = integral
loop until abs(diff) <= 1E-9
DavI = integral / pi
end function

Note that for the simple detector case, Iav can be calculated from ( Vp-Vf  )/ RD , where Vf  is obtained
using the routine DVfp2m( RD ; Vp ; mVT ; IS ) (see section 13.3).  If Rds is set to zero in the call to 
DavI( Vp ; Vm ; mVT ; IS ; Rds ) above, and the convergence criterion of ≤ 1 part in 109 change since 
last cycle of iteration (as shown) is used, then, for practical input voltages, the numerical method 
uses 64 segments and agrees with the Bessel function method to better than 9 decimal places of 
micro amps (see spreadsheet det_models.ods, sheet 2).
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15.3  Output voltage from peak input voltage 
The problem of calculating the output voltage. Vm ,  from a given peak input voltage for the simple 
detector was addressed in section 13.3.  An iterative approach is required because calculation of the 
diode average current, from which the output voltage is obtained, requires values of both the peak 
input voltage and the output voltage.  Thus it is necessary to input trial values of  Vm  and adjust 
them until the calculation agrees with the input.  The same conditions prevail when the diode has 
non-zero series resistance, although the practicalities are somewhat different.  

Using the diode average current routine developed in the previous subsections we have:

Vm = Iav RD = RD DavI( Vp ; Vm ; mVT ; IS ; Rds )  

If we call the two instances of Vm  y and x, then:

y = Iav RD = RD DavI( Vp ; x ; mVT ; IS ; Rds )

A good first estimate for x can be obtained by assuming that Rds = 0 and using the routine
DVfp2m( RD ; Vp ; mVT ; IS ).  This works very well for small inputs, because the voltage across Rds 
makes little contribution to the overall forward voltage when the diode current is small.  Subsequent
adjustments to x however need to be determined with some precision, because a small change in x 
gives rise to a large change in y, and the calculation can easily become unstable.  We therefore need 
to use the derivative ∂y/∂x to determine the shift, with the small difficulty that this derivative cannot
be expressed analytically.  A solution is to use finite-difference numerical differentiation.

∂y/∂x ≈ RD [ DavI( Vp ; x+δx/2 ; mVT ; IS ; Rds ) + DavI( Vp ; x-δx/2 ; mVT ; IS ; Rds ) ] / δx

The finite difference, δx , is determined by trial and error, and in this case, values between 10-3 and 
10-6 were found to work well.  Notice incidentally, that some implementations of finite-difference 
differentiations use f(x) and f(x+δx) respectively for the two function evaluations.  This saves 
computation time, because f(x) will already have been calculated, but it also reduces the accuracy of
the result and introduces bias into any residual error that remains when the calculation is deemed to 
have converged.

Once we have a derivative, calculation of the shift is as in the various similar procedures in the set 
of detector utilities accompanying this work:

δx ≈ ( x - y ) / ( ∂y/∂x - 1)

A Basic routine that performs the calculations given below.  Note that it returns the diode forward 
voltage drop Vf , which can be subtracted from the peak input voltage to determine the detector DC 
output. 
     Regarding the matter of computational efficiency; notice that the function makes 3 calls to the 
numerical integration routine DavI( ) on each round of iteration.  DavI( ) in turn, if it uses say 64 
segments, will make 127 calls on the instantaneous current routine DinstI( ) each time it is called.  
When using interpreted Basic, execution is is slow; except for small input voltages, in which case 
Rds makes very little difference to the result and the initial estimate is close to the final value.
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>>>>>>>>>>>>  work in progress

The procedure below has a numerical instability.  The problem has yet to be solved.

see spreadsheet det_models.ods, sheet 9

>>>>>

Function DVfRp2m(RD as double, Vp as double, mVT as double, Isat as double, _
Rds as double) as double
'calculates forward voltage of a diode half-wave detector 
'when diode has finite series resistance. 'Calls functions: DVfp2m( ) and DavI( )
Dim Vf as double  
Vf = DVfp2m(RD, Vp, mVT, Isat)     'starting estimate assumes Rds=0
DVfRp2m = Vf
If Rds <= 0 OR Vp/mVT > 708 then exit function
Dim x as double, y as double, dx as double, deriv as double, diff as double, deltax as double
x = Vp-Vf
dx = 0.000001           'sets finite difference in [volts] for numerical differentiation.
do
  y = Rd*DavI(Vp, x, mVT, Isat, Rds)
  diff = x-y
  deriv = Rd*( DavI(Vp, x+dx/2, mVT, Isat, Rds)-DavI(Vp, x-dx/2, mVT, Isat, Rds))/dx
  deltax = diff/(deriv-1)
  x=x+deltax
loop until abs(diff) < 1E-7        'sets precision for termination.
DVfRp2m = Vp-x
end function
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15.4  Comparison of numerical integration and transformation methods 
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15.x  Peak input voltage from output voltage 

Works down to 1 microvolt with dx=0.00001
reducing dx beyond that causes no. of segs used in DavI() to exceed maxint (32767).
Note that there is little to be gained from including Rds in the model when Vm is very small.
Adaptive termination criterion is needed to avoid stability issues.  Forced termination for n>256 
was required during debugging to prevent infinite looping.  Leaving it in removes the risk of 
'program not responding' errors when termination criterion is adjusted. 

>>>>   work in progress

Algorithm has a singularity problem because deriv-1 passes through zero in the valid argument 
range.  Might need a completely different approach - needs more thought.  Whether this is worth the
effort depends on comparison with method of section 14]

>>>>>>>

Function DVfRm2p(RD as double, Vm as double, mVT as double, Isat as double, _
Rds as double) as double
'calculates peak detection error (forward voltage) of a diode half-wave detector 
'when diode has finite series resistance. 'Calls functions: DVfm2p() and DavI()
Dim Vf as double, x as double  
Vf = DVfm2p(RD, Vm, mVT, Isat)     'starting estimate assumes Rds=0
DVfRm2p = Vf
x = Vm + Vf     'x is the initial estimate for peak input voltage Vp
If Rds <= 0 OR x/mVT > 708 then exit function
Dim y as double, dx as double, deriv as double, diff as double, deltax as double
Dim maxdiff as double
dx = 0.00001    'sets finite difference for numerical differentiation
maxdiff = 1E-6/Vm    'Adaptive termination criterion (less strict for small Vm)
Dim n as integer
do
  n=n+1   'For forced loop termination.  Not used in calculation
  y = Vf + Rd*DavI(x, vm, mVT, Isat, Rds)
  diff = x-y
  deriv = Rd*( DavI(x+dx/2, Vm, mVT, Isat, Rds)-DavI(x-dx/2, Vm, mVT, Isat, Rds))/dx
  deltax = diff/(deriv-1)
  x = x+deltax
  Vf = x-Vm
loop until abs(diff) < maxdiff or n > 256
DVfRm2p = Vf
end function
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99.  Work in progress  

>>>>>>>>>>   Under construction

Remaining topics to be covered in part 1:
- Comparison of transformation and numerical integration methods.
- Error analysis (calculation of measurement standard deviation)
- Fitting diode data and extraction of diode parameters.
>>>>>

xx.  Comparison of methods.  

xx.  Error analysis for absolute AC voltage measurement.
Need to show how uncertainties propagate into the working parameters and into the final result.
+ Routines for calculating the standard deviation.

xx.  Parameter determination

Stray points:

>>>  Heavy smoothing - loss of generality.  Timescale ratios.  Video 10:1, voltmeter 10000:1.  Can 
be included in numerical integration.

>>  Diode detector input impedance.  Comment under general model:
>>
Note also that the input impedance of a detector will often be slightly capacitive at high frequencies.
This is due to the junction capacitance of the diode.  For the 1N5711 Schottky diode (for example), 
this capacitance is about 2pF.  Hence placing several diodes in parallel is not a preferred method for 
improving the linearity of broadband or high-frequency detectors. 
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>>>>>>>>> Orphan refs:

"Errors in SWR Meters", Albert E Weller, WD8KBW, QEX Correspondence, June 1982, p2.
Errors due to diode non-linearity.

"Diode Voltmeters", Albert E Weller Jr., WD8KBW, QEX, April 1983, p3, cont p6.
Non-linearity compensation scheme.

These go with:
"The Theory of Diode Voltmeters and Some Applications", Albert E Weller, WD8KBW, QEX 
Jan 1984, p7-14.

"Calibrating Diode Detectors", John Grebenkemper, KI6WX, QEX, Aug 1990, p3-8.
[This article confuses saturable and non-saturable leakage current and consequently makes a mess 
of diode parameter extraction]. 



115

>>> Early draft of parameter extraction article.

Diode correction function
When using a diode detector to make accurate RF voltage measurements, mathematical correction 
for diode non-linearity can be obtained by fitting the diode forward conduction characteristic to an 
expression of the form:

Vf = V1 ln( If ) + V0 + If Rds 

Where Rds is the diode series resistance, V0 + If Rds  is the forward voltage when ln( If ) = 0 ,  and V1 
is the gradient of the corresponding graph.  We can see how this simple correction function comes 
about by starting with the diode equation and including a term to allow for the fact that the diode 
will have some ordinary series resistance ( Rds ).  Hence:

Vf = If Rds + m VT ln[( If / IS ) +1 ]

Vf  has to go to zero when If = 0. Hence the +1 term inside the logarithm bracket is there to set a 
limiting condition, which is:

ln[(If / IS ) +1] → 0  as  If  → 0

IS  for a Schottky signal diode is usually somewhere around 10-9  Amps (i.e., 1nA).  Hence, when the 
detector is used with inputs somewhat greater than the forward conduction threshold, then 
If / IS >> 1, and we can neglect the +1 term without noticeable effect.  This leads to the large input 
approximation:

Vf  = If Rds + mVT ln( If / IS )

But we don't know IS , and so we perform a substitution to capture this lack of knowledge in a 
dimensionless parameter ( Iref  / IS ).  Thus:

Vf  = If Rds + mVT ln[ ( If / Iref )( Iref / IS ) ]

Now, making use of the identity ln(pq)=ln(p)+ln(q), we get:

Vf = If Rds + mVT ln(Iref / IS) + mVT ln(If / Iref )

which is in the form:

Vf = If  Rds + V0 + V1 ln( If / Iref )

The choice of Iref  is arbitrary, and it is sensible to use some convenient engineering multiple of 
Amps (i.e., usually 1 μA or 1 mA for signal diodes). Hence, adopting  Iref = 1 μA :

Vf = If Rds + V0 + V1 ln( If  / [μA] )

i.e., the current inserted into the logarithm bracket has effectively been divided by its units to make 
it dimensionless, which means that all we do in practice is take the logarithm of the forward current 
in μA to calculate the rightmost term.  Now we can rearrange the equation in the form y=a+bx and 
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carry out a linear regression analysis101, i.e.;

Vf - If Rds = V0 + V1 ln( If )

where y = ( Vf - If Rds)   ,   a = V0   ,   b = V1   and    x = ln( If )

When calibrating a small-signal detector for currents of  < 1mA, Rds can often be assumed to be 
zero if a Schottky or gold-bonded diode is used.  The series resistance of some diodes however, 
particularly the germanium point-contact variety, can be fairly large and so cannot be ignored.  In 
order to allow for a finite Rds ; a simple trick in calculation (program or spreadsheet) is to make 
provision for the term If Rds to be subtracted from the measured value of Vf , but initially to set Rds = 
0.  If the regression-line shows significant curvature, Rds can be adjusted by hand or by iteration to 
get the smallest standard-deviation of fit.

Once the parameters V0 , V1 and Rds are determined, the function we started with:

Vf = V1 ln( If ) + V0 + If Rds 

will return a value of Vf  for a given value of If  that is good over several decades of current 
(provided that the temperature is close to what it was when the fitting data were collected).  Note 
however, that the regression function does not have the correct limiting condition to return a true 
value for Vf when If → 0; and so If  of less than about 100 nA should be trapped as an illegal input. 
Alternatively we can solve for the diode equation parameters using:

V1 = mVT and  V0 = mVT ln( Iref / IS )

in which case Vf  can be calculated from the diode equation directly and the limit at  If = 0 will be 
correct..

In an example given elsewhere [see Data Analysis], the regression function for a 1N5711 diode 
(neglecting Rds ) was found to be:

Vf = 0.158342 + 0.029060 ln( If / [μA]) Volts

Taking VT =25.3 mV, this gives m=1.15 and IS = 4.3 nA.  Using the diode equation (with the 
parameters in full precision as calculated from the fit) produces Vf values that are barely different 
from those given by the fitting function provided that If >>IS (see spreadsheet 1N5711.ods).  Note 
that the determined diode equation parameters are not necessarily realistic, because Rds had been 
neglected in this case, but they are accurate for several more decimal places than are required for 
correcting experimental detector readings (The SPICE parameters for the Agilent 1N5711 102 are 
IS = 2.2 nA. Rds =25 Ω).  Attempting to include the If Rds correction in the fit resulted in a negative 
value for Rds, indicating that there are insufficient data to determine the extra parameter in this case. 
If the best fit is obtained with Rds < 0, then the parameter is fitting noise and should be set to 0.

█

101 see, for example, Data Analysis, DWK.  http://g3ynh.info/zdocs/math/
102 IN5711 data.


